非平稳地震激励下山区高墩桥梁随机响应计算理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国西部山区铁路的发展使得大量高墩桥梁不断涌现,对于这部分桥梁基本上都超出了规范的要求属于非规则桥梁,具体表现为墩高、墩高差较大、大跨度、曲率半径小等特点。随机振动法是未来抗震分析方法发展的必然趋势,但是由于理论复杂性和计算效率低下而未在实际工程得到充分应用。基于以上两点,本文主要解决的问题就是如何利用随机振动理论来对山区高墩桥梁做抗震分析,同时,使得随机振动法可以在实际工程中应用,不局限于任何固定结构形式,所以本文将高效的虚拟激励法、绝对位移求解法和精细积分法与具有强大前后处理功能的通用有限元软件ANSYS相结合,基于APDL语言进行二次开发,在ANSYS中实现对山区高墩桥梁遭受多维多点平稳/非平稳随机地震激励下的随机响应分析,求解方便,便于在实际工程中应用。
     本文首先回顾了国内外大跨度高墩桥梁的发展以及随机振动理论在大跨度桥梁抗震分析中的应用,然后介绍了虚拟激励法在大跨度桥梁动力计算中的作用和应用,以及学者们探索虚拟激励法与通用有限元相结合的过程。从而,说明了随机振动理论在工程中的应用是能实现的和必然的。
     第二章为了将多维多点平稳随机理论应用到实际工程中,运用绝对位移直接求解多维多点激励地震动响应方程的方法,从理论上将一维的多点地震激励扩展到三维地震激励模型,避免了计算静力影响矩阵的繁琐,提出了多维多点平稳地震激励在ANSYS快速模拟方法,并通过数值算例验证其计算准确性和精度,将平稳随机振动转换为谐分析,操作方便,可详细地考虑地震动的空间效应(行波效应、场地效应和相干效应)对山区高墩桥梁地震响应的影响。
     第三、四章介绍了一个非平稳随机振动理论的分析方法,该方法是运用虚拟激励法来分析遭受多维空间变化地面运动激励的大跨结构的地震响应,同时,研究了局部场地效应对高墩铁路桥梁的地震响应的影响。绝对位移直接求解与虚拟激励法结合克服了传统的虚拟激励法的缺点,其实质的数学理论是一致的。为了将该理论应用到大而复杂的结构抗震分析中,先在通用有限平台上进行应用和验证,然后用来分析局部场地效应和地震动的非平稳性对高墩铁路桥梁的影响。得出的关键性结论将应用到高墩铁路桥梁设计和抗震分析中。
     为了进一步提高非平稳随机振动的计算效率,第五章提出了将精细积分方法与多维多点激励的直接求解的虚拟激励法相结合的方法,运用精细积分方法来计算每一个固定频率点下的瞬态分析,仅需计算两个瞬态分析就可以得到所有频率点下的响应时程,迅速地提高了计算效率。同时,提出了在通用有限元软件快速模拟的方法,这样既提高了计算效率,又传承了直接求解多维多点非平稳虚拟激励法的所有优点,节约了自编程序的时间和计算时间,进一步促进随机振动的抗震分析方法在实际工程中的运用。首次正确地推导了单自由度结构,受非均匀调制的非平稳随机振动激励时的解析解,可为以后学者研究非均匀调制的非平稳随机振动验证计算精度所用。以山区高墩桥梁为例,建立了高墩桥梁三维空间模型,分析了非一致场地的空间分布及地形对结构碰撞响应的影响。
Construction of railways is under enormous developments in China, many of them have been built or are now being built in the southwestern region of China. Due to mountainous site topopraphies of the southwest China, many railway bridges are constructed and they usually have high pier, large height differentce, long span and small radius of curvature features in those mountainous areas and called irregular bridges beyond the bridge specification requirements. Stochastic vibration method is an inevitable to replace other seismic analysis approaches in the future, but not be fully applied in the actual projects as a result of theoretical complexity and computational inefficiency. Basd on above resons, How to use stochastic vibration theory(SVT) for aseismic analysis of mountainous high pier bridges subjected to multi-dimensional and multi-support stationary or non-stationary random earthquake excitations will be discussed in this paper and SVT is also employed without the restriction of structural style in actual engineering. Therefore highly efficient pseudo excitation method, absolute displacement solving method, precise integration method and a general finit element roftware ANSYS with powerful modeling capability are combined, and then based on APDL language, it is conducted in ANSYS that aseismic analysis of mountainous high pier bridges subjected to multi-dimensional and multi-support stationary or non-stationary random earthquake excitations and this approachis solved conviently without self-developed program and facilitates the applications of SVT in practical engineering.
     The first section of this paper first reviews the major domestic and foreign development history of long-span and high pier bridges and applications of SVT in seismic analysis of long span and high pier bridges, then describes the role and application of pseudo excitation method in the dynamic calculation of long-span bridges, as well as scholars explore the combination process of pseudo excitation method and general-purpose finite element software. Thereby, it is confirmed the feasibility and inevitability of SVT application in the project.
     To make stationary stochastic vibration theory used extensively in practical engineering, the second section presents absolute displacement solving response motion equation method of structure under multi-dimensional and multi-support random earthquake loading swiftly extends muti-support excitations input theory from one-dimensional and multi-support to mult-dimensional and multi-support and avoids computing the static influence matrix, which first is implemented in ANSYS at home and abroad. A numerical example is used to testify to the accuracy and precision. This technique will converte stationary excitations into a series of harmonic analyses for detail model of spatially varying ground motions (traveling wave effect, local site effect and coherence effect) acting on mountainous high pier bridges.
     The third and fourth sections present a theoretical nonstationary stochastic analysis scheme using pseudo-excitation method (PEM) for seismic analysis of long-span structures under tridirectional spatially varying ground motions, based on which the local site effects on structural seismic response are studied for a high-pier railway bridge. An absolute displacement directly solving scheme of PEM in non-stationary stochastic analysis of structure under tridirectional spatial seismic motions has been proposed to resolve the drawbacks of conventional indirect approach, in conjunction with the derived mathematical scheme in modeling tridirectional nonstationary spatially correlated ground motions. To apply the proposed theoretical approach readily in stochastic seismic analysis of some complex and significant structures, this scheme has been implemented and verified in the general finite element platform, and then been applied to a high pier railway bridge under spatially varying ground motions considering the local site effect and effect of ground motion non-stationarity. Critical conclusions are drawn and can be applied in the actual seismic design and analysis of the high pier railway bridges under tridirectional non-stationary multiple excitations
     To further improve the computational efficiency of non-stationary stochastic vibration, the approach of the combination of high-precise integration method employed and directly solving method is proposed to compute expediently transient analysis at every deterministic frequency, the structure response will be achieved only according to two transient analyses, and the computational efficiency is updated greatly. Simultaneously, the non-stationary stochastic vibration implemented in general finite element software not only improves computational efficiency but also inherits all merits of the non-stationary stochastic vibration and saves times of self-developed program and calculation, so that this promotes deeply implements of stochastic vibration technique in seismic analysis. Meanwhile, correct analytic solution is first given of which a structure of single degree of freedom subjects to non-uniformly modulated evolutionary non-stationary random excitations and which confirms the precision of calculations for other scholars. Taking a mountain high pier bridge for example, the establishment of the three-dimensional model of high pier bridge is carried on in ANSYS to study the influence of the collision response for non-uniform distributing spatially varying local site condition and topography.
引文
[1]范立础.桥梁工程[M].北京:人民交通出版社,2001
    [2]范立础.预应力混凝土连续梁桥[M].北京:人民交通出版社,1998
    [3]雷俊卿.桥梁悬臂施工与设计[M].北京:人民交通出版社,2000
    [4]山区高速铁路桥梁关键技术研究大纲[R],铁道部科技开发研究计算,西南交通大学,2010
    [5]范立础.桥梁抗震[M].上海:同济大学出版社,2001
    [6]胡聿贤.地震工学学[M].哈尔滨:地震工程出版社,1988
    [7]European Committee for Standardization[J]. Eurocode8:Structures in Seismic Regions-Design part2:Bridge Brussels,1995
    [8]中华人民共和国交通运输部,公路桥梁抗震设计细则(JTG/T B02-01-2008)[S],2008
    [9]胡聿贤,周锡元.弹性体在平稳和平稳化地面运动下的反应.地震工程研究报告集第一集[C].北京:科学出版社,1962.33-50
    [10]刘季,王前信.多维与多支座地震输入及结构扭转反应[C].中国工程抗震研究四十年.北京:地震出版社,1989
    [11]王光远.建筑结构的振动[M].北京:科学出版社,1978
    [12]李国豪.工程结构抗震动力学[M].上海:上海科学技术出版社,1980
    [13]李杰,李建华.多点激励下结构随机地震反应分析的反应谱法[J].地震工程与工程振动,2004,24(3):21-29
    [14]薛素铎,曹资,王雪生,李明辉.多维地震作用下网壳结构的随机分析方法[J].空间结构,2002,8(1):44-51
    [15]Krenk S, Madsen H O, Madsen P H. Stationary and transient response envelope[J].Engineering Mechanics, ASCE,1983,109:263-278
    [16]Gasparini D A. Response of MDOF systems to non-stationary random excitation[J].Engineering Mechanics, ASCE,1979,105:13-28
    [17]Zerva A. Lifeline response to spatially variable ground motions [J]. Earthquake Engineering and Structural Dynamics,1988,16 (3):361-379
    [18]Dumandglu A A, Severn R T. Stochastic response of suspension bridges to earthquake forces [J]. Earthquake Engineering and Structural Dynamics,1990,19:133-152
    [19]Harichandran R S, Vanmarcke E H. Stochastic variation of earthquake ground motion in space and time[J]. Engineering Mechanics, ASCE,1986,112 (2):154-175
    [20]Lee M C, Penzien J.Stochastic analysis of structures and piping systems subjected to stationary multiple support excitations [J]. Earthquake Engineering and Structural Dynamics,1983,11:91-110
    [21]Masri S F. Response of a multi-degree-of-freedom system to non-stationary random excitation [J]. Journal of Applied Mechanics, ASME,1978,45:649-656
    [22]Kiureghian A D, Neuenhofer A. Response spectrum method for multi-support seismic excitations [J]. Earthquake Engineering and Structural Dynamics,1992,21:713-740
    [23]Ernesto H Z, Vanmarcke E H. Seismic random vibration analysis of multi-support structural systems [J]. Engineering Mechanics, ASCE,1994,120 (5):1107-1128
    [24]Hong Hao. Multiple-station ground motion processing and simulation based on smart-1 array data[J]. Nuclear Engineering and Design,1989,111:293-310
    [25]Giovanna Zanardo, Hong Hao, Claudio Modena. Seismic response of multi-span simply supported bridges to a spatially varying earthquake ground motion [J]. Earthquake Engineering and Structural Dynamics,2002,31:1325-1345
    [26]Clough R W, Penzien J. Dynamics of structures [M]. New York:McGraw-Hill, Inc., 2nd edition.1993
    [27]Crandall S H, Mark W D. Random vibration in mechanical system. New York: Academic Press,1963
    [28]Newland D E. An introduction to random vibration and spectral analysis. London: Longman,1975
    [29]Nigam N C. Introduction to random vibrations. Cambridge:The MIT Press,1983
    [30]林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社,2006
    [31]曹资,薛素铎.空间结构抗震理论[M].北京:科学出版社,2006
    [32]范立础,王君杰,陈玮.非一致地震激励下大跨度斜拉桥的响应特征[J].计算力学学报,2001,18(3):358-363
    [33]Q.S.Li, Y.H.Zhang, J.H.Lin. Seismic random vibration analysis of tall buildings[J], Engineering Structures.2004,26:1767-1778
    [34]J.H.Lin, Y.H.Zhang, Q.S.Li. Seismic spatial effects for long-span bridges, using the pseudo excitation method[J]. Engineering Structures.2004,26:1207-1216
    [35]Lin J H, Lin S P, Zhong W X. Strategies for Developing Dynamic Program DASOS-J (D) of Offshore Structures[C]. Proc. First World Conference on Computational Mechanics, Austin, Texas, USA,1986
    [36]Lin J H, Lu X, Zhong W X. Dynamic Response of jacket Platform to Random waves[C]. Computer Modeling in Ocean Engineering.1988.539-545
    [37]Sun D K, XuYL, KoJM, Lin J H. Pseudo-Excitation Method for vibration Analysis of Wind-Excited Structures [J]. Journal of Sound and Vibration,1999,228 (3):569-588
    [38]F.Lu, J H Lin, D.Kennedy, F.W.Williams. An algorithm to study non-stationary random vibrations of vehicle-bridge systems[J]. Computers and Structures,2009,87 (3-4): 177-185
    [39]Z.C.Zhang, J.H.Lin, Y.H.Zhang. Non-stationary random vibration analysis for train-bridge systems subjected to horizontal earthquakes [J]. Engineering Structures, 2010,32 (11):3571-3582
    [40]Zhichao Zhang, Yahui Zhang, Jiahao Lin. Random vibration of a train traversing a bridge subjected to traveling seismic waves[J]. Engineering Structures,2011,33 (12): 3546-3558
    [41]丁阳,林伟,李忠献.大跨度网格结构多维多点随机地震反应分析[J].福州大学学报,2005,33:50-55
    [42]丁阳,张笈伟,李忠献.部分相干效应对大跨度空间结构随机地震响应的响应[J].工程力学,2009,26(3):86-92
    [43]丁阳,张笈伟,李忠献.地震动非平稳性对大跨度空间结构随机地震响应的影响[J].天津大学学报,2008,41(8):984-990
    [44]Li Hong-Nan et al. Model of transmission tower-pile-soil dynamic interaction under earthquake:in-plane[J]. ASME PVP,2002,445 (2):143-147
    [45]Li Hong-Nan, Shi Wen-Long et al.Simplified models and experimental verification for coupled transmission tower-line system to seismic excitations [J], Journal of Sound and Vibration,2005,286 (3):429-671
    [46]赵灿晖,周志祥.大跨度钢管混凝土拱桥在多维多点地震激励作用下的平稳随机响应[J].世界地震工程,2007,23(4):66-71
    [47]赵灿晖,周志祥.多分量多点平稳随机地震响应的快速算法[J].西南交通大学学报,2007,42(1):55-60
    [48]赵灿晖,周志祥.多维非平稳随机地震响应的快速算法[J].振动与冲击,2006,25(5):62-66
    [49]陈兵.桥梁抗震分析的随机理论及应用研究[D].博士学位论文,西南交通大学,2008
    [50]石永久,江洋,王元清.直接求解法在结构多点输入地震响应计算中的应用与改进[J].工程力学,2011,28(1):75-81
    [51]王成博,史志利,李忠献.随机地震动场多点激励下大跨度连续刚构桥的地震反应分析[J].地震工程与工程振动,2003,23(6):57-62
    [52]李建俊,林家浩,张文首,张宏宝.大跨度结构受多点随机地震激励的响应[J].计算结构力学及其应用,1995,12(4):445-451
    [53]叶继红,孙建梅.多点激励反应谱法的理论研究[J].应用力学学报,2007,24(1):47-53
    [54]孙建梅,叶继红.考虑空间相干的虚拟激励法在大跨度空间结构随机振动分析中的应用[J].铁道科学与工程学报,2007,4(5):11-21
    [55]钟万勰,林家浩,吴志刚等.大跨度桥梁分析方法的一些进展[J].大连理工大学学报,2000,40(2):127-135
    [56]张文首,林家浩,刘婷婷等.结构非平稳随机响应的增维精细时程积分[J].振动与冲击,2006,25(5):18-20
    [57]江洋,石永久,王元清.实用多点输入虚拟激励法在通用有限元软件中的实现[J].地震工程与工程振动,2010,30(1):46-52
    [58]李永华,李思明.绝对位移直接求解的虚拟激励法[J].振动与冲击.2009,28(10):185-190
    [59]苏成,徐瑞,刘小璐.大跨度空间结构抗震分析的非平稳随机振动时域显示法[J].建筑结构学报.2011,32(11):169-176
    [60]贾宏宇,郑史雄,陈冠桦.多维多点虚拟激励法在ANSYS中的应用[J].地震工程与工程振动.2012,32(4):7-12
    [61]贾宏宇,郑史雄.直接求解多维多点地震动方程的虚拟激励法[J].工程力学.2012
    [62]林家浩.随机地震响应功率谱快速算法[J].地震工程与工程振动,1990,10(4):38-46
    [63]林家浩,张亚辉,赵岩.大跨度结构抗震分析方法及近期发展[J].力学进展,2001,31(3):350-360
    [64]Lin J H. A fast CQC algorithm of PSD matrices for random seismic response[J], Computer and Structures,1992,44 (3):683-687
    [65]Anil K Chopra. Dynamics of Structures (Theory and Application to Earthquake Engineering) [M]. University of California at Berkeley,3nd edition.2007
    [66]Davenport AG. Note on the distribution of the largest value ofa random function with application to gust loading[C]. Proc. Inst. Civil Eng.,1961,28 (1):187-96
    [67]贾宏宇,郑史雄,罗楠.直接求解多维多点非平稳激励的虚拟激励法[J].工程力学.2013
    [68]Caughey T K, Stumpf H J. Transient Response of a Dynamic System under Random Vibration [J]. Journal of Applied Mechanics,1961,28:563-566
    [69]屈铁军,王君杰.王前信.空间变化的地震动功率谱的实用模型[J].地震学报,1996,18(1):55-62
    [70]J.H. Lin, Y.Zhao, Y.H.Zhang. Accurate and Highly Efficient Algorithms for Structural Stationary/Non-stationary random responses [J]. Computer Methods in Applied Mechanics and Engineering,2001,191(1-2):103-111
    [71]贾宏宇,郑史雄.基于场地效应的山区高墩桥梁随机地震响应分析[J].公路交通科技,2012,29(6):93-97
    [72]Kaiming Bi, Hong Hao. Modeling and simulation of spatially varying earthquake ground motions at sites withvarying conditions [J]. Probabilistic Engineering Mechanics 2012,29:92-104
    [73]Housner G W. Characteristic of strong motion earthquakes [J]. Bull. Seism. Soc. Am., 1947,37:17-31
    [74]Kanai K. An empirical formula for the spectrum of strong earthquake motions [J]. Bull. Earthquake Res. Int., Univ. Tokyo,1961,39 (1):85-95
    [75]史志利,李忠献.随机地震动场多点激励下大跨度桥梁地震反应分析方法[J].地震工程与工程振动,2003,23(4):124-130
    [76]Ruiz P, Penzien J. Probabilistic study of the behavior of structures during earthquakes. Earthquake Eng. C., UCB, CA, Report No. EERC,1969,63 (3)-69 (3)
    [77]欧进萍,牛荻涛,杜修力.设计用随机地震动的模型及其参数确定[J].地震工程与工程振动,1991,11(3):45-53
    [78]杜修力,陈厚群.地震动随机模型及其参数确定方法[J].地震工程与工程振动,1994,14(4):1-5
    [79]杜修力.水工建筑物抗震可靠度设计和分析用的随机地震输入模型[J].地震工程与工程振动,1998,18(4):76-81
    [80]Oliveira C S, Hao H, Penzien J. Ground motion modeling for multiple-input structural analysis [J]. Structural Safety,1991,10:79-93
    [81]Zerva A. Spatial Variation of Seismic Ground Motions:Modeling and Engineering Applications[C].CRC Press, Taylor and Francis Group,2009.
    [82]Zhang D-Y, Li X, YanW-M, XieW-C, Pandey MD. Stochastic seismic analysis of a concretefilled steel tubular (CFST) arch bridge under tridirectional multiple excitations [J]. Engineering Structures,2012 (revised to be accepted).
    [83]Jia H-Y, Zhang D-Y, Zheng S-X, Xie W-C, Pandey MD. Local site effects on a high-pier railway bridge under tridirectional spatial excitations:nonstationary stochastic analysis [J]. Soil Dynamics and Earthquake Engineering,2012 (submitted).
    [84]Lin JH, ShenWP, Williams FW.Accurate high-speed computation of non-stationary randomstructuralresponse[J]. Engineering Structures,1997,19(7):586-593.
    [85]Lin J H, Wang X, WilliamsFW. Asynchronous parallel computing of structural non-stationaryrandomseismic responses[J].International Journal for Numerical Methods in Engineering,1997b,40(12):2133-2149.
    [86]Lin JH, Sun DK, Sun Y, Williams FW. Structural responses to non-uniformly modulatedevolutionary random seismic excitations [J]. Communications in Numerical Methods in Engineering,1997,13(8):605-616.
    [87]Dumanogluid A A, Soyluk K. A stochastic analysis of long span structures subjected tospatially varying ground motions including the site-response effect [J]. Engineering Structures,2003,25(10):1301-1310.
    [88]Bi K, Hao H, Chouw N. Influence of ground motion spatial variation, site condition and SSI on the required separation distances of bridge structures to avoid seismic pounding [J]. EarthquakeEngineering and Structural Dynamics,2011,40(9):1027-1043.
    [89]Davis RO. Pounding of buildings modelled by an impact oscillator [J]. Earthquake Engineering and Structural Dynamics,1992,21(3):253-274.
    [90]CEN. Eurocode 8:Design Provisions of Structures for Earthquake Resistance, Part 1: General Rules, Seismic Actions and Rules for Building, EN 1998-1:2004[B]. European Committeefor Standardization, Brussels,2004.
    [91]CEN. Eurocode 8:Design Provisions of Structures for Earthquake Resistance, Part 2: Bridges, EN1998-2:2005[B]. European Committee for Standardization, Brussels,2005.
    [92]National Standard of the People's Republic of China.Code for Seismic Design of Buildings, GB 50011-2010. Chinese Architectural Industry Press, Beijing,2010.
    [93]Ministry of Communications of the People's Republic of China.Guidelines for SeismicDesign of Highway Bridges, JTG/T B02-01-2008[B]. China Communications Press, Beijing,2008.
    [94]Lin JH, Zhao Y, Zhang Y. Accurate and highly efficient algorithms for structural stationary/non-stationary random responses[J]. Computer Methods in Applied Mechanics and Engineering 2001; 191(1):103-111.
    [95]林家浩,李建俊,张文首.结构受多点非平稳随机地震激励的响应.力学学报,1995,27(5):567-576.
    [96]Zhong WX, Williams FW. A precise time step integration method. Proceedings of the Institution of Mechanical Engineers[C]:Journal of Mechanical Engineering Science 1994,208(6):427-430.
    [97]Lin JH, Shen WP, Williams FW. A high precision direct integration scheme for structuressubjected to transient dynamic loading[J]. Computer and Structures,1995, 56(1):113-120.
    [98]Ruangrassamee A, Kawashima K. Relative displacement response spectra with pounding effect [J]. Earthquake Engineering and Structural Dynamics,2001,30(10): 849-858.
    [99]Priestley MB. Evolutionary spectra and non-stationary processes[J]. Journal of the Royal Statistical Society:Series B (Methodological),1965,27(2):204-237.
    [100]FEMA. Earthquake-Resistant Design Concepts:An Introduction to the NEHRP Recommended Seismic Provisions for New Buildings and Other Structures [J]. FEMA, 2010,25(5):P-749.