电气化铁路供电系统电能质量综合补偿技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电气化铁路是经济和社会发展的大动脉,机车牵引供电网的安全和稳定性关系着电气化铁路的正常运营。由于电力机车采取单相和整流方式供电,电力机车负荷产生的负序、谐波和无功等电能质量问题,严重威胁着电气化铁路牵引供电网和上级电力系统的安全和稳定运行。因此,必须采取有效的电气化铁路电能质量综合补偿措施,提高牵引供电网供电的安全可靠性。
     本文在国家科技支撑计划重大项目子课题“高速铁路供电系统综合补偿及谐波抑制技术”的支持下,针对交直电力机车供电系统(传统电气化铁路)和交直交电力机车供电系统(高速电气化铁路)两种牵引供电系统的电能质量综合补偿方法,深入研究了适用于两种牵引供电系统的电能质量综合补偿装置拓扑结构、电能质量补偿参考量(负序、谐波和无功)的实时检测方法以及控制策略。论文的主要工作和创新点如下:
     (1)提出一种用于交直电力机车供电系统的综合补偿装置拓扑结构和控制策略,降低有源补偿装置的容量,并降低装置的总体成本。该补偿装置由有源补偿装置——铁路功率调节器(Railway Static Power Conditioner, RPC)和无源补偿装置晶闸管控制投切电容器(Thyristor Switched Capacitor, TSC)构成。分析了该补偿系统的工作原理、成本和谐波放大特性,提出了该系统的总体控制策略和控制实现方法,实现了RPC与TSC的协调控制。仿真和实验结果表明,所提的综合补偿系统及其控制方法能有效降低RPC的容量,并获得较好的综合补偿效果。
     (2)分析了采用三相V/V牵引变压器的高速铁路供电系统的负序和谐波补偿原理,提出了基于铁路功率调节器补偿器的高速铁路负序和谐波综合控制方法。运用矢量分析方法对高速铁路供电系统的负序补偿原理进行了详细分析,揭示了高速铁路供电系统的负序补偿机理;提出了高速铁路供电系统的负序和谐波实时检测方法。为了实现补偿目标的可选择性,提出了有功、无功和谐波参考指令分量从总补偿参考指令中进行分离的方法。
     (3)提出一种用于高速铁路供电系统的混合型综合补偿装置及补偿策略,优化了高速铁路综合补偿装置的补偿容量,以较低的补偿容量取得较好的负序补偿效果。针对高速铁路负序电流大的特点,提出了一种由铁路功率调节器RPC和无源补偿装置晶闸管控制滤波器(Thyristor Controlled Filter, TCF)、晶闸管控制电抗器(Thyristor Controlled Reactor, TCR)构成的混合型综合补偿拓扑结构。分析了该系统的结构和工作原理;在剖析补偿装置中RPC与TCF、TCR补偿容量与负序指标关系的基础上,并结合高速铁路牵引网的不同运营工况,提出混合型补偿系统的各子系统补偿容量设计方法,及一种适用于该补偿系统的专家推理控制策略;并提出适合该系统的参考电流实时检测方法和控制方法以实现所提补偿策略。仿真结果表明,提出的混合型高速铁路补偿系统及其补偿策略能针对机车运营工况获得较好的负序抑制效果。
     (4)提出一种基于两相三线制变流器的高速铁路用负序补偿系统及其复合控制方法,减少了补偿装置功率开关器件数目,并提高了补偿装置电流控制效果。为了简化补偿系统主电路结构,节约硬件成本,提出了一种由两个单相降压变压器和一个两相三线制变流器构成的高速铁路用负序补偿系统。在建立两相三线制变流器电气模型的基础上,详细分析了两相三线制变流器的工作原理,并发现了两相三线制变流器可视为由两个单相变流器合并而成的特性。为了提高电流跟踪响应的速度和稳态精度,提出了由滞环控制和广义积分控制组成的复合控制方法。仿真和实验结果证明了基于两相三线制的高速铁路用负序补偿器及其复合控制方法的有效性。
     (5)研究了铁路功率器主要元件的参数设计方法,介绍了模拟实验装置的研制技术。对具有典型代表性的铁路功率调节器主要元件参数的取值方法进行了研究,以优化装置安全性和控制性能为条件,提出了铁路功率调节器中单相降压变压器变比和容量、交流输出电感及直流侧电容的参数设计方法。并介绍了基于RPC模拟实验装置的构成,以及实验装置控制器的硬件和软件设计方法。重点介绍了控制电路中过零检测、采样前滤波电路及采样电路、过压过流保护电路和通信电路等控制器外围电路,还介绍了主程序、中断程序和通信程序的设计方法。参数设计方法和模拟实验装置的研制为理论研究成果的实验验证提供了条件,也将为工程样机的试制奠定基础。
Electrified railway is the main artery of economic and society development, and the security and stability of locomotive traction power supply decides the normal operating of electrified railway. Because the electric locomotives are supplied by single phase power sources obtained from rectifiers, the power quality problems (such as negative sequence, harmonic and reactive), which are caused by electric locomotive, seriously threat the safe and stable operating of traction power supply grid and upper power system. Hence, valid power quality integrated compensation methods for electrified railway should be adopted to enhance the security and stability of locomotive traction power supply system.
     Under the support of sub-project of state science and technology support program named "integrated compensation and harmonic suppression technology for high-speed railway power supply system", this paper studied power quality integrated compensation methods of two traction power supply systems, which are AC-DC power locomotive power supply system (conventional electrified railway) and AC-DC-AC power locomotive power supply system (high speed electrified railway). The power quality integrated compensation topology, real-time detection method of power quality compensation references (negative sequence, harmonic and reactive) and control strategy were studied in this paper. The main work and innovations of this paper are listed as follows.
     (1) An integrated compensation topology and control strategy for AC-DC power locomotive power supply system was presented, the rating of active compensation part was effectively reduced, and the overall cost of the compensator was reduced. The presented topology is composed of active equipment—railway static power conditioner (RPC) and reactive equipment—thyristor switched capacitor (TSC). The operating principle, characteristics of cost and harmonic amplification of this compensator were analyzed, and the overall control strategy and its realization methods were presented, which realizes the coordination control between RPC and TSC. Simulation and experimental results demonstrate the proposed compensation topology and its control method can reduce the compensation rating of RPC, and achieve a good integrated compensation effect.
     (2) The negative and harmonic compensation principle for high-speed railway power supply system with a three-phase V/V traction transformer was analyzed, and negative sequence and harmonic control method for high speed railway power supply system based on railway static power conditioner was presented. The principle to compensate negative-sequence currents for high-speed railway power supply system with a three-phase V/V transformer was explained by using the vector analytical method, and a strategy to provide the compensation references for negative-sequence and harmonic currents is proposed. Also, a method to separate active current, reactive current and harmonic current references from the total negative-sequence and harmonic current references was given.
     (3) A hybrid integrated compensation system for high-speed railway power supply system and its compensation strategy were presented, the compensation rating of this compensator was optimized, and a good negative compensation effect was achieved with relatively low compensation capacity. To aim at the big negative sequence current of high-speed railway power supply system, a hybrid integrated compensation system composed of railway static power conditioner (RPC), thyristor controlled filter (TCF), and thyristor controlled reactor (TCR) was proposed. The topology and operation principle of proposed compensation system were investigated. Based on the analysis of relationship between the compensation rating of RPC, TCF and TCR and negative sequence index, and considering the operating cases of electric locomotives, a compensation rating design method of the sub-system of the proposed hybrid compensation system and an expert reasoning control strategy for the proposed system were presented. A method to generate the compensation references for the compensator and a control method to realize the compensation strategy were presented. Simulation results demonstrates the proposed hybrid compensation system for high-speed railway power supply system and its compensation strategy can achieve a good negative sequence compensation effect under different operating cases of electric locomotives.
     (4) A negative sequence compensation system based on two-phase three-wire converter for high speed railway power supply system and a compound control method for this compensator were presented. The power switch number of the proposed compensator was decreased, and the current control effect of the compensator was enhanced. In order to simplify the main circuit of compensator and save the cost, a negative compensation system composed of two single-phase step-down transformers and a two-phase three-wire converter was presented. Based on the established electric model of two-phase three-wire converter, the operation principle of two-phase three-phase converter was analyzed, and the the characteristic of two-phase three-wire converter can be treated as two single-phase converter combining was discovered. In order to enhance the response speed and steady precision of current tracking control, a compound control method composed of hysteresis loop control and generalized integral control was presented. Simulation and experimental results confirm the validities of the negative sequence compensator for high speed railway power supply system based on two-phase three-wire converter and its compound control method.
     (5) The parameter design method for main components of RPC was investigated, and the design technology of simulative experimental setup was introduced. As RPC is a typical compensator of the integrated compensators for electrified railway power supply system, the parameters selection method of RPC main components was investigated. Taking the security and control performance optimization of the setup as the condition, design methods of turns ratio and rating of single-phase step-down transformer, AC output inductance and DC-link capacitor were presented. The structure of RPC simulative experimental setup was introduced, and also the hardware and software design methods of the control system in the experimental setup. The zero-crossing detection circuit, before sampling filter circuit, sampling circuit, over-voltage over-current protection circuit, communication circuit and other peripheral controller circuit were introduced. The main program, interruption program and communication program design method were also gived. The parameters design method and the design technology of simulative experimental setup provide the experimental testing condition for academic research results, and will also lay the foundation for engineering prototype trial.
引文
[1]马军,杨媛,高勇.电气化铁路对电力系统的影响.西安理工大学学报,2002,18(2),193—196
    [2]张力强,罗文杰,吕利军.电气化铁路牵引负荷的不利影响及治理方案.电网技术,2006,30(增):196-198
    [3]李群湛.我国高速铁路牵引供电发展的若干关键技术问题.铁道学报.2010,32(4):119—124
    [4]X. Xu and B. Chao, "Study on synthesis control of power quality for electrified railway", in Proc. Power Electronics and Intelligent Transportation System, Guangzhou,2008,110-112
    [5]周胜军,于坤山,冯满盈,孙生鸿,贺春.电气化铁路供电电能质量测试主要结果分析,电网技术.2009,33(13):54—57
    [6]杜习周,陈栋新,余晓鹏,刘书铭.电气化铁路负荷对电网电能质量的影响.华中电力.2010,23(6):35—41
    [7]P. C. Tan, P. C. Loh, and D. G. Holmes, "Optimal impedance termination of 25-kv electrified railway systems for improved power quality," IEEE Trans. Power Del.,2005,20(2):1703-1710
    [8]L. Battistelli, D. Lauria, and D. Proto, "Two-phase controlled compensator for alternating current quality improvement of electrified railway systems," IEE Electr. Power Appl.,2006,153(2)
    [9]姚金雄,张涛,林榕,罗迪.牵引供电系统负序电流和谐波对电力系统的影响及补偿措施,电网技术,2008,32(9),61—64
    [10]高然,徐永海,夏瑞华.电气化铁路负序电流对发电机负序过流保护的影响.电力系统保护与控制,2009,37(19),41—45
    [11]孙树光.胶济线电气化铁路牵引供电系统电能质量问题的研究,[北京交通大学硕士学位论文],北京:北京交通大学,2006:12—15
    [12]H. Q. Wang, Y. J. Tian, and Q. C. Gui, "Evaluation of negative-sequence current injecting into the public grid from different traction substation in electrical railways," in Proc.20th International Conference and Exhibition on Electricity Distribution, Prague, Czech Republic,2009,1-4
    [13]T. A. Kneschke, "Control of utility system unbalance caused by single-phase electric traction," IEEE Trans. Ind. Appl.,1985, IA-21(6):1559-1569
    [14]S. L. Chen, R. J. Li, and P. H. Hsi, "Traction system unbalance problem-analysis methodologies," IEEE Trans. Power Del.,2004,19(4):1877-1883
    [15]王兆安,杨君,刘进军.谐波抑制和无功功率补偿.第二版.北京:机械工业出版社,2004:1-20
    [16]罗安.电网谐波治理和无功补偿技术及装备[M].北京:中国电力出版社,2006:1-16
    [17]聂静静,吴文宣.高速电气化铁路谐波的仿真计算与分析.福建电力与电工2008,28(1):8-11
    [18]任元.信阳和驻马庙地区电气化铁路谐波引起220 kV高频保护动作的分析.电网技术,1995,19(2):32-35
    [19]林海雪,周胜军.电气化铁路的谐波标准问题.中国电力,1999
    [20]Hanmin Lee, Changmu Lee, Jang, G., Sae-hyuk Kwon, "Harmonic analysis of the korean high-speed railway using the eight-port representation model", IEEE, Trans. On Power Del.,2006,21(2):979-986
    [21]Sutherland P E, Waclawiak M, McGranaghan M F. "System impacts evaluation of a single-phase traction load on a 115kV transmission system.", IEEE Trans. Power Del.,2006,21(2):837-834
    [22]温建民.山区铁路牵引变电所无功补偿方案研究,[西南交通大学硕士学位论文],成都:西南交通大学,2007:1-3
    [23]李群湛.牵引变电所供电分析及综合补偿技术.北京:中国铁道出版社,2006:1-50
    [24]X. Huang, L. Zhang, M. He, X. You, and Q. Zheng, "Power electronics used in Chinese electric locomotives," IEEE 6th Int. Conf. Power Electron. Motion Control, Wuhan,2009,1196-1200
    [25]谭秀炳.交流电气化铁道牵引供电系统(第二版),成都:西南交通大学出版社,2007:147-167
    [26]董雪婷,黄超.大功率交流传动电力机车牵引特性分析,兰州交通大学学报,2009,29(1):90-94
    [27]张立伟,黄先进,游小杰,郑琼林.欧洲主力交流传动机车主牵引系统介绍.电工技术学报,2007,22(7):186-190
    [28]M. Omettmeier, C. Heising, V. Staudt, and A. Steimel, "Dead-beat control algorithm for single-phase 50-kw AC railway grid representation," IEEE Trans. Power Electron.,2010,25(5):1184-1192
    [29]刘瑜.电气化铁路牵引网的仿真分析,[山东大学硕士学位论文],济南:山东大学,2007:19-25
    [30]李群湛,连级三,高仕斌.高速铁路电气化工程,成都:西南交通大学出版社,2006:155—165
    [31]张秀峰.高速铁路同相AT牵引供电系统研究,[西南交通大学博士学位论文],成都:西南交通大学,2006:6—8
    [32]A. Mariscotti, P. Pozzobon, and M. Vanti, "Simplified modeling of 2×25-kV AT railway system for the solution of low frequency and large-scale problems,' IEEE Trans. Power Del.,2007,22(1):296-301
    [33]王果,任恩恩,田铭兴.不同类型牵引变压器负序电流特性的分析比较.变压器.2006,46(11):24—27
    [34]万庆祝.牵引供电系统负序问题研究,[清华大学博士学位论文],北京:清华大学,2008:4—11.
    [35]王果.电气化铁路牵引供电系统综合有源补偿研究,[兰州交通大学博士学位论文],兰州:兰州交通大学,2011:20-26
    [36]K. Hung-Yuan and C. Tsai-Hsiang, "Rigorous evaluation of the voltage unbalance due to high-speed railway demands," IEEE Trans. Veh. Technol. 1998,47(4):1385-1389
    [37]H. Cheng-Ping, W. Chi-Jui, C. Yung-Sung, P. Shih-Kai, Y. Jung-Liang, and H. Ming-Hong, "Loading characteristics analysis of specially connected transformers using various power factor definitions," IEEE Trans. Power Del., 2006,21(3):1406-1413
    [38]H. Sy-Ruen and C. Bing-Nan, "Harmonic study of the le blanc transformer for taiwan railway's electrification system," IEEE Trans. Power Del.,2002, 17(2):495-499
    [39]张丽艳,李群湛.YNd11接线牵引变压器负序分析.变压器,2006,43(1):21-25
    [40]吴命利,吴利仁Scott接线平衡变压器数学模型与阻抗匹配的实验验证.铁道学报,2007,29(2):39—44
    [41]李群湛,贺建闽.牵引供电系统分析.成都:西南交通大学出版社2007:43-60.
    [42]欧阳帆,周有庆,高乐,邵霞.基于平衡变压器的三相-单相对称供电条件研究及参数匹配.中国电机工程学报,2008,28(3),158-162
    [43]高志建.三相V/V接线牵引变压器负序电流分析.变流技术与电力牵引,2008(5),8-10
    [44]楚振宇,吴命利,张劲,林宗良.三相V,v接线和单相I,i接线牵引变压器的组合应用.铁道学报,2007,29(1):109—114
    [45]张小瑜,吴俊勇.电气化铁路接入电力系统的电压等级问题.电网技术,2007,31(7):12—17
    [46]熊芝耀,程敏胜,张志文等.阻抗匹配平衡变压器单相负荷平衡补偿的研究与分析计算.湖南大学学报(自然科学版),2001,28(2):45-49
    [47]张志文,王耀南,刘福生等.多功能平衡牵引变压器运行方式研究.中国电机工程学报,2004,24(4):125-132
    [48]张志文.星形-双梯形接线三相变四相或三相变两相平衡变压器原理研究,中国电机工程学报,2007,27(3)78—82
    [49]Z. W. Zhang, B. Wu, J. S. Kang, and L. F. Luo, "A multi-purpose balanced transformer for railway traction applications," IEEE Trans. power del.,2009, 24(2):711-718
    [50]吴杰.平衡化补偿理论在SVC中的应用.供配电.2005(9):82-84
    [51]韦刚,卢波.平衡不对称负荷及功率因数补偿装置的研究.中国电力.1997,30(9):33—36
    [52]韩宏飞,姚金雄,吴瑜珲,贾殿林.电气化铁路中SVC负序补偿应用技术研究.电网与清洁能源.2009,25(6):29—31
    [53]蔺宝生.神朔电气化铁路加装SVC静补装置技术方案的研究,西北电力技术,2003,31(4):6—8,22
    [54]张亚迪,陈伯超.双级饱和磁控SVC补偿电铁牵引不平衡负荷的研究.电气传动.2007,37(8):51—55
    [55]M. Goto, T. Nakamura, Y. Mochinaga, and Y. Ishii, "Static negative-phase-sequence current compensator for railway power supply system", in Proc. Electric Railways in United Europe, Amsterdam, Netherlands,1995,78-82
    [56]G. P. Zhu, J. Y. Chen, and X. Y. Liu, "Compensating for the negative sequence currents of electric railway based on SVC", in Proc.3th IEEE conference on Industrial Electronics and Applications, Singapore,2008,1958-1963
    [57]W. S. Chu and J. C. Gu, "A new hybrid SVC scheme with Scott transformer for balance improvement," in Proc.2006 IEEE/ASME Join. Atlanta,2006,217-224
    [58]J. Chen, W.Lee, and M. Chen, "Using a static var compensator to balance a distribution system," IEEE Trans. Ind. Appl., vol.135, no.2, pp.298-304, Mar./Apr.1999
    [59]王宁之.电气化铁路动态无功补偿(SVC)方案探讨及可控电抗器的应用.电力电容器与无功补偿.2009,30(4):5—7
    [60]韦炳干,王卫安.动态无功补偿装置在电气化铁路上的应用.机车电传动,2006(2):17—19
    [61]M. Jianzong, W. Mingli, and Y. Shaobing, "The application of SVC for the power quality control of electric railways," in Proc. Int. Conf. Sustainable Power Gener. Supply. Nanjing,2009,1-4
    [62]肖湘宁,徐永海,刘昊.混合有源电力补偿技术与实验研究.电力系统自动化,2002,26(5):39—44
    [63]Luo An, Shuai Zhikang, Zhu Wenji, Shen,Zhen. Combined System for Harmonic Suppression and Reactive Power Compensation, IEEE Transactions on Industrial Electronics,2009,56(2):418-428
    [64]赵成勇.基于电铁牵引变电站的单相混合型谐波补偿系统的研究,[华北电力大学博士学位论文],北京:华北电力大学,2001:9-19
    [65]H. Fujita, "A single-phase active filter using an h-bridge PWM converter with a sampling frequency quadruple of the switching frequency," IEEE Trans. Power Electron.,2008,24(4):934-941
    [66]R. Costa-Castello, R. Grino, R. Cardoner Parpal, and E. Fossas, "High performance control of a single-phase shunt active filter," IEEE Trans. Control Syst. Technol.,2009,17(6):1318-1329
    [67]王跃,杨君,王兆安等.电气化铁路用混合电力滤波器的研究.中国电机工程学报,2003,23(7):23—27
    [68]赵伟,涂春鸣,罗安等.适用于电气化铁路的单相注入式混合有源滤波器,中国电机工程学报,2008,28(21),51—56
    [69]赵伟,罗安,曹一家,于力.三相-两相牵引变电所用无功动态补偿与谐波治理混合系统的研究.中国电机工程学报,2009,29(28),107-114.
    [70]张定华,桂卫华,王卫安,王小方.新型电气化铁道电能质量综合补偿系统的研究和工程应用.电工技术学报,2009,24(3),189—194
    [71]唐卓尧,任震,高明振,温苑红.无源一有源混合滤波器在电气化铁路谐波治理中的应用,华南理工大学学报(自然科学版),1999,27(4),13—19
    [72]王果,田铭兴,任恩恩.降低电气化铁路混合有源补偿装置有源支路容量的分析.电力自动化设备.2010,30(9):18—23
    [73]P. C. Tan, P. C. Loh, and D. G. Holmes, "A robust multilevel hybrid compensation system for 25-kv electric railway applications," IEEE Trans.Power Electron.,2004,19(4):1043-1052
    [74]S. Rahmani and K. Al-Haddad, A single phase multilevel hybrid power filter for electrified railway applications, Industrial Electronics,2006 IEEE International Symposium on, Montreal, Canada,2006. pp:925-930
    [75]C. Cecati, A. Dell—Aquila, and V. G. Monopoli, "Design of h-bridge multilevel active rectifier for traction systems," IEEE Trans. Ind. Appl.,2003,39(5): 1541-1550
    [76]许树楷,宋强,朱永强,刘文华,李建国.用于不平衡补偿的变压器隔离型链式D-STATCOM的研究.中国电机工程学报,2006,26(9),137—143
    [77]罗安,欧剑波,唐杰,荣飞.补偿配电网电压不平衡的静止同步补偿器控制方法研究.中国电机工程学报,2009,29(6),55—60
    [78]朱永强,刘文华,邱东刚,刘炳,卢军峰.基于单相STATCOM的不平衡负荷平衡化补偿的仿真研究.电网技术,2003,27(8),42—45,71
    [79]王建赜,伏祥运,纪延超.不平衡补偿时静止同步补偿器的分相控制.电力自动化设备,27(9),27—30
    [80]李建国,刘文华,宋强,朱永强.基于变压器隔离型链式逆变器的D-STATCOM及其控制.清华大学学报(自然科学版),2005,45(7),877—880.
    [81]Q. Song, and W. H. Liu. "Control of a Cascade STATCOM With Star Configuration Under Unbalanced Conditions," IEEE Trans. Power Electron., 2009,24(1):45-58
    [82]R. Grunbaum, J.-Ph. Hasler, T. Larsson, and M. Meslay, "STATCOM to enhance power quality and security of rail traction supply," Advanced Electromechanical Motion Systems & Electric Drives Joint Symposium,2009. ELECTROMOTION 2009.8th International Symposium on. Lille,2009,1-6
    [83]B. Singh, P. Jayaprakash, and D. P. Kothari, "AT-connected transformer and three-leg VSC based DSTATCOM for power quality improvement," IEEE Trans. Power Electron.,2008,23(6):2710-2718
    [84]Y. Mochinaga, M. Takeda, and K. Hasuike, "Static power conditioner using GTO converters for ac electric railway," in Proc. Power Conversion Conference, Yokohama, Apr.1993, pp.641-646
    [85]H. Morimoto, M. Ando, Y. Mochinaga, and T. Kato, "Development of railway static power conditioner used at substation for shinkansen," in Proc.2002 Power Conversion Conference, Osaka, Apr.2002, pp.1108-1111
    [86]T. Uzuka, S. Hase, Y. Mochinaga, M. Takeda, T. Miyashita, and T.Ueda, "A static voltage fluctuation compensator for AC electric railway," in Proc. Power Electronics Specialists Conference,2004 IEEE 35th Annual, Aachen,2004, 1869-1873
    [87]S. T. Senini and P. J. Wolfs, "Novel topology for correction of unbalanced load in single phase electric traction systems," in Proc. Power Electronics Specialists Conference,2002 IEEE 33th Annual. Qld., Australia,2002,1208-1212
    [88]Z. L. Shu, S. F. Xie, and Q. Z. Li, "Single-phase back-to-back converter for active power balancing, reactive power compensation, and harmonic filtering in traction power system," IEEE Trans. Power Electron.,2011,26(2):334-343
    [89]皮俊波,姜齐荣,魏应冬.一种基于链式结构的电气化铁路同相供电方案研究,电力设备,2008,9(10):4—9.
    [90]Z. Sun, X. J. Jiang, D. Q. Zhu, and G. X. Zhang, "A novel active power quality compensator topology for electrified railway," IEEE Trans. Power Electron., 2004,19(4):1036-1042
    [91]邱大强,李群湛,周福林,余俊祥.基于背靠背SVG的电气化铁路电能质量综合治理,电力自动化设备,2010,30(6):36—44
    [92]周春晓,高云峰,沈斐等.两相型SVG在电铁电能质量治理中的应用研究,电气化铁道,2008,1:6—9
    [93]张秀峰,李群湛,吕晓琴.基于有源滤波器的V,v接同相供电系统.中国铁道科学,2006,27(2),98-103
    [94]Yingdong Wei, Qirong Jiang, Xiujuan Zhang. An optimal control strategy for power capacity based on railway power static conditioner. Circuits and Systems, 2008. APCCAS 2008. IEEE Asia Pacific Conference on. Macao,2008,236-239
    [95]杨君,王兆安,邱关源.单相电路谐波及无功电流的一种检测方法.电工技术学报,1996,11(3):42—46
    [96]刘进军,王兆安.瞬时无功功率与传统功率理论的统一数学描述及物理意义.电工技术学报,1998,13(6):6-12
    [97]蒋斌,严钢锋,赵光宙.单相电路瞬时谐波及无功电流实时检测新方法.电力系统自动化,2000,(21):35—39
    [98]董祥,李群湛,黄军,周晋.适用于电气化铁路的无功谐波电流检测方法研究.电力系统保护与控制.2009,37(6):32-35
    [99]陆秀令,张松华,曹才开,周腊吾.单相电路谐波及无功电流新型检测方法.高电压技术,2007,33(3):163-166
    [100]周柯,罗安,夏向阳,赵伟.一种改进的ip—iq谐波检测方法及数字低通滤波器的优化设计.中国电机工程学报,2004,27(34):96-101
    [101]T. Tanaka, E. Hiraki, K. Ueda, K. Sato, and S. Fukuma, "A novel detection method of active and reactive currents in single-phase circuits using the correlation and cross-correlation coefficients and its applications," IEEE Trans. Power Del.,2007,22(4):2450-2456
    [102]孙卓,姜新建,朱东起.电气化铁路中谐波、无功、负序电流的实时检测方法.电力系统自动化.2003,27(15):53—57
    [103]M. Depenbrock, "The FBD-method, a generally applicable tool for analyzing power relations," IEEE Trans. Power Syst.,1993,8(2):381-387
    [104]赵成勇,李庚银,李海生,等.电力牵引系统的预测型谐波电流检测方法研究,电工技术学报,2001,16(1),85—88
    [105]欧阳帆,基于平衡变压器三相-单相变换供电方式研究.[湖南大学博士学位论文],长沙:湖南大学,2008:61-68
    [106]曾国宏,郝荣泰.有源滤波器滞环电流控制的矢量方法.电力系统自动化,2003,27(5):31—35
    [107]C. H. Ho, V. S. P. Cheung, and H. S. Chung, "Constant-frequency hysteresis current control of grid-connected VSI without bandwidth control," IEEE Trans. Power Electron.,2009,24(11):2484-2495
    [108]M. Mohseni, and S. M. Islam. "A new vector-based hysteresis current control scheme for three-phase PWM voltage-source inverters," IEEE Trans. Power Electron.,2010,25(9):2299-2309
    [109]A. Luo, W. Zhao, X. Deng, Z. J. Shen, and J. Peng. "Dividing frequency control of hybrid active power filter with multi-injection branches using improved ip and iq algorithm," IEEE Trans. Power Electron.,2009,24(10):2396-2405
    [110]范瑞祥,罗安,李欣然.并联混合型有源电力滤波器的系统参数设计及应用研究.中国电机工程学报,2006,26(2):106—111
    [111]孙贤大.注入式混合型有源电力滤波器研究,[湖南大学硕士学位论文],长沙:湖南大学,2009:51—53
    [112]I. Axente, N. Ganesh, M. Basu, M. F. Conlon, and K. Gaughan, "A 12-kVA DSP-Controlled laboratory prototype UPQC capable of mitigating unbalance in source voltage and load current," IEEE Trans. Power Electron.,2010, 25(6):1471-1479
    [113]苏奎峰,吕强,常天庆等.TMS320X281x DSP原理及C程序开发.北京:北京航空航天大学出版社,2008:73—78
    [114]万山明.TMS320F281 x DSP原理及应用实例.北京:北京航空航天大学出版社,2007:1-10