材料强度的特征长度概念及破坏准则
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
各类缺陷及微结构对材料强度及其使用寿命有非常重要的影响。现有的力学理论,对于不同形状及大小的缺陷(例如裂纹或孔洞),需要采用不同的理论、准则及强度特性进行评价,并且这些理论不仅是相对独立的,而且一些常见问题(如微小孔洞)仍无法解决。本研究的目的,是要建立一种能适合各种形状缺陷及大小的统一的强度或破坏评价方法。本研究的动机来自于一个工程力学界中被忽视的矛盾:一方面我们承认材料的强度特性(包括韧性)是材料所固有的,不因其几何形状的改变而改变;另一方面,对于不同形状的缺陷,却不仅要采用不同的理论进行分析,而且其评价参数及准则都是不同的,即使对同一种形状的缺陷,也会因其大小的不同而必须采用不同的理论(例如短裂纹与长裂纹);更有甚者,对于现代精密机械等中常见的微小孔洞问题,目前尚无有效的强度或寿命评价方法。
     本研究的方法是先提出理论,然后仔细验证其可行性。提出理论的基本依据是材料强度学,而验证的方法包含两个方面,一是验证本理论退化后与现有理论的一致性,二是对现有理论尚无法解决的问题,通过实验来验证本理论的有效性。
     本文的主要创新点如下:
     第一,提出材料强度的特征断裂长度概念,并以此为依据建立可以适合各种缺陷形状及大小的统一的强度评价方法,为连续介质力学在多晶材料中的应用拓宽了范围。该特征断裂长度是从材料的固有属性中提取出的材料强度参数,因此不受材料几何形状和尺寸的影响,故可以应用到含各种缺陷的材料的脆性断裂判断中。把基于特征断裂长度的破坏准则应用到微小孔洞的静态拉伸脆性断裂实验中发现,理论预测与实验结果符合得较好,而这一问题,是现有理论尚无法评价的。
     第二,通过分析晶体材料的屈服机理和讨论局部区域的塑性变形,指出屈服强度与脆性断裂强度一样,具有特征屈服长度。并根据位错塞积理论,得到多晶材料屈服特征长度的表达式。基于此特征屈服长度,建立了适用于不同尺寸缺陷的屈服强度准则,该准则解释了含有不同大小圆孔平板的屈服应力随孔径变化的规律。并且通过中心含有不同直径尺寸圆孔的平板在常温下的拉伸实验,验证了新提出的屈服准则。该问题也是传统的弹塑性理论所无法评价的。
     第三,把特征长度概念扩展到疲劳领域,分别对疲劳强度的评价和疲劳寿命的预测进行了理论分析和实验验证。基于疲劳损伤也是由某一个损伤区域决定而不是由某一点状态决定的观点,提出当材料的特征疲劳长度内的平均应力振幅达到疲劳强度时,材料会发生疲劳破坏。为了验证此疲劳准则的有效性,采用高强度不锈钢SUS630H900进行了室温下的疲劳试验,理论预测与实验结果也比较一致。
The fatigue life predictions of engineering structures and mechanicalcomponents are always affected by defects and micro structures (such as cracksand voids). In the existing theories for defects with different sizes and shapes,different theories and criteria are adopted, and these theories are independent.Furthermore, some common problems still can not be solved (such as the microvoids problems). The aim of this research is to establish a unified theory, which issuitable for various types of defects. The motion of this research is from aneglected contradiction in engineering mechanics: on the one hand, the strengthproperty of material is regarded as the intrinsic property of material,unchangeable with the geometry shape; on the other hand, for defects withdifferent shapes, different theories are developed with the different assessmentparameters. Even for the same type of defects, the criteria change with the defectsize. For example, the small crack and long crack require different theories. Whatis more, for the micro voids in the precise machines, there is not an effectivestrength criterion.
     The method of this research is to propose a theory firstly, then to verify thefeasibility of the theory. The theoretic basis comes from the theory of materialstrength, and the validation techniques are from two aspects: one is theuniformity between the proposed theories degenerated and the existing theories;another is the effectiveness of the proposed theory for the problems which cannot be solved by the existing theories.
     It has the following innovative points:
     Firstly, the characteristic fracture length concept is proposed and is used toexpansion the range of continuum mechanics for the polycrystalline materials.The characteristic fracture length is a strength parameter extracted from the material intrinsic properties, so it is not affected by the geometry shape or size.This means that it possibly can be applied to the various types of defects, nomatter what the size or shape is. Meanwhile, the theoretical basis is discussed andthe validation of the characteristic fracture length is examined by experiments.
     Secondly, based on the analysis of yield mechanism and local plasticdeformation of polycrystalline materials, the characteristic length concept iscontributed in the yield strength, which is similar to the case of brittle fracture.The expression of characteristic yield length of polycrystalline materials isobtained through the dislocation pile-up theory. The phenomenon of increasingyield stress with decreasing diameter size of a center hole in a plate is explainedreasonably with a yield criterion that is constructed on the concept ofcharacteristic yield length. In order to verify the yield criterion, experiments arecarried out with plate specimens drilled variously under room temperature, andthe results agree well with that predicted by the yield criterion.
     Thirdly, the characteristic fatigue length of the brittle rupture of material isconcerned and investigated as an intrinsic material property, both theoreticallyand experimentally. Based on the concept of the fatigue failure determined by adamaged zone instead of a point, it is proposed that the material failure occurswhen the average stress amplitude over the characteristic fatigue length is largerthan the material fatigue strength. Plate specimens made of SUS630H900stainless steel are conducted in fatigue experiments at room temperature to verifythe characteristic fatigue length-based theory. Circular holes of various diametersare introduced in the center of specimens to generate the stress concentration andthe size effect. The sizes of holes affect the fatigue limits of the specimens. Andpredictions of nominal fatigue limits agree well with experiment results.
引文
[1]许金泉.材料强度学[M].2009,上海:上海交通大学出版社.
    [2]许金泉,郭凤明.疲劳损伤演化的机理及损伤演化律[J].机械工程学报,2010.46(02):40-46.
    [3]周惠久.金属材料强度学[M].1989,北京:科学出版社.
    [4]横堀武夫.材料強度学[M].1955,東京:技報堂出版株式会社.
    [5] Yu, M.H. Unified strength theory and its applications[M].2004, Xi`an:Springer.
    [6]匡震邦,马法尚.裂纹端部场[M].2000,西安:西安交通大学出版社.
    [7]俞茂宏.强度理论百年总结[J].力学进展,2004.34(4):529-560.
    [8]郑颖人,高红.强度理论的讨论[J].广西大学学报(自然科学版),2008.33(4):337-345.
    [9] Iriwin, G.R. Fracture Mechanics, Structural Mechanics[M].1960,London,England: Pergamon Press.560-574.
    [10] Heo, S.P., Ho Yang, W. Approximate weight function method for ellipticalarc through cracks in mechanical joints[J]. Engineering FractureMechanics,2003.70(9):1171-1192.
    [11] Lei, Y. J-integral and limit load analysis of semi-elliptical surface cracksin plates under bending[J]. International Journal of Pressure Vessels andPiping,2004.81(1):31-41.
    [12] Wang, X., Glinka, G. Determination of approximate point load weightfunctions for embedded elliptical cracks[J]. International Journal ofFatigue,2009.31(11–12):1816-1827.
    [13] Yue, Z.Q., Xiao, H.T., Tham, L.G. Elliptical crack normal to functionallygraded interface of bonded solids[J]. Theoretical and Applied FractureMechanics,2004.42(3):227-248.
    [14] Noda, N.A., Kouyama, T., Kinoshita, Y. Stress intensity factors of aninclined elliptical crack near a bimaterial interface[J]. EngineeringFracture Mechanics,2006.73(10):1292-1320.
    [15] Findley, K.O., Koh, S.W., Saxena, A. J-integral expressions forsemi-elliptical cracks in round bars[J]. International Journal of Fatigue,2007.29(5):822-828.
    [16] Hachi, B.E.K., Rechak, S., Belkacemi, Y., etc. Modelling of ellipticalcracks in an infinite body and in a pressurized cylinder by a hybrid weightfunction approach[J]. International Journal of Pressure Vessels and Piping,2005.82(12):917-924.
    [17] Rubio, L., Mu oz-Abella, B., Loaiza, G. Static behaviour of a shaft withan elliptical crack[J]. Mechanical Systems and Signal Processing,2011.25(5):1674-1686.
    [18] Diamantoudis, A.T., Labeas, G.N. Stress intensity factors of semi-ellipticalsurface cracks in pressure vessels by global-local finite elementmethodology[J]. Engineering Fracture Mechanics,2005.72(9):1299-1312.
    [19]李艳松,刘金玲.弹性平板硬币型裂纹断裂分析[J].山西建筑,2006.32(2):80-81.
    [20]李艳松,冯文杰,王洪军.加层压电层硬币型裂纹断裂分析[J].工程力学,2006.23(12):53-58.
    [21]黄佩珍,李中华,孙军.表面扩散控制下币型微裂纹的演化[J].力学学报,2002.34(3):344-350.
    [22]肖洪天,岳中琦.平行于功能梯度材料夹层的币型裂纹起裂条件[J].固体力学学报,2005.26(1):22-28.
    [23]肖洪天,岳中琦,陈英儒.倾斜应力作用下垂直于功能梯度材料夹层的币型裂纹扩展问题[J].工程力学,2005.22(6):41-45.
    [24] Green, A.E., Sneddon, I.N. The distribution of stress in the neighborhoodof a flat elliptical crack in an elastic solid. in Proceedings of theCambridge Philosophical Society.1950.
    [25] Kassir, M.K., Sih, G.C. Three-dimensional stress distribution around anelliptical crack under arbitrary loadings[J]. Transactions of ASME.Journal of Applied Mechanics,1966.33:601-611.
    [26] Kassir, M.K., Sih, G.C. Mechanics of Fracture2–Three-DimensionalCrack Problem[M].1975, Leiden: Noordhoff International Publishing.
    [27] Raju, I.S., Newman, J.C. Stress Intensity Factors for a Wide Range ofSemi-Elliptical Surface Cracks in Finite-Thickness Plates[J]. EngineeringFracture Mechanics,1979.11:817-829.
    [28] Nishioka, T., Atluri, S.N. Analytical solution for embedded ellipticalcracks and finite element alternating method for elliptical surface crackssubjected to arbitrary loadings[J]. Engineering Fracture Mechanics,1983.17:247–247.
    [29] Kuo, A.Y., Shvarts, S., Stonesifter, R.B. An analytical solution for anelliptical crack in a flat plate subjected to arbitrary loading[J]. FractureMechanics,1992.
    [30] Zhu, X.K., Liu, G.T., Chao, Y.J. Three-dimensional stress anddisplacement fields near an elliptical crack front[J]. International Journalof Fracture,2001.109:383–401.
    [31] Atzori, B., Lazzarin, P., Tovo, R. Stress field parameters to predict thefatigue strength of notched components[J]. Journal of Strain Analysis forEngineering Design,1999.34(6):437-453.
    [32] Emmerich, F.G., Cunha, A.G., Girelli, C.M.A., etc. Magnetic strips tosimulate layered brittle solids in cleavage and fracture experiments[J].Acta Mechanica Solida Sinica,2008.21(4):333-336.
    [33] Lalpoor, M., Eskin, D.G., ten Brink, G., etc. Microstructural features ofintergranular brittle fracture and cold cracking in high strength aluminumalloys[J]. Materials Science and Engineering: A,2010.527(7–8):1828-1834.
    [34] Kameda, J., Nishiyama, Y. Combined effects of phosphorus segregationand partial intergranular fracture on the ductile–brittle transitiontemperature in structural alloy steels[J]. Materials Science andEngineering: A,2011.528(10–11):3705-3713.
    [35] Kalinichenko, A.I., Strel’nitskij, V.E. Brittle fracture of material surfaceunder low-energy ion bombardment[J]. Nuclear Instruments and Methodsin Physics Research Section B: Beam Interactions with Materials andAtoms,2010.268(13):2246-2248.
    [36] Tanguy, B., Besson, J., Piques, R., etc. Ductile to brittle transition of anA508steel characterized by Charpy impact test: Part II: modeling of theCharpy transition curve[J]. Engineering Fracture Mechanics,2005.72(3):413-434.
    [37] Wang, Z.X., Shi, H.J., Lu, J. Size effects on the ductile/brittle fractureproperties of the pressure vessel steel[J]. Theoretical and Applied FractureMechanics,2008.50(2):124-131.
    [38] Minami, F., Ohata, M. Constraint assessment of brittle fracture of steelcomponents, ISO27306vs. FITNET FFS[J]. Engineering FractureMechanics,2012.84:67-82.
    [39] Ayatollahi, M.R., Torabi, A.R. Investigation of mixed mode brittlefracture in rounded-tip V-notched components[J]. Engineering FractureMechanics,2010.77(16):3087-3104.
    [40] Ayatollahi, M.R., Torabi, A.R. A criterion for brittle fracture in U-notchedcomponents under mixed mode loading[J]. Engineering FractureMechanics,2009.76(12):1883-1896.
    [41] Ha, Y.D., Bobaru, F. Characteristics of dynamic brittle fracture capturedwith peridynamics[J]. Engineering Fracture Mechanics,2011.78(6):1156-1168.
    [42] Dlouhy, I., Chlup, Z., Kozák, V. Constraint effects at brittle fractureinitiation in a cast ferritic steel[J]. Engineering Fracture Mechanics,2004.71(4–6):873-883.
    [43] Carpinteri, A., Chiaia, B., Invernizzi, S. Numerical analysis of indentationfracture in quasi-brittle materials[J]. Engineering Fracture Mechanics,2004.71(4–6):567-577.
    [44]王星,李树奎,王迎春.不同加载应变率下钨合金变形及破坏机理研究[J].北京理工大学学报,2010.30(11):1369-1373.
    [45]姚寅,黄再兴.基于原子内聚力与表面能等效的内聚裂纹模型[J].航空学报,2010.31(9):1796-1801.
    [46]甘阳,周本濂. FeMoSiB纳米晶合金薄带的脆性断裂[J].金属学报,2000.36(4):356-358.
    [47]张红霞,王文先,苏娟. AZ31镁合金及其TIG焊接接头断裂机理研究[J].稀有金属材料与工程,2009.38(z3):186-190.
    [48] Yu, M.H. Generalized plasticity[M].2005, Berlin: Springer.
    [49] Chen, Y.Q., Xu, J.Q. A simple failure criterion for materials with differenttensile and compressive strengths[J]. Key Engineering Materials,2004.274:987-992.
    [50] Sih, G.C. Strain-energy-density factor applied to mixed mode crackproblems[J]. International Journal of Fracture,1974.10(3):305-321.
    [51] Chang, J., Xu, J.Q., Mutoh, Y. A general mixed-mode brittle fracturecriterion for cracked materials[J]. Engineering Fracture Mechanics,2006.73(9):1249-1263.
    [52] D ring, R., Hoffmeyer, J., Seeger, T., etc. Short fatigue crack growthunder nonproportional multiaxial elastic–plastic strains[J]. InternationalJournal of Fatigue,2006.28(9):972-982.
    [53] Cadario, A., Alfredsson, B. Fatigue growth of short cracks in Ti-17:Experiments and simulations[J]. Engineering Fracture Mechanics,2007.74(15):2293-2310.
    [54] Atzori, B., Lazzarin, P., Meneghetti, G. Fracture mechanics and notchsensitivity[J]. Fatigue&Fracture of Engineering Materials&Structures,2003.26(3):257-267.
    [55] Torres, Y., Bermejo, R., Llanes, L., etc. Influence of notch radius andR-curve behaviour on the fracture toughness evaluation of WC–Cocemented carbides[J]. Engineering Fracture Mechanics,2008.75(15):4422-4430.
    [56] Taylor, D. The theory of critical distances[J]. Engineering FractureMechanics,2008.75(7):1696-1705.
    [57] Zhang, X.B., Li, J. A failure criterion for brittle and quasi-brittle materialsunder any level of stress concentration[J]. Engineering FractureMechanics,2008.75(17):4925-4932.
    [58] Bannister, A.C., Ruiz Ocejo, J., Gutierrez-Solana, F. Implications of theyield stress/tensile stress ratio to the SINTAP failure assessment diagramsfor homogeneous materials[J]. Engineering Fracture Mechanics,2000.67(6):547-562.
    [59] Richard M, C. Exploration of ductile, brittle failure characteristics througha two-parameter yield/failure criterion[J]. Materials Science andEngineering: A,2005.394(1–2):417-424.
    [60] Ferrari, M., Granik, V.T. Doublet-based micromechanical approaches toyield and failure criteria[J]. Materials Science and Engineering: A,1994.175(1–2):21-29.
    [61] Billington, E.W. Effect of yield surface vertex on failure of ductilematerials[J]. Engineering Fracture Mechanics,1984.19(5):777-792.
    [62] Christensen, R.M., Freeman, D.C., DeTeresa, S.J. Failure criteria forisotropic materials, applications to low-density types[J]. InternationalJournal of Solids and Structures,2002.39(4):973-982.
    [63] Bigoni, D., Piccolroaz, A. Yield criteria for quasibrittle and frictionalmaterials[J]. International Journal of Solids and Structures,2004.41(11–12):2855-2878.
    [64]余同希.塑性力学[M].1989,北京:高等教育出版社.
    [65] Dieter, G.E. Mechanical Metallurgy[M].1986, New York: Mc Graw-HillBook Co.
    [66]铃木秀次.金属及合金的屈服强度[J].金属学报,1981.17(5):583-594.
    [67] Hu, W., Wang, Z.R. Multiple-factor dependence of the yielding behaviorto isotropic ductile materials[J]. Computational Materials Science,2005.32(1):31-46.
    [68] Carpinteri, A., Spagnoli, A., Vantadori, S. Size effect in S–N curves: Afractal approach to finite-life fatigue strength[J]. International Journal ofFatigue,2009.31(5):927-933.
    [69] Kwofie, S. An exponential stress function for predicting fatigue strengthand life due to mean stresses[J]. International Journal of Fatigue,2001.23(9):829-836.
    [70] Hwang, W., Han, K.S. Statistical study of strength and fatigue life ofcomposite materials[J]. Composites,1987.18(1):47-53.
    [71] Ravi, S., Balasubramanian, V., Nemat Nasser, S. Influences of post weldheat treatment on fatigue life prediction of strength mis-matched HSLAsteel welds[J]. International Journal of Fatigue,2005.27(5):547-553.
    [72] Padipatvuthikul, P., Mair, L.H. Comparison of shear bond strength,fatigue limit and fatigue life in resin-bonded metal to enamel bonds[J].Dental Materials,2008.24(5):674-680.
    [73] Ravi, S., Balasubramanian, V., Nemat Nasser, S. Fatigue life prediction ofstrength mis-matched high strength low alloy steel welds[J]. Materials& Design,2006.27(4):278-286.
    [74] Rusk, D.T., Hoppe, W., Braisted, W., etc. Fatigue life prediction ofcorrosion-damaged high-strength steel using an equivalent stress riser(ESR) model. Part II: Model development and results[J]. InternationalJournal of Fatigue,2009.31(10):1464-1475.
    [75] Yan, J.H., Zheng, X.L., Zhao, K. Prediction of fatigue life and itsprobability distribution of notched friction welded joints undervariable-amplitude loading[J]. International Journal of Fatigue,2000.22(6):481-494.
    [76] Rotem, A. Residual strength after fatigue loading[J]. International Journalof Fatigue,1988.10(1):27-31.
    [77] Avilés, R., Albizuri, J., Lamikiz, A., etc. Influence of laser polishing onthe high cycle fatigue strength of medium carbon AISI1045steel[J].International Journal of Fatigue,2011.33(11):1477-1489.
    [78]吴波,谭建松,王建平.疲劳寿命预测的应力梯度效应研究[J].机械制造,2009.47(11):56-59.
    [79]张广平,王中光.小尺度材料的疲劳研究进展[J].金属学报,2005.41(1):1-8.
    [80]张广平,高岛和希,肥後矢吉.微米尺寸不锈钢的形变与疲劳行为的尺寸效应[J].金属学报,2005.41(4):337-341.
    [81]李锦峰,赵红平,施惠基. Cr4M04V钢表面预制缺陷对滚动接触疲劳性能的影响[J].航空材料学报,2005.25(6):5-10.
    [82]赵阳,陈礼清,刘相华.一种新型非调质钢弯曲疲劳性能的试样尺寸效应[J].材料研究学报,2009.23(4):444-448.
    [83]陈勃,刘建中,吴学仁.初始缺陷尺寸分布的尺寸效应研究[J].航空学报,2006.27(1):44-49.
    [84] Bazant, Z.P. Size effect on structural strength: a review[J]. Archive ofApplied Mechanics,1999.69(9-10):703-725.
    [85] Bazant, Z.P. Size effect[J]. International Journal of Solids and Structures,2000.37(1-2):69-80.
    [86] Bazant, Z.P. Scaling theory for quasibrittle structural failure[J].Proceedings of the National Academy of Sciences of the United States ofAmerica,2004.101(37):13400-13407.
    [87] Duan, K., Hu, X.Z., Wittmann, F.H. Scaling of quasi-brittle fracture:Boundary and size effect[J]. Mechanics of Materials,2006.38(1-2):128-141.
    [88] Stamoulis, K., Giannakopoulos, A.E. Size effects on strength, toughnessand fatigue crack growth of gradient elastic solids[J]. International Journalof Solids and Structures,2008.45(18-19):4921-4935.
    [89] Guo, F.M., Xu, J.Q., Mutoh, Y. Fracture theory based on the concept ofcharacteristic fracture length of materials[J]. Science in China, Series G,2009.52(12):2041-2046.
    [90] Heywood, R.E. Designing against fatigue[M].1962, London: Chapmanand Hall.
    [91] Neuber, H. Theory of notch stresses[M].1958, Berlin: Springer.
    [92] Ostash, O.P., Panasyuk, V.V. Fatigue process zone at notches[J].International Journal of Fatigue,2001.23(7):627-636.
    [93] Peterson, R.E. Notch sensivity[M]. Metal Fatigue, ed. G. Sines, J.L.Waisman.1959, New York: McGraw Hill.
    [94] Ciavarella, M., Meneghetti, G. On fatigue limit in the presence of notches:classical vs. recent unified formulations[J]. International Journal ofFatigue,2004.26(3):289-298.
    [95] Yao, W., Xia, K., Gu, Y. On the fatigue notch factor, Kf[J]. InternationalJournal of Fatigue,1995.17(4):245-251.
    [96] Atzori, B., Lazzarin, P., Meneghetti, G. A unified treatment of the mode Ifatigue limit of components containing notches or defects[J]. InternationalJournal of Fracture,2005.133(1):61-87.
    [97] DuQuesnay, D.L., Topper, T.H., Yu, M.T., The Effect of Notch Radius onthe Fatigue Notch Factor and the Propagation of Short Cracks, in TheBehaviour of Short Fatigue Cracks, K.J. Miller, Editor.1986, MechanicalEngineering Publications. p.323-335.
    [98] EL Haddad, M.H., Smith, K.N., Topper, T.H. Fatigue crack propagation ofshort cracks[J]. Journal of Engineering Materials andTechnology-Transactions of the ASME,1979.101:42-46.
    [99] Ting, J.C., Lawrence, F.V. A crack closure model for predicting thethreshold stresses of notches[J]. Fatigue&Fracture of EngineeringMaterials&Structures,1993.16(1):93-114.
    [100] Faleskog, J. Effects of local constraint along three-dimensional crackfronts—a numerical and experimental investigation[J]. Journal of theMechanics and Physics of Solids,1995.43(3):447-493.
    [101] Larsson, S.G., Carlsson, A.J. Influence of non-singular stress terms andspecimen geometry on small-scale yielding at crack tips in elastic-plasticmaterials[J]. Journal of the Mechanics and Physics of Solids,1973.21(4):263-277.
    [102] O'Dowd, N.P., Shih, C.F. Family of crack-tip fields characterized by atriaxiality parameter—I. Structure of fields[J]. Journal of the Mechanicsand Physics of Solids,1991.39(8):989-1015.
    [103] Sharma, S.M., Aravas, N. Determination of higher-order terms inasymptotic elastoplastic crack tip solutions[J]. Journal of the Mechanicsand Physics of Solids,1991.39(8):1043-1072.
    [104] Varias, A.G., Shih, C.F. Quasi-static crack advance under a range ofconstraints—Steady-state fields based on a characteristic length[J].Journal of the Mechanics and Physics of Solids,1993.41(5):835-861.
    [105] Sheppard, S.D. Field effects in fatigue crack initiation: Long life fatiguestrength[J]. Journal of Mechanical Design,1991.113(2):188-194.
    [106] Tanaka, K. Engineering formulae for fatigue strength reduction due tocrack-like notches[J]. International Journal of Fracture,1983.22(2):R39-R46.
    [107] Taylor, D., O'Donnell, M. Notch geometry effects in fatigue: Aconservative design approach[J]. Engineering Failure Analysis,1994.1(4):275-287.
    [108] Susmel, L., Taylor, D. Fatigue design in the presence of stressconcentrations[J]. Journal of Strain Analysis for Engineering Design,2003.38(5):443-452.
    [109] Susmel, L., Taylor, D. Two methods for predicting the multiaxial fatiguelimits of sharp notches[J]. Fatigue&Fracture of Engineering Materials&Structures,2003.26(9):821-833.
    [110] Taylor, D., Wang, G. The validation of some methods of notch fatigueanalysis[J]. Fatigue&Fracture of Engineering Materials&Structures,2000.23(5):387-394.
    [111] Taylor, D. Geometrical effects in fatigue: a unifying theoretical model[J].International Journal of Fatigue,1999.21(5):413-420.
    [112] Murakami, Y. Metal fatigue: effects of small defects and nonmetallicinclusions[M].2002, Tokyo: Elsevier.
    [113] Fatemi, A., Yang, L. Cumulative fatigue damage and life predictiontheories: a survey of the state of the art for homogeneous materials[J].International Journal of Fatigue,1998.20(1):9-34.
    [114] Hariharan, K., Prakash, R.V., Sathya Prasad, M. Weighted error criterionto evaluate strain–fatigue life prediction methods[J]. International Journalof Fatigue,2011.33(5):727-734.
    [115] van der Walde, K., Hillberry, B.M. Characterization of pitting damage andprediction of remaining fatigue life[J]. International Journal of Fatigue,2008.30(1):106-118.
    [116] Harbour, R.J., Fatemi, A., Mars, W.V. Fatigue life analysis and predictionsfor NR and SBR under variable amplitude and multiaxial loadingconditions[J]. International Journal of Fatigue,2008.30(7):1231-1247.
    [117] Nagesha, A., Valsan, M., Kannan, R., etc. Thermomechanical fatigueevaluation and life prediction of316L(N) stainless steel[J]. InternationalJournal of Fatigue,2009.31(4):636-643.
    [118] Lu, Z., Xiang, Y., Liu, Y. Crack growth-based fatigue-life prediction usingan equivalent initial flaw model. Part II: Multiaxial loading[J].International Journal of Fatigue,2010.32(2):376-381.
    [119] Liu, Y., Mahadevan, S. Multiaxial high-cycle fatigue criterion and lifeprediction for metals[J]. International Journal of Fatigue,2005.27(7):790-800.
    [120] Buch, A. Prediction of fatigue life under aircraft loading with and withoutuse of material memory rules[J]. International Journal of Fatigue,1989.11(2):97-106.
    [121] Xiang, Y., Lu, Z., Liu, Y. Crack growth-based fatigue life prediction usingan equivalent initial flaw model. Part I: Uniaxial loading[J]. InternationalJournal of Fatigue,2010.32(2):341-349.
    [122] Adrov, V. A new damage parameter for fatigue life predictions under localstrain analysis[J]. International Journal of Fatigue,1993.15(6):451-453.
    [123] Harral, B.B. The application of a statistical fatigue life prediction methodto agricultural equipment[J]. International Journal of Fatigue,1987.9(2):115-118.
    [124] Himmel, N. Fatigue life prediction of laminated polymer matrixcomposites[J]. International Journal of Fatigue,2002.24(2–4):349-360.
    [125] Chaboche, J.L. Continuous damage mechanics-A tool to describephenomena before crack initiation[J]. Nuclear Engineering and Design,1981.64(2):233-247.
    [126] Chaboche, J.L. Continuum damage mechanics[J]. J.Appl.Mech.,1988.55(1):59-64.
    [127] Krajcinovic, D. Continuum damage mechanics[J]. Applied MechanicsReview,1984.37(1):1-6.
    [128] Yu, S.W., Feng, X.Q. Damage mechanics[M].1997, Beijing: TsinghuaUniversity Press.
    [129] Guo, Z.Y., Bazant, Z.P. Size effect on buckling strength of eccentricallycompressed column with fixed or propagating transverse crack[J].International Journal of Fracture,2006.142(1-2):151-162.
    [130] Hu, X.Z., Duan, K. Size effect on quasi-brittle fracture[J]. ThirdInternational Conference on Experimental Mechanics and ThirdConference of the Asian-Committee-on-Experimental-Mechanics, Pts1and2,2005.5852:289-296.
    [131] Atzori, B., Berto, F., Lazzarin, P., etc. Multi-axial fatigue behaviour of aseverely notched carbon steel[J]. International Journal of Fatigue,2006.28(5-6):485-493.
    [132] Susmel, L., Taylor, D. A novel formulation of the theory of criticaldistances to estimate lifetime of notched components in the medium-cyclefatigue regime[J]. Fatigue&Fracture of Engineering Materials&Structures,2007.30(7):567-581.
    [133] Hou, S.Q., Xu, J.Q. A new fatigue theory based on fatigue characteristiclength[J]. Journal of Shanghai Jiao Tong University,2010.44(10):69-74.
    [134] Puchi-Cabrera, E.S., Staia, M.H., Tovar, C., etc. High cycle fatiguebehavior of316L stainless steel[J]. International Journal of Fatigue,2008.30(12):2140-2146.
    [135] Ye, D., Xu, Y., Xiao, L., etc. Effects of low-cycle fatigue on staticmechanical properties, microstructures and fracture behavior of304stainless steel[J]. Materials Science and Engineering: A,2010.527(16-17):4092-4102.
    [136]国家自然科学基金委数理科学部.力学学科发展研究报告[M].2007,北京:科学出版社.
    [137] Shang, D.-G., Yao, W.-X. A nonlinear damage cumulative model foruniaxial fatigue[J]. International Journal of Fatigue,1999.21(2):187-194.
    [138] Jeelani, S., Scott, M.A. How surface damage removal affects fatiguelife[J]. International Journal of Fatigue,1988.10(4):257-260.
    [139] Jeelani, S., Ghebremedhin, S., Musial, M. A study of cumulative fatiguedamage in titanium6Al-4V alloy[J]. International Journal of Fatigue,1986.8(1):23-27.
    [140] Kujawski, D., Ellyin, F. A cumulative damage theory for fatigue crackinitiation and propagation[J]. International Journal of Fatigue,1984.6(2):83-88.
    [141] Ghammouri, M., Abbadi, M., Mendez, J., etc. An approach in plasticstrain-controlled cumulative fatigue damage[J]. International Journal ofFatigue,2011.33(2):265-272.
    [142] Mayer, H., Ede, C., Allison, J.E. Influence of cyclic loads belowendurance limit or threshold stress intensity on fatigue damage in castaluminium alloy319-T7[J]. International Journal of Fatigue,2005.27(2):129-141.
    [143] Jurcevic, R., DuQuesnay, D.L., Topper, T.H., etc. Fatigue damageaccumulation in2024-T351aluminium subjected to periodic reversedoverloads[J]. International Journal of Fatigue,1990.12(4):259-266.
    [144] Jaap, S. Fatigue damage in aircraft structures, not wanted, buttolerated?[J]. International Journal of Fatigue,2009.31(6):998-1011.
    [145] Zhang, M., Meng, Q., Hu, W., etc. Damage mechanics method for fatiguelife prediction of Pitch-Change-Link[J]. International Journal of Fatigue,2010.32(10):1683-1688.
    [146] mer G, B. Experimental investigation of fatigue damage accumulation in1100Al alloy[J]. International Journal of Fatigue,1991.13(1):3-6.
    [147] Varvani-Farahani, A., Najmi, H. A damage assessment model forcadaveric cortical bone subjected to fatigue cycles[J]. InternationalJournal of Fatigue,2010.32(2):420-427.
    [148]余寿文,冯西桥.损伤力学[M].1997,北京:清华大学出版社.
    [149]刘金海,曾大本,汪王睿.用电阻法测量球墨铸铁的疲劳损伤[J].清华大学学报(自然科学版),1999.39(2):14-17.
    [150]乔彦村,陈洪琴,郭乙木.基于电阻值变化预测金属构件剩余寿命的研究[J].工程设计学报,1999.24(4):579-583.
    [151] Lemaitre, J., Dufailly, J. Damage measurements[J]. Engineering FractureMechanics,1987.28(5-6):643-661.
    [152] Cheng, Y.S., Huang, Y.B. Measurement of continuous damageparameter[J]. Eng. Fract. Mech.,1988.31(6):985-992.
    [153] Lemaitre, J. Evolution of dissipation and damage in metals. in submittedto dynamic loading Proc. I.C.M. I(Kyoto,Japan).1968.
    [154] Bueckner, H.F. The propagation of cracks and the energy of elasticdeformation[J]. Transactions of the American Society of MechanicalEngineers,1958.80:1225-1230.
    [155] Zhuo, Y., Xu, J.Q. An interface fracture criterion based on moleculardynamics simulation[J]. Chinese quarterly mechanics,2007.28(1):1-7.
    [156] Nakahara, Y. Applied elasticity[M].1977, Tokyo: JIKKYO Pub.
    [157] Kitagawa, H., Yuuki, R., Tohgo, K. Fatigue crack propagation behaviorunder mixed mode condition[J]. Trans. JSME,1981. A47:1283-1292.
    [158] Eshelby, J.D. The continuum theory of lattice defects[M]. Solid StatePhysics, ed. S. Frederick, T. David. Vol. Volume3.1956: Academic Press.79-144.
    [159] Mackenzie, J.K., Ph. D. Thesis.1949, Bristol University: England.
    [160] Nabarro, F.R.N. Theory of Crystal Dislocations[M].1987, New York:Dover Publications.
    [161] Bellett, D., Taylor, D. The effect of crack shape on the fatigue limit ofthree-dimensional stress concentrations[J]. International Journal ofFatigue,2006.28(2):114-123.
    [162] Bellett, D., Taylor, D., Marco, S., etc. The fatigue behaviour ofthree-dimensional stress concentrations[J]. International Journal ofFatigue,2005.27(3):207-221.
    [163] Griffith, A.A. The phenomena of rupture and flowing in solids[J].Philosophical Transactions of the Royal Society of London,1921(A221):163-198.
    [164] Inglis, G.E. Stresses in a plate due to the presence of cracks and sharpcorners[J]. Transactions of Institution of Naval Architects,1913.55:219-230.
    [165] Westergaard, H.M. Bearing pressures and cracks[J]. Journal of AppliedMechanics-Transactions of the ASME,1939.6(A):49-53.
    [166] Williams, M.L. On the stress distribution at the base of a stationarycrack[J]. Journal of Applied Mechanics-Transactions of the ASME,1957.24:109-114.
    [167] Frost, N.E. A relation between the critical alternating propagation stressand crack length for mild steel[J]. Proceedings of the Institution ofMechanical Engineers,1959.173(35):811-827.
    [168] ASTM. Standard Test Method for Measurement of Fatigue Crack GrowthRates[M]. Vol. E647-699.2000.
    [169] Bathias, C., Drouillac, L., Le Fran ois, P. How and why the fatigue S-Ncurve does not approach a horizontal asymptote[J]. International Journalof Fatigue,2001.23(Supplement1):143-151.
    [170] Carpinteri, A., Chiaia, B., Cornetti, P. On the mechanics of quasi-brittlematerials with a fractal microstructure[J]. Engineering FractureMechanics,2003.70(16):2321-2349.
    [171] Chapetti, M.D., Tagawa, T., Miyata, T. Ultra-long cycle fatigue ofhigh-strength carbon steels part I: review and analysis of the mechanismof failure[J]. Materials Science and Engineering A,2003.356(1-2):227-235.
    [172] Zhang, J.M., Li, S.X., Yang, Z.G., etc. Influence of inclusion size onfatigue behavior of high strength steels in the gigacycle fatigue regime[J].International Journal of Fatigue,2007.29(4):765-771.
    [173] Kanazawa, K., Nishuima, S. Fatigue fracture of low alloy steel atultra-high-cycle region under elevated temperature condition[J]. Journalof the Society of Materials Science, Japan,1997.46(12):1396-1401.
    [174] Murakami, Y., Nomoto, etc. Factors influencing the mechanism ofsuperlong fatigue failure in steels[J]. Fatigue&fracture of engineeringmaterials&structures,1999.22:581-590.
    [175] Przybyla, C., Prasannavenkatesan, R., Salajegheh, N., etc.Microstructure-sensitive modeling of high cycle fatigue[J]. InternationalJournal of Fatigue,2010.32(3):512-525.
    [176] Suresh, S. Fatigue of Materials[M].1998, Cambridge: CambridgeUniversity Press.
    [177]王军.损伤力学的理论与应用[M].1997,北京:科学出版社.