滑动轴承转子系统稳定性量化分析方法的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型旋转机械是国家基础设施和基础工业中最关键和最核心的设备,其安全稳定地运行对国民经济健康发展起着至关重要的作用。转子-轴承系统是旋转机械中最核心的部分,轴系的稳定性关系到机器是否能安全可靠地运行。对轴系的稳定性进行分析不仅是重大的基础科学研究课题,而且有助于解决大型旋转机械在运转过程中的动力学问题,因此转子-轴承系统的运动稳定性问题日益受到关注。本文对《非线性转子系统稳定性量化分析方法》一文中给出的转子系统3种典型运动稳定裕度的定义及其规律进行了实验研究,验证了其在实际转子系统中应用的可行性。
     首先对转子-轴承系统动力学研究现状及其发展趋势做了综述。其次重点介绍了利用轨线保稳降维方法提出的转子系统稳定性的量化分析方法:即在一维观察空间的外力位移扩展相平面上定义动态中心点,研究转子系统中常见的几种运动形式的动态中心点动能差序列的特点,给出这几种典型运动形式的轨线稳定裕度的定量评估指标及其计算方法,应用灵敏度分析技术快速有效地预测周期运动的倍周期分岔点和Hopf分岔点。
     采用Capone非线性油膜力模型,对一个Jeffcott转子系统模型的稳定性进行了数值仿真分析;然后基于轨迹特征分析的转子系统3种典型运动稳定裕度的定义,利用灵敏度分析方法,通过两个算例对该系统在两种不同质量偏心时的周期运动分岔点进行了预测。
     最后基于稳定性的量化分析方法中所给出的转子系统3种典型运动稳定裕度的定义,分别在单跨和双跨转子系统中通过实验研究了其规律,并验证了其可操作性。结果表明:工频周期运动稳定裕度的定义在实际应用中有一定的难度,其可操作性差,建议从稳态数据挖掘并重新给出工频周期运动稳定裕度的定义;倍周期运动和概周期运动稳定裕度定义在实际应用中可操作性较好,但是概周期运动稳定裕度的定义在取数计算时不好把握。
Large-scale rotary machines are key equipments in national basic industry. The safety in productions is of very significance to social life and economic development. Rotor-bearings system is the kernel mechanism rotary machinery, which stability is key to safe operation. It is not only a great basic scientific research subject to study the stability of rotor bearing system, but also helpful to solve the dynamic problems when large-scale rotating machinery is in the process of operation. So the stability of rotor bearing system motion has been paid attention increasingly. In this paper, a feasibility experimental research was studied in actually rotor system with the definitions and regularity of the three kinds of typical motion stability margins, which come from the paper‘Quantitative Methodology for the Stability Analysis of Nonlinear Rotor Systems’.
     Firstly, the research status and development tendency of rotor-bearing system dynamics are summarized. And then especially put the stress on the quantitative methodology for the stability analysis of rotor systems, which is presented based on trajectory. Dynamic center point (DCP) of a subsystem is defined on the extended phase plane, namely force-position plane. Characteristics of curves on the extended phase plane and the kinetic energy difference sequence of the DCP for general motion in rotor system are studied. The corresponding stability margins of trajectory are evaluated quantitatively.
     A numerical simulation analysis for the Jeffcott rotor system stability is carried out by means of the Capone nonlinear oil force model. Then a bifurcation point prediction to the system response is done through two examples at two different mass eccentricities by sensitivity analysis, which is based on the three kinds of typical motion stability margin definition of the rotors system.
     Finally, the change rule was studied by means of experiment in a single and double span rotor system respectively which based on the definition of the three kinds of typical motion stability margin of rotor bearing system with lubricated bearings and its operability was verified. The result shows that the definition of frequency periodic motion stability margin has a certain difficulty in the practical applications and has poor maneuverability. It is proposed to re-give the definition of frequency periodic motion stability margin and mine it from steady-state data. The definition of double periodic motion and quisa periodic motion stability margin are better in the practical application operability, but the latter has a certain difficulty in selecting and calculating data.
引文
[1]陈予恕.非线性振动、分岔和混沌的最新进展与展望.振动工程学报, 1992, 5(3): 235-250
    [2] FREDRIC HERCH, DRAR CHILDS. Self-excited Vibration In High-performance Turbo machinery, Mechanical Engineering, 1984, (5), 67-78
    [3]郭立等.大型汽轮机组低频振动解解决办法.东北电力技术, 1997, (10), 1-2
    [4]孟泉,陈予恕.非线性转子-轴承系统油膜失稳新机理研究.非线性动力学学报, 1995, 2(3):189-197
    [5]郑惠萍.大型旋转机械中的非线性因素综述.河北科技大学学报, 1999, 50:82-86
    [6]谢文会.滑动轴承不平衡转子系统非线性动力学稳定性的定量分析. [天津大学硕士论文]. 2002
    [7] W.J.M. RANKINE. On the centrifugal force of rotating shafts. The Engineer, April, 1869; 27
    [8] H.H. JEFFEOTT. The Lateral Vibration of Loaded Shafts in the Neighborhood of a Whirling Speed. Phil. Mag, 1919, 6 (37): 304-314
    [9] B.L. NEWKIRK. Shaft Whipping. General Electric Rev, 1924, (27): 169-178
    [10] A. MUSZYNSKA. Whirl and Whip-Rotor/Bearing Stability Problems. Journal of Sound and Vibration, 1988, 110, (3):443-462
    [11] B.L. NEWKIRK. Journal Bearing Instability. A Review. Inst Mech. Conf. on Lubr and Wear. Oct, 1957
    [12] J.W. LUND. Review of the Concept of Dynamic Coefficients for Fluid Film Journal Bearings. Journal of Tribology, 1987, (109):37-41
    [13] J.W. LUND. The stability of an elastic rotor In journal bearing with flexible damped supports, ASME journal of Applied Mechanics, 1965, (32):911-920
    [14] F.F. EHRICH. Some Observations of Chaotic Vibration Phenomena in High Speed Rotor Dynamics. ASME, Journal of Vibration and Acoustics, 1991, (113):50-57
    [15] D.E. BENTY. Forced subrotative speed dynamics action of rotating machinery, American society of Mechanical Engineers, 1974, 74-pet-16
    [16] M. BOTMAN. Experiments on oil film dampers for turbo-machinery. ASME Journal of Engineering for Power, 1976, (98): 393-400
    [17] J.I. NIKOLAJSEN, R. HOLMES. Investigation of squeeze-film isolators for the vibration control of a flexible rotor. ASME Journal of Mechanical Science, 1979; 21 (4): 247-252
    [18] Li X H, D.L. TAYLOR. No synchronous motion of squeeze-film damper systems. ASME Journal of Tribology, 1987, 109: 169-176
    [19] F.F. EHRICH. High order sub harmonic response of high speed rotor in bearing clearance.ASME Journal of Vibration. Acoustics, Stress and Rehablinty in Design, 1988, (110): 9-16
    [20] A.G. HOMTES. A periodic Behavior of a rigid shaft in short bearings. International Journal for Numerical Methods in Engineering. 1978, (12): 695-702
    [21] F.F. EHRICH. Some observations of chaotic vibration phenomena in high speed rotor dynamics. ASME Journal of Vibration and Acoustics, 1991, (113): 50-57
    [22] R.D. BROWN, P. ADDISON. Chaos in the unbalance response of journal bearings. Journal of Nonlinear Dynamics, 1994, (5): 421-432
    [23] RENATO BRANCATI, MICHELE RUSSO. On the stability of an unbalanced rigid rotor on lubricated journal bearing. Journal of Nonlinear Dynamics, 1996, (10):175-185
    [24]孟泉,陈予恕.非线性转子轴承系统油膜失稳新机理研究.非线性动力学学报, 1995, 2 (3) :189-197.
    [25]孟泉,陈予恕.非线性转子轴承系统1/2亚谐共振全局分叉研究.非线性动力学学报, 1996, 3 (2): 138-144
    [26]陈予恕,孟泉.非线性转子轴承系统的分叉.振动工程学报, 1996, 9 (3): 266-275.
    [27]刘桓,虞烈,谢友柏.非线性不平衡转子轴承系统周期解的预测.航空动力学报, 1999, 14 (1): 74-78
    [28]赵玉成,袁树清,肖忠会.轴承转子系统分叉参数的分维数识别法.应用数学和力学, 2000, 21 (2) :126-130
    [29]焦映厚,陈照波,夏松波,等.转子轴承系统非线性动力学行为的研究.中国机械工程, 2000 ,11 (6) :697-699
    [30] Cheng Zhaobo, Jiao Yinghou. Non-synchronous response bifurcation analysis for a rigid bearing system using oil film force database. Journal of Harbin Institute of Technology, 2000, 7 (2): 87-90.
    [31]徐小峰,张文.一种非稳态油膜力模型下刚性转子的分叉和混沌特性.振动工程学报, 2000 ,13 (2) :247-253.
    [32]张新江,高亹.转子-轴承系统的非线性动力学特性分析.振动、测试与诊断. 2003, 23 (1): 33-36
    [33]王晋麟,曹登庆,王立刚,黄文虎.三种非线性油膜力模型的分析比较.非线性会议论文集,石家庄, 2007年5月17日
    [34]郭勇,陈焰王,建磊,袁小阳.轴承油膜力识别的原理及测点分析.润滑与密封. 2007, 32 (8) :39-41
    [35]刘基浩. Jeffcott刚性转子在气流力和油膜力作用下的Hopf分岔. [天津大学硕士论文]. 2008
    [36]宋方臻,宋波,孙淑娟.非线性弹簧支承转子系统的动力性能分析.机械科学与技术, 1999,18 (4) :587-591
    [37]张卫,朱均.转子轴承系统稳定性灵敏度分析的广义能量法.机械工程学报, 1997, 33 (4): 98-103
    [38]段志强.柔性轴_转子系统动力学研究. [西安电子科技大学硕士学位论文]. 2006
    [39]张明涛,王丽.一类Jeffcott转子系统非线性动力学行为研究.科技咨询报, 2007, (27):167
    [40]王立国,黄文虎,等.转子-轴承系统响应的分岔与混沌控制分析.动力学与控制学报, 2004, 2 (4):39-42
    [41]李祖辉,童水光,郭涛.大型透平膨胀机转子动力学分析.化工机械, 2006, 33 (1):20-23
    [42]何田,刘献栋,李其汉,冯国全.转-转碰摩双转子系统的非线性特性研究.非线性会议论文集,石家庄, 2007年5月17日
    [43]夏志鹏.多跨转子-轴承系统标高问题研究. [复旦大学硕士学位论文].2008
    [44]孟光,张文明.微机电系统(MEMS)动力学研究进展.非线性会议论文集,石家庄, 2007年5月17日
    [45]黄海.微型轴承_转子系统动力特性的研究. [上海交通大学博士论文]. 2007
    [46]陈予恕.非线性动力学理论及其在机械系统中应用的若干进展.非线性会议论文集,石家庄, 2007年5月17日
    [47]薛禹胜.运动稳定性量化理论.南京:江苏科学技术出版社, 1999
    [48]郑惠萍.滑动轴承不平衡转子系统非线性动力学稳定性及其稳定裕度的研究. [天津大学博士论文]. 2000
    [49]薛禹胜.轨线的保稳降维方法及其在非线性动力学中的应用.中国科协2001年学术年会分会场特邀报告.
    [50] Xue Yusheng. The stability-preserving trajectory-reduction methodology for analyzing nonlinear dynamics. Keynote International Conferences on Info-tech&Info-net. Beijing IEEE Catalog Number: 01EX479, CII2001, 2001
    [51]郑惠萍,薛禹胜,陈予恕.基于轨迹的非线性转子系统参数稳定裕度的计算.机械强度, 2002, 24 (2): 185-189
    [52] ZHENG Hui-ping, XUE Yu-sheng, CHEN Yu-shu. Quantitative methodology for stability analysis of nonlinear rotor system. Applied Mathematics and Mechanics, 2005, 26 (9): 1138-1145
    [53]黄文虎,夏松波,焦映厚,等.旋转机械非线性动力学方法设计基础理论与方法.北京:科学出版社, 2006.12
    [54]闻邦椿.故障旋转机械非线性动力学近期研究综述.振动工程学报, 2004, 17 (8):1-5
    [55]张新江.转子-轴承系统非线性动力学研究. [哈尔滨工业大学博士论文]. 2001
    [56]冷淑香,崔颖,黄文虎,等.线性与非线性油膜力模型下转子振动稳定性对比研究.汽轮机技术, 2003, 45 (5):298-301
    [57] G. ADILETTA, A.R. GUIDO. Chaotic motions of a rigid rotor in short journal bearings. Nonlinear Dynamics, 1996, 10 (3): 251-269.
    [58]方安平,叶卫平. Origin7.5科技绘图及数据分析.北京:机械工业出版社, 2006
    [59]彭芳麟,管靖,胡静,等.理论力学计算机模拟.北京:清华大学出版社, 2002, 178~203