隧道—滑坡体系的变形机理及控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以甘肃省交通科研项目-《武罐高速公路典型滑坡对隧道危害机制及防治技术研究》(No:200813)为主要依托,结合我院数十年的交通工程地质灾害防治经验,选取“隧道-滑坡体系的变形机理及控制技术研究”一题作为研究对象。采用了资料调研、理论分析、数值仿真试验、地质力学模型试验和现场测试相结合的研究方法,重点探讨建设期隧道和滑坡的变形特征与相互作用机理、隧道-滑坡体系的工程安全性评价以及变形控制技术等几个问题。
     (1)武罐高速公路沿线地形地质条件复杂,构造极为发育,分布大量滑坡、崩塌和泥石流等灾害,对线路影响较大,整体属于欠稳定场地。调查表明,武罐高速公路沿线分布各类滑坡54处,崩塌错落47处,还有很多规模大小不一的危岩体病害。以麻崖子梁(区域南北分水岭)为界,北段主要发育黄土类滑坡,以大中型浅层~中层为主;南段多发育第四系松散堆积层滑坡、基岩顺层或切层滑坡,规模巨大。根据武罐高速公路沿线隧道-滑坡病害的具体特征,将沿线隧道-滑坡的坡体结构类型划分为以下四类:堆积层-顺倾基座式坡体结构、堆积层-反倾基座式坡体结构、陡倾顺层坡体结构和陡倾切层坡体结构。针对上述类型,选取典型工点对其坡体结构特征分别进行了分析,为进一步深入分析开挖施工过程中滑坡的破坏模式奠定了基础。
     (2)以武罐高速公路典型隧道-滑坡为重点考察对象,初步建立了“隧道-滑坡体系”的概念,从“坡体结构、灾变诱发因素和隧道与滑坡的空间组合关系”几方面综合考虑,建立了以平行体系、正交体系和斜交体系为核心的较为完备的受力变形模式。选取“隧道穿越滑动带、隧道下穿滑体、平行体系下隧道穿越滑体和正交体系下隧道穿越滑体”四种具有代表性的基本模式,建立体系受力模型,主要以隧道作为承载体。对简化模型建立微积分方程并引入边界条件得到位移函数,通过位移、截面转角、弯矩、剪力之间的微分关系得到隧道支护荷载和变形的理论解。(创新点之一,详见第3、4章)
     (3)在进行隧道围岩安全性和滑坡体稳定性评价时,需要不断地根据围岩(坡体)中的应力或变形信息来评价其安全稳定状态。本项研究探讨了适用于隧道工程安全性和滑坡稳定性的点安全系数统一评价方法,跟踪开挖过程中该评价指标的空间分布规律和时间发展过程,为实现隧道-滑坡体系的工程安全性评价和支护优化设计奠定理论基础。数值分析和模型试验成果显示:整个坡体在试验预定的几个工况中是整体稳定的,但是局部破坏也会对工程造成一定影响,因此在工程中采用点安全系数来评价隧道-滑坡体系的变形机理和控制技术是比较合理的。(创新点之一,详见第5、6章)
     (4)以隧道-滑坡平行体系为研究对象,采用数值模拟、地质力学模型试验和现场监测测试相结合的方法开展隧道-滑坡体系的变形机理研究,主要得到以下几方面认识。①在三维数值计算成果的基础上,定义隧道围岩的应力状态点安全系数和滑面单元(接触面)的点安全系数,根据点安全系数的分布来判断围岩和坡体不同部位的稳定程度,从而分析隧道围岩和滑坡的变形机理;②隧道开挖使滑坡体的稳定状态和岩土体力学性质发生了变化,在雨水的作用下,坡体变得更不稳定;③隧道开挖应尽量保持两洞间必要的超前距离,有效减小施工扰动范围;④在穿越滑动带等特殊地质体时,最好采用一定的预加固措施,至少应做好应急预案。
     (5)以隧道-滑坡平行体系为研究对象,阐述了预加固技术的作用机理,提出了基于预加固理念的变形控制技术。认为控制或降低开挖过程中的变形是控制隧道-滑坡体系渐进性破坏的关键,因此需采用合理的预加固技术,包括预加固工程措施和科学的施工工艺工序。数值分析和地质力学模型试验综合分析表明:对隧道-滑坡体系的稳定性而言,开挖和降雨对滑坡的影响在一定范围之内,工程预加固的作用是最为明显的,对原体系性质有显著的改善和优化作用,但须注意支护结构要设计在合适的位置上;开挖方式亦在一定程度上决定体系的稳定状态,反向开挖优于正向开挖,正向开挖对隧道-滑坡体系的稳定性最为不利。(创新点之一,详见第6章)
In this thesis, on the basis of Traffic Construction Science and Technology Project inGansu Province–"Mechanism and Control Technology of Tunnel Hazards induced byTypical Landslide along Wu-Guan Expressway "(No:200813), it is that "DeformationMechanism and Control Technology of Tunnel-Landslide System." be selected as theresearch subject combined with our experience of decades in traffic engineering geologicaldisaster prevention. The combination method is used for research, such as informationresearch, theoretical analysis, numerical simulation experiments, geomechanical model testand on-site monitoring. Focusing on the construction period, the author discusses thefollowing aspects of the problems: the deformation characteristics, interactional mechanism,engineering security evaluation, and deformation control technology of Tunnel-LandslideSystem.
     (1) Owing to complex topographic and geologic conditions and development process ofgeologic structure along Wu-Guan Expressway, there are a large number of landslides,collapses, mud-rock flows and other disasters. It had a greater influence along theexpressway, as a whole belonging to the unstable sites. The survey shows that there arelandslides54with various types, the collapse of scattered47and other dangerous rockdiseases along the expressway. Ma-Ya-Zi mountain range is the regional north-southwatershed. Loessial landslides mainly develop in the northern section with large andmedium-sized shallow. Loose Quaternary deposits landslide, bedding rock and antidip rocklandslide with huge-scale, develop generally in the southern section. According to thespecific characteristics of tunnel-landslide along Wu-Guan Expressway, the slope structuretypes of the tunnel-landslide along expressway are divided into the following fourcategories: accumulation layer-bedding rock slope structure, accumulation layer-antidip rockslope structure, steeply bedding slope structure and steeply antidip rock slope structure. Inresponse to these types, the slope structural characteristics of selected typical worksites wereanalyzed separately, and it is laid foundation for further analysis of landslide failure modeduring excavation.
     (2) Emphasised on typical tunnel-landslides on Wu-Guan Expressway, the concept of"Tunnel-Landslide System" is initially established. Considering these aspects such as slopestructure, disaster predisposing factors and spatial composing relations between tunnel andlandslide, the relative perfect mode of deformation is established with the parallel system, the orthogonal system and the bias system as the core. Taking "Tunnel passing through thesliding zone, tunnel passing beneath landslide, tunnel passing through under the sliding bodyin parallel system and that in orthogonal system" as four representative patterns, the loadingmode of system is set up, with tunnel as mainsupporting body. Differential equations for thesimplified model have been established, and then displacement function is gained by theintroduction of boundary conditions. The theoretical solution of tunnel supporting loads anddeformation might be got by differential relationof displacement, rotation, bending momentand shear.(One of the innovations, shown in Chapter3&4)
     (3) During evaluation of the security of tunnel surrounding rock and stability oflandslide, the stress or deformation in the surrounding rock (slope) mihgt be neededconstantly to evaluate the state of security and stability. This study explores an unifiedassessment criteria of Point Safety Factor for the tunnel safety and landslide stability, wemay get hold of the spatial distribution regularity and develop processes of the evaluationindicator by tracking excavation process. It lays the theoretical foundation for securityevaluation and supporting structure optimization design of Tunnel-Landslide System.Numerical analysis and model test results show that the entire slope is overall stable in eachscheduled test conditions, but the partial destruction would be some impact of the project.Therefore it is more reasonable to use Point Safety Factor for evaluating the deformationmechanism and control technolog of Tunnel-Landslide System.(One of the innovations,shown in Chapter5&6)
     (4) As to Tunnel-landslide Parallel System, it can be conclued that the main aspects ofunderstanding as follows by using integrated application of numerical simulation,geomechanical model test and field monitoring.①On the basis of three-dimensionalnumerical calculation results, the Point Safety Factor of Stress State of tunnel surroundingrock and the Point Safety Factor on Interface of landslide have been defined. According todistribution of Point Safety Factor, the stability of the different parts of the rock and slopecan be determined, and then deformation mechanism of tunnel surrounding rock andlandslides would be analyzed;②The landslide steady state and geotechnical physicalproperties changes on account of tunnel excavation, and slope becomes more unstable owingto rainfall;③The necessary advanced distance between the two holes should be kept duringtunnel excavation, so that the scope of the construction disturbance can be effectivelyreduced;④Whlie passing though special geological area such as the sliding zone, it is bestto take pre-reinforcement measures, at least emergency response plans should do a good job.
     (5) Mechanism of pre-reinforcement is described and the deformation controltechnology based on the conception of pre-reinforcement is provided by taking Tunnel-Landslide Parallel System as main study object. Controlling or reducing thedeformation during excavation is the key to control progressive destruction of Tunnel-Landslide System. Therefore the use of pre-reinforcement techniques is required, includingpre-reinforcement engineering and scientific construction technology. By comprehensiveanalysis of the numerical analysis and geomechanical model test, it shows that as the impactof the excavation and rainfall on landslide acts on within a certain range to stability ofTunnel-Landslide System. The role of pre-reinforcement engineering is the most obvious dueto significantly improving and optimizing of the nature of original system, but it should benoted that the supporting structure to design in a suitable position. To some extent,excavation also determines the steady state of the system, thus the forward excavation isbetter than reverse excavation, and the forward excavation without pre-reinforcement is mostunfavorable to stability of Tunnel-Landslide System.(One of the innovations, shown inChapter6)
引文
[1] Bishop.A.W.. The use of the slip circle in the stability analysis of slopes[J]. Geotechnique,1955.5(01):7-17.
    [2] Janbu.N.. Earth Pressure and bearing capacity calculations by generalized procedure ofslice[A]. Proc.,4th Int. Conf. on Soil Mechanics and Foundation Engineering[C].1957,2:207–213.
    [3] Janbu.N.. Slope stability computations[A]. Embankment Dam Engineering[C]. New York:John Wiley&Sons.1973:47-86.
    [4] Morgenstern N.R.&Price V.E.. The analysis of stability of general slip surfaces[J].Geotechnique,1965.15(1):79-93.
    [5] Spencer E.. A method of analysis of the stability of embankments assuming parallelinter-slice forces[J]. Geoteehnique.1967,17(1):11-26.
    [6] Spencer E..Thrust line criterion in embankment stability analysis[J]. Geoteehnique.1973,23(1):85-100.
    [7] Sarma S.K. Stability analysis of embankments and slopes[J]. Journal of the GeotechnicalEngineering Division.1979,105(12):1511-1524.
    [8] Baker R.&Garber M.. Theoretical analysis of the stability of slopes[J].Geoteehnique.1978,28(4):395-411.
    [9]徐邦栋.滑坡分析与防治[M].北京:中国铁道出版社,2001:686-688.
    [10]陈祖煜,弥宏亮.边坡稳定三维分析的极限平衡方法[J].岩土工程学报.2002,5:525-529.
    [11]郑颖人,赵尚毅,宋雅坤.有限元强度折减法研究进展[J].后勤工程学院学报.2005,3:1-6.
    [12]刘艳章,葛修润,李春光,等.基于矢量法安全系数的边坡与坝基稳定性分析[J].岩石力学与工程学报,2006,26(10):2130-2140.
    [13]杨涛,周德培,马惠民,张忠平.滑坡稳定性分析的点安全系数法[J].岩土力学.2010,31(3):971-975.
    [14]殷坤龙,姜清辉,汪洋.滑坡运动过程仿真分析[J].地球科学-中国地质大学学报.2002,27(5):632-636.
    [15]程谦恭,胡厚田,彭建兵等.高边坡岩体渐进性破坏粘弹塑性有限元数值模拟[J].工程地质学报.2000,8(1):25-30.
    [16] GRIFFITHS D.V.&LANE P.A.. Slope stability analysis by finite elements[J].Geoteehnique.1999,49(3):387-403.
    [17]安关峰,殷坤龙,唐辉明.黄土坡滑坡的离散元研究[J].地球科学-中国地质大学学报.2002,27(4):464-466.
    [18]石根华.块体系统不连续变形数值分析新方法[M].北京:科学出版社,1993.
    [19]祝玉学.边坡可靠性分析[M].北京:冶金工业出版社,1993.
    [20]王家鼎,冯学才,孟兴民.黄土斜坡稳定性的模糊信息分析方法[J].山地研究.1991,9(1):33~40.
    [21]伍四明,李曰国.万县滑坡群稳定性的模糊数学分析[J].地质灾害与环境保护.1994,5(2):45-52.
    [22]袁相儒,谢广林.滑坡灾害预测专家系统LPES[J].岩土力学.1995,6(2):42-51.
    [23]蒋良文,王士天.山民江上游汉川一较场段滑坡稳定性的神经网络评判及其堵江可能性浅析[J].山地学报.2000,18(6):547-553.
    [24]肖专文,张奇志.遗传进化算法在边坡稳定分析中的应用[J].岩土工程学报.1998,20(1):44-46.
    [25]徐竣龄.滑坡空间形态确定、动态监测及锚索抗滑桩技术[A].滑坡文集[C].北京:中国铁道出版社,1994:1-6.
    [26]申润植[日],李妥德&杨顺焕译.滑坡整治理论与工程实践[M].北京:中国铁道出版社,1996.
    [27]王恭先.滑坡防治中两个关键技术的研究[A].海峡两岸岩土工程学术讨论会文集
    [C],1994.
    [28]阎中华.均质土坝与非均质土坝稳定安全系数极值分布规律及电算程序简介[J].水利水电技术.1983,(7).
    [29]周文通.最优化方法在土坝稳定分析中的应用[J].土石坝工程.1984,(2).
    [30]孙君实.条分法的数值分析[J].岩土工程学报.1984,6(2):1-12.
    [31]张天宝.土坡稳定分析和土工建筑物的边坡设计[M].成都:成都科技大学出版社,1987.
    [32]朱大勇.边坡临界滑移场及其数值模拟[J].岩土工程学报.1997,19(l):63-69.
    [33]朱大勇,钱七虎,周早生,等.岩体边坡临界滑移场计算方法及其在露天边坡设计中的应用[J].岩石力学与工程学报.1999,18(5):567-572.
    [34]陈庆中,高正中.土坡稳定滑移线数值分析法[J].北方交通大学学报.1997,21(4):405-410.
    [35]陈庆中,张弥,朱利平.土坡稳定分析最优控制法[J].北方交通大学学报.2000,24(l):6-66.
    [36]甘卫军,张培震.黄土斜坡最危险滑裂面的遗传算法确定及稳定性分析[J].工程地质学报.1999,7(2):168-174.
    [37]靳晓光,王兰生,李晓红.滑坡滑动面位置的确定及超前预测[J].中国地质灾害与防治学报.2001,1:10-12.
    [38]崔政权.滑坡牵动域是滑坡研究领域里的重要内容[J].岩土工程界.2003,11:66-68.
    [39]林孝松,许江.滑坡滑动面埋深空间插值研究[J].路基工程.2007,6:25-27.
    [40]荆志东,王春雷,谢强.黄土斜坡最危险滑裂面的遗传算法确定及稳定性分析[J].工程地质学报.2010,18(1):109-115.
    [41]郑孝玉.滑坡预报研究方法综述[J].世界地质.2000,19(4):370-374.
    [42]罗伯特[美], Y.K梁,牛怀俊译.滑坡及其预测[A].滑坡文集[C].北京:中国铁道出版社,1991.
    [43] Γ.И.鲁德科,H.Д.古勃科,刘铁良译.预报喀尔巴吁山山前粘性土层滑坡时数学方法的应用[A].滑坡文集[C].北京:中国铁道出版社,1994.
    [44]王思敬,杨志法,刘竹华.地下工程岩体稳定分析[M].北京:科学出版社,1984.
    [45]廖小平.滑坡破坏时间预报新理论探讨[J].地质灾害与环境保护.1994,,3:25-29.
    [46]殷坤龙,晏同珍.滑坡预测及相关模型[J].岩石力学与工程学报.1996,15(l): l-8.
    [47]郑明新,王全才.降雨滑坡的时空预测新方法[J].中国地质灾害与防治学报.1997,3:45-49.
    [48]袁金荣,罗瑞佳.滑坡非线性灰色预测及其软件设计[J].地质与勘探.1999,35(5):56-58.
    [49]李晓红,靳晓光,亢会明,等. GM(l,l)优化模型在滑坡预测预报中的应用[J].山地学报.2001,19(3):265-269.
    [50]于玉贞,林鸿州,李广信.边坡滑动预测的有限元分析[J].岩土工程学报.2007,29(8):1264-1267.
    [51]林鸿州,于玉贞,李广信,等.强度折减有限元法在滑坡特性预测的应用探讨[J].岩土工程学报.2009,31(2):229-233.
    [52]林鸿州,于玉贞,李广信,等.土水特征曲线在滑坡预测中的应用性探讨.岩石力学与工程学报.2009,28(12):2569-2576.
    [53]周创兵,陈益峰.基于相空间重构的边坡位移预测[J].岩土力学.2000,21(3):205-208.
    [54]刘华明,齐欢,蔡志强.滑坡预测的非线性混沌模型[J].岩石力学与工程学报.2003,22(3):434-437.
    [55]秦四清.斜坡失稳的突变模型与混沌机制[J].岩石力学与工程学报.2000,19(4):486-492.
    [56]曾开华,陆兆漆.边坡变形破坏预测的混沌与分形研究[J].河海大学学报.1999,27(3):9-13.
    [57]冯夏庭.智能岩石力学导论[M].北京:科学出版社,2000.
    [58]王恭先.抗滑支挡建筑物的发展动向[A].滑坡文集[C].北京:中国铁道出版社,1998:60-64.
    [59]林鲁生,蒋刚,刘祖德,等.锚索抗滑桩滑坡推力及其分布图式的计算与分析[J].地下空间.2001,21(5):485-487.
    [60]戴自航.抗滑桩滑坡推力和桩前滑体抗力分布规律的研究[J].岩石力学与工程学报.2002,21(4):517-521.
    [61]郑明新.滑坡推力特征及其对抗滑效果的评价[J].中国矿业.2003,12(8):58-61.
    [62]曾德荣,范草原.预应力锚索抗滑桩结构的室内试验研究[J].工程力学.1999(增刊):521-525.
    [63]邹兴普.锚索抗滑桩的设计计算[J].路基工程.2000.s9(2):9-11.
    [64]刘小丽,周德培,杨涛.预应力锚索抗滑桩的动态设计法[J].西南交通大学学报.2002,37(5):491-495.
    [65]王跃敏.预应力锚索与格形地梁的联合应用[J].路基工程.1997,18(5):56~59.
    [66]夏雄,周德培.预应力锚索地梁在边坡加固中的应用实例[J].岩土力学.2002,23(2):242-245.
    [67]冯君,周德培,江南,等.微型桩体系加固顺层岩质边坡的内力计算模式[J].岩石力学与工程学报.2006,25(2):284–288.
    [68]冯君.顺层岩质边坡开挖稳定性及其支护措施研究[博士学位论文][D].成都:西南交通大学,2005.
    [69]孙书伟.微型桩结构加固边坡受力机制和设计计算理论研究[博士学位论文][D].北京:中国铁道科学研究院,2009.
    [70]吕和林.隧道施工位移量测数据库与位移分析[J].西南交通大学学报.1993,91(3):21-27.
    [71]刘艳青,卢汝绥.软岩隧道围岩压力的位移直接反演方法的研究[J].土木工程学报.2001,34(1):84-87.
    [72] T.Kitagaw,T.Kumeta.T.Ichizyo,etc.. Application of convergence confinement analysis tothe study of preceding displacement of a squeezing rock tunnel[J]. Rock Mechanics and RockEngineering.1991,24(1):31-51.
    [73] O.Aydan,T.A.Kabi,T.Kawamoto. The squeezing potential of rock around tunnels[J].Rock Mechanics and Rock Engineering.1993,26(2):137-163.
    [74]谷明成,何发亮,陈成宗.秦岭隧道岩爆的研究[J].岩石力学与工程学报.2002.21(9):1324-1329.
    [75]程桦,孙钧.软弱围岩复合式隧道衬砌力学机理非线性大变形数值分析[J].岩石力学与工程学报.1997,16(4):327-336.
    [76] Shen,B., Barton,N.. The Disturbed zone around tunnels in jointed rock masses[J].International Journal of Rock Mechanics and Mining Sciences&GeomechanicsAbstracts.1997,34(1):117-125.
    [77]杜守继,职洪涛,翁慧俐,等.高速公路软岩隧道复合支护机理的FLAC解析.中国公路学报.2003,16(02):70-77.
    [78]吴梦军,陈彰贵,徐锡宾.公路隧道围岩稳定性研究现状与展望[J].重庆交通学院学报2003.22(2):24-28.
    [79]薛光桥.基于数值模拟和监测监控的围岩稳定性判定方法的研究[硕士学位论文].武汉理工大学,2005.
    [80]王晓形.浅埋洞室围岩压力若干问题研究[硕士学位论文].同济大学.2006.
    [81]周德培.圆形隧道的围岩流变压力研究[J].西南交通大学学报.1992,86(4):84-90.
    [82]周德培,张鲁新.运营隧道衬砌开裂的病害分析及对策[A].西南交通大学.西南交通大学百年校庆论文集(土木工程分册)[C].成都:西南交通大学出版社,1996.
    [83]谭玉兰,高波.铁路隧道的病害调查分析[A].西南交通大学百年校庆论文集土木工程分册[C].成都:西南交通大学出版社,1996,222-225.
    [84]铁道部科学研究院西北分院.坡体病害地段隧道变形机理及其防治技术[R].兰州:1998,4.
    [85]山田刚二,渡正亮,小桥澄治(日).滑坡和斜坡崩塌及其防治[M].北京:科学出版社,1980.
    [86]张鲁新,周德培.蠕动滑坡成因及隧道变形机理的分析[J].岩石力学与工程学报.1999,18(2):217-221.
    [87]马惠民.坡体病害与隧道变形问题[J].岩石力学与工程学报.2003,22(增2):2719-2724.
    [88]郑静,马惠民.山区铁路隧道变形与坡体病害的防治措施[A].滑坡文集[C].北京:中国铁道出版社,2003:21-29.
    [89]毛坚强,周德培.滑坡-隧道相互作用受力变形规律的研究[J].西南交通大学学报,2002,37(4):371-376.
    [90]马惠民,吴红刚.山区高速公路高边坡病害防治实践[J].铁道工程学报,2011,7:34-41.
    [91]王安福,马惠民.襄渝线柴家坡隧道变形机理的数值模拟分析[A].滑坡文集[C].2003:150-155.
    [92]陶志平.滑坡地段隧道变形机理及灾害预测和治理研究[博士学位论文][D].西南交通大学.2003.
    [93]陶志平,周德培.用抗滑桩整治滑坡地段隧道变形的模型试验研究[J].岩石力学与工程学报.2004,23(3):457-460.
    [94]苏江川.下穿巨型滑坡的公路隧道结构安全性研究[硕士学位论文].西南交通大学.2005.
    [94]廖炜.下穿滑坡修建公路隧道支护结构力学行为研究[硕士学位论文].西南交通大学.2006.
    [95]许志樟.谭龙高速公路某隧道右线进口滑坡加固治理[J].探矿工程.2000:69-76.
    [96]谭红.赣龙铁路马蹄径隧道-滑坡分析与整治[J].岩土工程界.2003.6(ll):63-65.
    [97]曲学兵.任胡岭隧道进口山体滑坡的治理[J].岩土工程界.2003.6(10):62-64.
    [98]叶小兵.楚大高速公路九顿坡隧道洞口仰坡滑坡监测与治理[J].建筑技术.2003,12.
    [99]颜洪刚.滑坡段隧道加固新型结构研究[硕士学位论文].成都:西南交通大学,2010.
    [100]吴红刚,马惠民,包桂钰.浅埋偏压隧道-边坡体系的变形机理研究[J].岩土工程学报.2011,8(增1):509-514.
    [101]王恭先,徐峻龄,刘光代.滑坡学与滑坡防治技术[M].北京:中国铁道出版社,2004.
    [102]王恭先,王应先,马惠民.滑坡防治100例[M].人民交通出版社.北京,2008.6.
    [103]杨德林.岩土工程问题的反演理论与工程实践[M].北京:科学出版社.1996.
    [104]朱苦竹,朱合华.滑坡与隧道相互作用机理实例分析[J].地下空间与工程学报,2006,10.
    [105]王梦恕,张建华.浅埋双线铁路隧道不稳定地层新奥法施工闭[J].铁道工程学报.1987,(2):176-191.
    [106]蒋树屏.我国公路隧道建设技术的现状及展望[A].国际隧道研讨会暨公路建设技术交流大会论文集[C].北京:人民交通出版社.2002,11.
    [107]公路隧道设计规范(JTG D70-2004)[S].北京:人民交通出版社.2004.
    [108]王思敬,杨志法.地下工程岩体稳定分析[M].科学出版社.1984.
    [109]李志业,曾艳华.地下结构设计原理与方法[M].成都:西南交通大学出版社,2003.
    [110]邓道明,周新海,申玉平.横向滑坡过程中管道的内力和变形计算[J].油气储运,1998,17(7):18-22.
    [111]申玉生,赵玉光.偏压连拱隧道围岩变形的现场监测与分析研究[J].公路.2005.04(4):194-198.
    [112]夏才初,李永盛.地下工程测试理论与监测技术[M].同济大学出版社.1999.
    [113]杨涛.工程高边坡病害空间预测理论及其应用[博士学位论文][D].西南交通大学.2006.
    [114]彭文斌. FLAC3D实用教程[M].北京:机械工业出版社,2007.
    [115]陈育民,徐鼎平. FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社.2008.
    [116]肖世国.岩石高边坡开挖松弛区及加固支挡结构研究[博士学位论文][D].西南交通大学.2003.
    [117]肖世国,夏才初,周德培.开挖边坡松动区的一种定义及分析方法[J].同济大学学报(自然科学版).2005,04:451-455.
    [118]高健,张义同.实施超前注浆管棚支护的隧道开挖面稳定分析[J].天津大学学报,2009,42(8):666-672.
    [119] Peila, D., Oresta, P. P.,et al. Study on the influence of sub-horizontal fiber-glass pipes onthe stability of a tunnel face[A]. Proc. North American Tunneling’96[C]. Balkema.1996:425-432.
    [120]孔恒.城市地铁隧道浅埋暗挖法地层预加固机理及其应用研究[博士学位论文][D].北京交通大学.2003.
    [121]熊治文.深埋式抗滑桩的受力分布规律[J].中国铁道科学.2000,21(l):48-56.
    [122]张红利.高边坡病害预加固设计中的若干问题[J].中国西部科技.2007,9:41-42.
    [123]马惠民,吴红刚.山区高速公路高边坡病害防治实践[J].铁道工程学报.2011,7:34-41.
    [124]雷文杰,郑颖人,冯夏庭.滑坡治理中抗滑桩桩位分析[J].岩土力学.2006,25(01):27-33.
    [125]何思明.高切坡超前支护桩与坡体共同作用分析[J].山地学报.2006,5:574-579.
    [126]宋从军.路堑高边坡开挖变形理论及控制措施研究[博士学位论文][D].西南交通大学.2004.
    [127]邵江.开挖边坡的渐进性破坏分析及桩锚预加固措施研究[博士学位论文][D].西南交通大学.2007.