典型FACTS装置在电网中接入点、容量及类型选择方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于能源分布和经济发展的不平衡,高电压、大容量、远距离输电和大电网的互联已经成为世界各国现代电力系统发展的主要趋势之一。随着电网的快速发展,如何在保证电网安全稳定运行的前提下,提高其运行的有效性引起了国内外学者的广泛关注。
     FACTS技术的诞生和发展为实现这一目标提供了新的控制技术和有效手段。在FACTS技术发展和市场推广的过程中,研究人员逐渐认识到:对于一个大型电网,FACTS技术的应用效果很大程度上取决于其在电网中的配置是否合理;针对电力系统的实际需求,如何合理地选择FACTS装置在电网中的接入点、容量及类型是一个亟待解决的问题。它直接关系到电网的安全稳定运行和FACTS装置的投资效益。
     目前,电网中FACTS装置的配置主要采用仿真试探或工程经验所得,这显然不能满足现代电网发展和FACTS装置推广应用的要求,有必要对FACTS装置在电网中接入点、容量及类型的选择方法进行系统化的理论研究。论文以优化配置FACTS装置提高电网运行有效性为主线,以典型FACTS装置为研究对象,对其在电力系统中的优化配置力法进行了深入探讨,并应用于实际电网FACTS装置接入点、容量及类型的选择,从而初步建立了FACTS装置在电网中优化配置理论体系,主要的研究内容及成果如下
     从基本原理出发,介绍了典型FACTS装置在提高电网静态电压稳定性、输电能力、暂态稳定性等方面的功能特性;在此基础上,通过比较输出特性曲线、串/并联无功补偿与线路传输有功功率增量之间的关系、对系统暂态稳定的影响程度,分析了它们各自的适用范围。结合国内外调研情况,建立了FACTS装置投资费用函数,以指导其类型的选择。给出了适用于提高电网运行有效性的评估指标,为FACTS装置接入点、容量的选择提供了分析依据。
     以寻找电网中电压稳定薄弱母线、提高输电能力关键线路、发生故障对电网危害程度较大的地点为目的,分别采用连续潮流法、模态分析法、扩展等面积法则求取负荷节点电压稳定裕度、线路参与因子、系统暂态稳定裕度,并以此为依据对电网中节点、线路安装FACTS装置的优先次序进行排序,指导FACTS装置接入点的选择。
     在无功就地平衡和分层平衡原则的基础上,把传输无功功率造成的有功网损最小作为约束条件,利用经济压差的概念,建立了传输无功功率造成的有功损耗、节点电压、无功补偿容量之间严格的数学关系式,以合理地确定无功补偿装置容量;通过灵敏度指标反映FACTS装置补偿容量变化对电网暂态稳定裕度的影响程度,进而将大扰动下FACTS装置补偿容量的确定处理成保证系统稳定的前提下,使补偿代价最小的量化问题。
     在FACTS装置接入点、容量及类型选择方法研究的基础上,针对提高电网静态电压稳定性、输电能力、暂态稳定性等多个目标,设计了FACTS装置在电网中的优化配置模型。结合不同FACTS装置自身特性和投资费用函数,给出了求解单目标最优解的计算方法。提出了利用sPareto解求取多目标函数Pareto前沿最精简表示形式的方法,直接反映FACTS装置各配置方案之间的折衷,实现了方案的优化选择。
     为了验证本文所述方法的正确性和模型的有效性,在实际电网中,研究了采用FACTS装置提高其运行有效性的配置方案,并在仿真中考虑了负荷模型对分析结论的影响,为工程决策提供了理论分析依据。对于极端故障情况,论文综合考虑了无功补偿、直流功率提升和发电端切机等提高系统暂态稳定性的措施,给出了包含多种措施的综合应对方案,为电网在该故障下的稳定运行提出了具体的指导意见。
Due to unbalanced energy distribution and economic development, high voltage, large capacity and long distance power transmission and interconnection of bulk power systems have become one of the major development trends of modern power systems all over the world. With the rapid development of power grids, how to improve their operational effectiveness without compromising the reliability has caused widespread concerns of domestic and foreign scholars.
     The birth and development of FACTS provide new control technology and effective tools to achieve the above goal. During the development of FACTS technology and its marketing, researchers gradually recognize that the effects of applying FACTS in a bulk power grid heavily depend on the placement of FACTS devices. Therefore, how to select the locations, capacities and types of FACTS devices according to the practical demands of a power grid is an immediate problem needed to be solved, which has direct effects on reliability of grid operation and profitability of investments in FACTS devices.
     Currently, placement of FACTS devices in power grids is mainly relied on simulation trials or project experience, which obviously can not meet the demand of popularization of FACTS devices in a modern power system; therefore, it is necessary to make a systematical study on selection of locations, capacities and types of FACTS devices. Organized around the optimal placement of FACTS devices to improve operational effectiveness of a power grid with typical FACTS devices as the research subjects, the dissertation discusses the optimal placement methods thoroughly and applies them to a real power grid. As a result the theoretical architecture on the optimal placement methods of FACTS devices is built. The main research contents and accomplishments of the dissertation are summarized as follows.
     Based on basic principles, functional properties of typical FACTS devices such as improving static voltage stability, transfer capability and transient stability of power systems are introduced. Then the application range of a device is analyzed by comparing output characteristic curves, the relationship between series (or shunt) compensation and active power increment of transmission line, and the impact on power system transient stability. The cost function of FACTS devices is established based on domestic and international case studies to instruct the choice of device types. The evaluation index of improving operational effectiveness of power grid is given, which provides guidelines for selection of locations and capacities of FACTS devices.
     For purposes of targeting weak buses of voltage stability, key lines of improving transfer capability and locations with severe impacts on the grid during fault contingencies, voltage stability margin of load buses, line participation factors and system transient stability margin are obtained by continuation power flow, modal analysis method and extended equal area criterion respectively. Based on the above calculations, buses and lines in the power grid are ordered by their priority of installing FACTS devices to guide the selection of locations.
     Based on local and hierarchical balance of reactive power and taking minimum active power losses caused by transferring reactive power as the constraints, the strict mathematical relationship among active power losses caused by transferring reactive power, bus voltage and reactive compensation capacity is established using economic voltage difference to determine capacities of FACTS devices reasonably. Through the sensitivity index which reflects the impact of compensation capacity variation on transient stability margin, determination of compensation capacity under large disturbance is treated as the quantity problem of minimizing compensation cost with the constraints of system stability.
     Aimed at improving static voltage stability, transfer capability and transient stability of power grids, a mathematical model of optimal FACTS devices placement is designed based on the study of selection of locations, capacities and types of FACTS devices. Calculation method is given to obtain single objective optimal solutions considering functional characteristics of several typical FACTS devices and the cost function. A method is proposed to obtain a minimal representation of Pareto frontier of multi-objective function using smart Pareto filter, which reflects the tradeoff among different schemes to yield an optimal choice.
     Placement scheme of FACTS devices to improve operational effectiveness of real power grids is studied to validate the proposed method and model with impacts of the load model on the study considered in simulation. The study provides theoretical basis for engineering decision-making. For extreme faults, a synthetic strategy including various countermeasures to enhance transient stability such as reactive power compensation, HVDC power emergency support and generator tripping is given, and guidelines for reliable grid operation in contingency are presented.
引文
[1]赵遵廉.中国电网的发展与展望[J].中国电力,2004,37(1):1-6.
    [2]郑宝森,郭日彩.中国互联电网的发展[J].电网技术,2003,27(2):1-3.
    [3]郭剑波,姚国灿,徐征雄,等.我国未来大区电网互联可能出现或应该注意的若干技术问题[J].电网技术,1998,22(6):63-67.
    [4]卢卫星,舒印彪,史连军.美国西部电力系统1996年8月10日大停电事故[J].电网技术,1996,20(9):40-42.
    [5]周孝信,郑健超,沈国荣,等.从美加东北部电网大面积停电事故中吸取教训[J].电网技术,2003,27(9):T1.
    [6]胡学浩.美加联合电网大面积停电事故的反思和启示[J].电网技术,2003,27(9):T2-T6.
    [7]唐葆生.伦敦南部地区大停电及其教训[J].电网技术,2003,27(11):1-5,12.
    [8]李锋,谢开.欧洲互联电网2006年11月4日大范围停电事故分析[J].中国电力,2007,40(5):90-96.
    [9]Hingorani N G, et al. Network access and the future of power transmission[J]. EPRI Journal, 1986, April-may:45-52.
    [10]The FACTS Terms & Definitions Task Force of the FACTS Working Group of the DC and FATCS Subcommittee. Proposed Terms and Definitions for Flexible AC Transmission Systems(FACTS)[J]. IEEE Transactions power Delivery,1997,12(4):1848-1853.
    [11]郑健超.灵活交流输电系统——-种新型的交流输电技术[J].电网技术,1991,15(3):51-55.
    [12]何大愚.柔性交流输电控制器及对我国开发应用的建议[J].电网技术,1996,20(7):1-8,13.
    [13]王仲鸿,沈斐,吴铁铮.FACTS技术研究现状及其在中国的应用与发展[J].电力系统自动化,2000,24(23):1-5.
    [14]汤广福.2006年国际大电网会议系列报道——高压直流输电和电力电子技术[J].电力系统自动化,2007,31(8):1-6,35.
    [15]Gerin-Lajoie L, Scott G, Breault S, et al. Hydro-Quebec multipe SVC application control stability study[J]. IEEE Transactions on Power Delivery,1990,5(3):1543-1551.
    [16]Clark H K, de Mello F P, Reppen N D, et al. FACTS or fiction when dealing with reliability [J]. IEEE power & energy magazine, September/October,2003:88,86.
    [17]张琳.FACTS控制器间的相互影响分析及控制策略研究[D].杭州:浙江大学博士学位论文,2007.
    [18]刘隽.多FACTS控制器在电力系统中的应用研究[D].成都:四川大学博士学位论文, 2008.
    [19]栗春,姜齐荣,王仲鸿.基于规则的STATCOM的控制器设计[J].中国电机工程学报,1999,19(6):56-60.
    [20]Wang H F. Interactions and multivariable design of multiple control functions of a unified power flow controller[J]. International Journal of Electrical Power and Energy Systems,2002, 24(7):591-600.
    [21]Pilotto L A S, Long W F. Basic mechanisms of control interactions among power electronic-assisted power systems[J]. Tranmission and Distribution Conference and Exposition, 2001 IEEE/PES vol(1):397-402.
    [22]Parniani M, Iravani M R. Voltage Control Stability and Dynanic Interaction Phenomena of Static VAR Compensators[J]. IEEE Transactions on Power Systems,1995,10(3):1592-1597.
    [23]Clark K, Fardanesh B, Adapa R. Thyristor controlled series compensation application study-control interaction considerations[J]. IEEE Transactions on Power Delivery,1995, 10(2):1031-1037.
    [24]邹振宇,江全元,张鹏翔,等.基于多目标进化算法的TCSC与SVC控制器协调设计[J].电力系统自动化,2005,29(6):60-65.
    [25]吴昊,叶彬,曹一家.装有SVC和STATCOM的电力系统线性模型及控制器交互影响[J].江南大学学报(自然科学版),2004,3(2):134-139.
    [26]Coordination of controls of multiple FACTS/HVDC links in the Same System[R]. Cigre working group document 14.29,1999.
    [27]Mathur R M, Varma R K.基于晶闸管的柔性交流输电控制装置[M].徐政,译.北京:机械工业出版社,2005:30-32.
    [28]Kundur P. Power system stability and control[M]. New York:McGraw-Hill Inc,1994.
    [29]高文建,马世英.动态无功补偿技术在西电东送通道中的应用研究[J].广西电力,2008,31(4):6-10,18.
    [30]刘文华,姜齐荣,梁旭,等.±20Mvar STATCOM的工业现场测试及试运行[J].电力系统自动化,2000,24(23):43-46.
    [31]中国电力科学研究院.超高压输电系统中灵活交流输电(可控串补)技术[R].北京,2000.
    [32]赵贺.电力电子学在电力系统中的应用——灵活交流输电系统[M].北京:中国电力出版社,2000.
    [33]张靖,程时杰,文劲宇,等.通过选择SVC安装地点提高静态电压稳定性的新方法[J].中国电机工程学报,2007,27(34):7-11.
    [34]顾晓荣,薛禹胜.FACTS装置地点的定量评估及优化[J].电力系统自动化.1999,23(6):42-44.
    [35]Wang H F. Selection of robust installing locations and feedback signals of FACTS-based stabilizers in multi-machine power systems[J]. IEEE Transactions on Power Systems,1999, 19(2):569-574.
    [36]Mhaskar U P, Kulkarni A M. Power oscillation damping using FACTS devices:modal controllability, observability in local signals, and location of transfer function zeros[J]. IEEE Transactions on Power Systems,2006,21(1):285-294.
    [37]王海风,陈珩,李乃湖.多机电力系统中灵活交流输电稳定器安装地点和反馈信号选择的降阶模态分析法[J].中国电机工程学报,1998,18(6):399-404.
    [38]王海风,李乃湖,陈珩.灵活交流输电稳定器安装地点和反馈信号的鲁棒性及正互影响[J].中国电机工程学报,1999,19(10):37-41.
    [39]吴国红,贺家李,余贻鑫,等.FACTS装置最佳设置点的选择指标[J].电力系统自动化,1998,22(9):57-60.
    [40]Gerbex S, Cherkaoui R, Germond A J. Optimal location of multi-type FACTS devices in a power system by means of genetic algorithms[J]. IEEE Transactions on Power Systems,2001, 16(3):537-544.
    [41]Rajarman R, Alvarado F, Maniaci A, et al. Determination of location and amount of series compensation to increase power transfer capability [J]. IEEE Transactions on Power Systems, 1998,13(2):294-300.
    [42]Saravanan M, Slochanal S M R, Venkatesh P, et al. Application of PSO technique for optimal location of facts devices considering system loadability and cost of installation[C]. International Power Engineering Conference, Singapore,2005.
    [43]Singh S N, David A K. Congestion management by optimising FACTS device location[C]. International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, London,2000.
    [44]Sharma A, Chanana S, Parida, S. Combined optimal location of FACTS controllers and loadability enhancement in competitive electricity markets using MILP[C]. Power Engineering Society General Meeting, San Francisco, California, USA,2005.
    [45]IEEE Committee Report. Voltage Stability of Power Systems:Concepts, Analytical Tools, and IndustryExperience[R]. IEEE/PES 93TH0358-2-PWR,1990.
    [46]CIGRE TF38.02.10. Modeling of Voltage Collapse Including Dynamic Phenomena[J]. Electra, No.147, April,1993.
    [47]中华人民共和国国家经济贸易委员会.DL 755-2001电力系统安全稳定导则.北京:中国电力出版社,2001.
    [48]IEEE/CIGRE Joint Task Force on Stability Terms and Definitions. Definition and Classification of Power System Stability[J]. IEEE Transactions on Power Systems,2004, 19(2):1387-1401.
    [49]仲悟之.受端系统暂态电压稳定机理研究[D].北京:中国电力科学研究院博士学位论文,2008.
    [50]冯治鸿,周双喜.大规模电力系统电压失稳区的确定方法[J].中国电机工程学报,1997,17(3):152-156.
    [51]Ajjarapu V, Christy C. The continuation power flow:a tool for steady state voltage stability analysis[J]. IEEE Transactions on Power Systems,1992,7(1):416-423.
    [52]Ching H D, Flueck A J, Shah K S, Balu N. CPFLOW:a practical tool for tracing power system steady-state stationary behavior due to load and generation variations[J], IEEE Transactions on Power Systems,1995,10(2):623-634.
    [53]周双喜,朱凌志,郭锡玖,等.电力系统电压稳定及其控制[M].北京:中国电力出版社,2004.
    [54]Gao B, Morison G K, Kundur P. Voltage stability evaluation using modal analysis[J]. IEEE Transactions on Power Systems,1992,7(4):1529-1542.
    [55]Mansour Y, Wilsun Xu, Alvarado F, et al. SVC placement using critical modes of voltage instability[J]. IEEE Transactions on Power Systems,1994,9(2):757-763.
    [56]苗友忠,汤涌,李丹,等.局部振荡引起区间大功率振荡的机理[J].中国电机工程学报,2007,27(10):73-77.
    [57]刘光明.有载自动调压对电力系统电压稳定性的分析[J].江西电力职工大学学报,2002,15(4):28-29.
    [58]王漪,柳焯.电力系统紧急无功补偿调控模式[J].电力系统自动化,2000,24(15):45-48.
    [59]中华人民共和国国家经济贸易委员会.DL/T 732-2000电力系统安全稳定控制技术导则.北京:中国电力出版社,2001.
    [60]汪芳宗,陈德树,何仰赞.大规模电力系统暂态稳定性实时仿真及快速判断[J].中国电机工程学报,1993,13(6):13-19.
    [61]刘笙.暂态能量函数方法的新近进展[J].电力系统自动化,1998,22(9):19-24.
    [62]Esklcioglu A M, Sevaioglu O. Feasibility of lyapunov functions for power system transient stability analysis by the controlling UEP method[C]. IEE Procedings-C,1992,139(2): 152-156.
    [63]吕志来,张保会,哈恒旭.基于改进的势能界面判据实时预测电力系统稳定性[J].中国电机工程学报,2002,22(4):94-98.
    [64]Tong J Z, Chiang H D, Conneen T P. A sensitivity-based BCU method for fast derivation of stability limits in electric power systems[J]. IEEE Transactions on Power Systems,1993,8(4): 1418-1428.
    [65]Maria G A, Tang C, Kim J. Hybrid transient stability analysis[J]. IEEE Transactions on Power Systems,1990,5(2):384-393.
    [66]房大中,周保荣,宋文南,等.修正的暂态能量裕度评估策略[J].中国电机工程学报,2002,22(3):94-98.
    [67]吴政球,荆勇.基于时域仿真的暂态稳定裕度灵敏度分析[J].中国电机工程学报,2001,21(6):19-24.
    [68]薛禹胜.运动稳定性量化理论——非自治非线性多刚体系统的稳定性分析[M].南京:江苏科学技术出版社,1999.
    [69]蔡百川.220 kV变电站无功补偿容量的研究[J].上海电力,2005,18(3):241-245.
    [70]刘传铨,张焰.电力系统无功补偿点及其补偿容量的确定[J].电网技术,2007,31(12):78-81.
    [71]熊虎岗,程浩忠,徐敬友.考虑提高系统无功备用容量的无功优化调度[J].电网技术,2006,30(23):36-40.
    [72]王平,何源森,丘宇峰,等.电力系统输电通道大容量静止无功补偿系统研究及其应用[J].电力自动化设备,2007,27(10):10-18.
    [73]Venkataramana Aijarapu, Ping Lin Lau. An optimal reactive power planning strategy against voltage collapse[J]. IEEE Transactions on Power Systems,1994,9(2):906-917.
    [74]Chattopadhyay D, Chakrabarti B B. Reactive power planning incorporating voltage stability[J]. Electrical Power and Energy Systems,2002(24):185-200.
    [75]吴文传,张伯明.能量损耗最小的无功补偿动态优化算法研究[J].中国电机工程学报,2004,24(4):68-73.
    [76]赵波,曹一家.电力系统无功优化的多智能体粒子群优化算法[J].中国电机工程学报,2005,25(5):4-7.
    [77]余娟,颜伟,徐国禹,等.基于预测-校正原对偶内点法的无功优化新模型[J].中国电机工程学报,2005,25(11):146-151.
    [78]张粒子,舒隽,林宪枢,等.基于遗传算法的无功规划优化[J].中国电机工程学报,2000,20(6): 5-8.
    [79]Vlachogiannis, Hatziargyriou J G, Nikos D, et al. An colony system-based algorithm for constrained load flow problem[J]. IEEE Transactions on PW RS,2005,20(3):1241-1249.
    [80]Esmin, Ahmed A A, Lambert-Torres, et al. A hybrid particle swarm optimization applied to loss power minimization[J]. IEEE Transactions on Power Systems,2005,20(2):855-859.
    [81]程新功,厉吉文,曹立霞,等.基于电网分区的多目标分布式并行无功优化研究[J].中国电机工程学报,2003,23(10):109-113.
    [82]黄志刚,李林川,杨理,等.电力市场环境下的无功优化模型及其求解方法[J].中国电机工程学报,2003,23(12):74-79.
    [83]王勤,方鸽飞.考虑电压稳定性的电力系统多目标无功优化[J].电力系统自动化,1999,23(3): 31-34.
    [84]王淑芬,万仲平,樊恒,等.基于二层规划的无功优化模型及其混合算法[J].电网技术,2005,29(9):22-25.
    [85]唐寅生,李碧君.电力系统OPF全网最优无功的经济压差△Uj算法及其应用[J].中国电力,2000,33(9):42-44.
    [86]胡景生.变压器经济运行[M].北京:中国电力出版社,1999.
    [87]中国电力科学研究院.川电东送通道加装SVC装置工程可行性研究报告[R].北京,2005.
    [88]李来福,柳焯.需求侧管理在缓解紧急态势中的作用[J].电网技术,2008,32(7):56-60.
    [89]柳焯.电压稳定问题中重负荷节点的阻抗解析[J].中国电机工程学报,2000,20(4):35-39.
    [90]Talukdar S N, Ramesh V C. A multi-agent technique for contingency constrained optimal power flows[J]. IEEE Transactions on Power Systems,1994,9(2):855-861.
    [91]石立宝,徐国禹.基于自适应进化规划的电网多目标优化运行[J].中国电机工程学报,2000,20(8):31-36.
    [92]伍力,吴捷,钟丹虹.多目标优化改进遗传算法在电网规划中的应用[J].电力系统自动化,2000,24(12):45-48.
    [93]张鹏,王守相.提高系统可靠性的配电网络多目标重构区间方法[J].电力系统自动化,2004,28(21):22-26,33.
    [94]卞晓猛,邱家驹.基于记忆的改进克隆算法及其PMU配置多目标优化应用[J].中国电机工程学报,2007,27(22):33-37.
    [95]赵亮,雎刚,吕剑虹.一种改进的遗传多目标优化算法及其应用[J].中国电机工程学报,2008,28(2):96-102.
    [96]熊虎岗,程浩忠,李宏仲.基于免疫算法的多目标无功优化[J].中国电机工程学报,2006,26(11):102-108.
    [97]王秀丽,李淑慧,陈皓勇,等.基于非支配遗传算法及协同进化算法的多目标多区域电网规划[J].中国电机工程学报,2006,26(12):11-15.
    [98]马瑞,贺仁睦,颜宏文,等.考虑水火协调的多目标优化分组分段竞标模型[J].中国电机工程学报,2004,24(11):53-57.
    [99]冯丽,邱家驹.基于模糊多目标遗传优化算法的节假日电力负荷预测[J].中国电机工程学报,2005,25(10):29-34.
    [100]江伟,王成山,余贻鑫,等.电压稳定裕度对参数灵敏度求解的新方法[J].中国电机工程学报,2006,26(2):13-18.
    [101]屈刚,程浩忠,欧阳武.考虑线路剩余输电容量的多目标电网规划[J].电力系统自动化,2008,32(10):27-31,60.
    [102]蔡泽祥,申洪,王荔.扩展等面积法暂态稳定分析的FACTS控制器模型[J].电力系统自动化,2000,24(6):32-34,39.
    [103]薄瑞峰,李瑞琴.基于Pareto最优的概念结构方案多目标决策方法[J].西安交通大学学 报,2006,40(9):1114-1116.
    [104]MattsonCA, Mullur A A, Messac A. Smart Pareto filter obtaining a minimal representation of multiobjective design space[J]. Engineering Optimization,2004,36(6):721-740.
    [105]Habur K, O'Leary D. FACTS-flexible alternating current transmission system, for cost effective and reliable transmission of electrical energy[R]. Siemens Power Transmission and Distribution Group, Erlangen, Germany,2005.
    [106]中国电力科学研究院,南方电网技术研究中心.2010年南方电网直流多落点研究报告[R].北京,2005.
    [107]毛晓明,吴小辰.南方交直流并联电网运行问题分析[J].电网技术,2004,28(2):6-9,13.
    [108]赵贺,周孝信.受端电网负荷对高压直流输电的影响[J].中国电机工程学报,2007,27(16):1-6.