主被动阀结合的双腔串联压电泵研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压电泵是以压电陶瓷作为换能器的新型流体传输装置。它是利用压电材料的逆压电效应,使压电振子产生变形,再由变形产生泵腔的容积变化实现流体输出或者利用压电振子产生波动来传输液体。
     本文在单腔体主动阀压电泵研究的基础上提出主被动阀结合的双腔串联压电泵的设计方案,对其工作机理进行比较系统的理论研究,并进行试验测试,为主动阀压电泵的深入研究奠定了基础。同时也为提高压电泵的输出特性提供一种新的方法。具体研究内容如下:
     以圆形双晶片压电振子为研究对象,对压电振子的振动进行理论研究。建立了数学模型,并用有限元方法分析双晶片压电振子的结构参数与压电振子性能间的关系,确定压电振子的结构参数。同时对选定的压电振子进行静态和模态分析,并通过试验测试其振动特性,为压电泵的设计提供理论依据。
     设计制作圆形双晶片压电振子式主动阀,依据两固定平行平板间的缝隙流原理推导阀的理论流量公式,分析影响主动阀流量的主要因素,确定阀口的主要参数,并对主动阀的过流量进行试验测试。
     在研究主动阀单腔泵的基础上,利用腔体结构串联设计主被动阀结合的双腔串联压电泵,从理论上分析各自的工作原理及工作过程。制作工作样机,测试它们的工作特性,并对单腔泵和双腔串联泵进行比较分析。
With the rapid development of Micro-electro-mechanical systems (MEMS), micro-flow system, as an important branch of micro-electro-mechanical systems, it has enjoyed great development in recent years. The micro-pump, as a key components of micro-flow system,researchers have also been widespread concern. Piezoelectric pump, due to their no electromagnetic interference, compact structure, good response characteristics and precise controlled. etc., has become a hot research direction in domestic and abroad. Performance of Piezoelectric pump depends not only on cavity pump drive components, but also on the work forms of import and export valve. In order to improve the response characteristics of valve, it can be actively control open and close of piezoelectric pump import and export valves, so based on the active valve piezoelectric pump are the study of a new direction. In this paper, based on a single chamber active valve piezoelectric pump ,it put forward dual-chamber tandem piezoelectric pump of combination of active and passive valves in order to improve the output performance of piezoelectric pump.
     1. Introduction of piezoelectric pump
     This paper analyzed structural characteristics and working principle of various piezoelectric pumps in domestic and abroad, in order to improve the lagging performance of passive valve, it has become a hot research to control import and export of piezoelectric pump through active valve, it is the main purpose of this paper to improve the output performance of active valve piezoelectric pump.
     2. Theory and simulation analysis of piezoelectric vibrator used for pump
     It analyzed the working principle and piezoelectric material of piezoelectric vibrator used for pump , selected the structure of piezoelectric vibrator, and set up a mathematical model for piezoelectric vibrator. on this basis, analyzed vibration mode of piezoelectric vibrator constituted with piezoelectric ceramic and a two-storey metal plates driven by voltage according to the vibration of thin plate theory, and gave a geometric equation, and gave the ease of approximate solutions for engineering calculation through the Rayleigh-Ritz method. This paper set up the mathematical model of circular bimorph piezoelectric vibrator, analyzed factors respectively such as substrate materials, ceramic thickness, substrate thickness by finite element analysis method, obtained the relationship between deformation with influencing factors, on this basis, optimized structure of bimorph piezoelectric vibrator, and selected piezoelectric vibrator, gave simulation analysis of static and dynamic characteristics of the piezoelectric vibrator.
     3. Experimental research on piezoelectric vibrator used for Pump
     Set up experimental testing system of bimorph piezoelectric vibrator, studied the deformation impact of different drive signals included different waveforms, different locations, different voltage, obtained respective response curves. It found that the deformation of piezoelectric vibrator has great relation with the drive signal through testing, when used different drive signal ,piezoelectric vibrator can obtain different deformation , when driven by sine wave and rectangular wave signals ,obtained deformation is bigger, the triangle wave is smallest. At the same time, the deformation of piezoelectric vibrator and drive voltage showed good linear relationship, it can be adjusted by changing the driving voltage to change oscillator deformation. The deformation of piezoelectric vibrator generated by frequency is very significant differences, when frequency is low, the deformation is large, when high-frequency, and the deformation is very small. It can adjust the frequency of piezoelectric vibrator to look for the best working conditions of piezoelectric pump.
     4. Research on active valve driven by piezoelectric vibrator
     Designed an active valve driven by circular bimorph piezoelectric vibrator, and analyzed the structure and its working principle of the active valve. According to designed active valve structure, based on two fixed parallel plates gap flow, derived theory flow formula through valve, obtained that width of valve seat and inner radius of valve are major factor impacting flow by the formula. According to the formula of valve flow, analyzed the relationship between the theory flow with width of valve seat and the inner radius of valve by using MATLAB, and in according to optimized principles of much pressure and as small as fluid loss possible, selected structural parameters of the active valve. Finally, tested pressure, flow, and leakage properties of active valve driven by circular piezoelectric vibrator through experimental methods, has laid a foundation for design of active valve piezoelectric pump later.
     5. Design and research on piezoelectric pump
     Based on the structure, working principle and output performance analysis of single-cavity active valve piezoelectric pump, mainly designed dual-chamber tandem piezoelectric pump of combination of active and passive valves by using chamber tandem, In order to improve response properties and actively control import and export’s valves, valves of import and export is controlled by the active valve of piezoelectric vibrator, it had a passive valve (rubber umbrella valve) between the two cavity, so can separate the two chamber. Produced prototype of single-chamber active valve pump and dual-chamber tandem piezoelectric pump and made experimental test. Tested the output flow - frequency characteristics, the output flow - voltage characteristics, the output pressure - frequency characteristics, the output pressure - voltage characteristics of single-chamber pump and dual-chamber pump , can obtain the best performance of piezoelectric pump by adjusting driven voltage and frequency from the test results, and compared their job performance , in the same working conditions, obtained the conclusion that output flow and output pressure of the dual-chamber tandem of combination of active and passive valve is superior to single chamber active valve piezoelectric pump.
引文
[1] I.J.卡拉西克著,丁伟成译.泵手册(第二分册)[M].北京:机械工业出版社,1985,289-303.
    [2]尹执中,胡桅林,过增元.微流动系统的发展概况[J].流体机械,2000,28(4):33-36.
    [3] Jin-Ho Kim a, C.J. Kang b,Yong-Sang Kim a. A disposable polydimethylsiloxane-based diffuser micropump actuated by piezoelectric-disc[J].Microelectronic Engineering,2004,71:119~124.
    [4] Ma Bin, Liu Sheng, Gan Zhiyn.A PZT insulin pump integrated with a silicon microneedle array for transdermal drug delivery [J].Microfluidics and Nanofluidics,2006,2(5):417-423.
    [5] Kan Junwu, Yang Zhigang, Peng Taijiang, et al.Design and test of a high-performance piezoelectric micropump for drug delivery[J].Sensors and Actuators,2005,121(1):156-161.
    [6]曾平,程光明,刘九龙,等.集成式计算机芯片水冷系统的研究[J].西安交通大学学报,2005,39(11) :1207-1210.
    [7] Heffington, Samuel N, Glezer Ari.Orientation-independent atomization heat transfer cell for thermal management of microelectronics [J].Advances in Electronic Packaging,2003,2:635-640.
    [8] Zhang Tao, Wang Qing-Ming.Valveless piezoelectric micropump for fuel delivery in direct methanol fuel cell (DMFC) devices [J].Journal of Power Sources,2005,140(1):72-80.
    [9] Zhang Tao, Wang Qing-Ming. Performance of miniaturized direct methanol fuel cell (DMFC) devices using micropump for fuel delivery [J].Journal of Power Sources,2006,158:169-176.
    [10] Ederer, P.Raetsch, W. Schullerus, et al.Piezoelectrically driven micropump for on-demand fuel-drop generation in an automobile heater with continuously adjustable power output[J].Sensors and Actuators A,1997,62:752-755.
    [11]阚君武,杨志刚,程光明,等.压电泵的研究与发展[J].光学精密工程,2002,10(6):619-625.
    [12] M. Richter,R. Linnemann and P. Woias.Robust design of gas and liquid micropumps [J].Sensors and Actuators A,1998,68:480-486.
    [13] C. Christopher, Zhang Bing.Performance modeling of a piezo-hydraulic actuator. Journal of Intelligent Material[J].Systems and Structures, 2003,14(3):149-160.
    [14] T. Gerlach , H. Wurmus . Working principle and performance of the dynamic micropump[J].Sensors and Actuators A, 1995, 50:135-140.
    [15] Christopher J Morris, Fred K Forster.Optimization of a circular piezoelectric bimorph for a micropump driver[J]..Micromech. Microeng, 2000, 10:459-465.
    [16] Olsson, G.Stemme, E.Stemme. A valve-less planar fluid pump with two pump chambers[J].Sensors and Actuators A, 1995, 46:549-556.
    [17]李军.无阀压电泵的流体动态特性及工作机理研究[D].长春:吉林大学,2001.
    [18]胡雄海.双晶片压电振子式主动阀压电泵的研究[D].长春:吉林大学,2008.
    [19] Ilzhoefer A. Ritter B. Tsakmakis Ch.Development of passive microvalves by the finite element method[J].Journal of Micromechanics and Microengineering, 1995,5(3) :226-230.
    [20] T. Gerlach,M. Schuenemann and H. Wurmus.A new micropump principle of the reciprocating type using pyramidic micro flowchannels as passive valves[J].Micromech. Microeng, 1995, 5:199-201.
    [21] D Accoto, M C Dario.Modelling of micropumps using unimorph piezoelectric actuator and ball valves[J].Journal of Micromechanics and Microengineering, 2000,10:277-281.
    [22] L.S. Jiang, C.J. Morris, N.R. Sharma, et al.Transport of particle-laden fluids through fixed-wave micropump[J].Microelectro mechanical Systems, 1999, 1:503-509.
    [23]程光明,杨志刚,曾平,等.锥型阀压电薄膜泵的初步研究[J].压电与声光, 1998, 20(5): 300-303.
    [24]崔继英.单腔体双振子压电泵的理论与实验研究[D].长春:吉林大学,2006.
    [25]曾平,程光明,刘九龙,孙晓锋,赵艳龙.双腔薄膜阀压电泵的实验研究[J].光学精密机械工程,2005,13(3):311-317.
    [26]阚君武,彭太江,唐可洪,杨志刚,邵承会.两腔压电泵结构与特性[J].压电与声光,2006,28(1):39-42.
    [27]赵永军.多腔体锥形无阀式压电泵[D].长春:吉林大学,2003.
    [28]阚君武,杨志刚,刘品宽,程光明.两腔体串联压电驱动微型泵的输出特性[J].哈尔滨工业大学学报,2004,36(10):1347-1349.
    [29]吴博达,赵永军,杨志刚,阚君武,华顺明[J].多腔体并联锥形管无阀压电泵输出流量研究[J].压电与声光,2004,26(6):460-463.
    [30]焦小卫,黄卫清,赵淳生.压电泵技术的发展及其应用[J].微电机,2005,28(5):66-69.
    [31] Meiling Zhu, Paul Kirby, Martin Wacklerle, Markus Herz, Martin Richter.Optimization design of multi-material micropump using finite element method[J].Sensors and Actuators A,2009,149:130–135.
    [32] Lee Dong Gun, Or Siu Wing,Carman Gregory P.Design of a Piezoelectric-hydraulic Pump with Active Valves[J].Journal of Intelligent Material Systems and Structures,2004, 15(20): 107-116.
    [33] Jun Shinohara, Masayuki Suda, Kazuyoshi Furuta, Toshihiko Sakuhara . A high pressure-resistance Micropump using active and normally-closed valves[C].Micro-electro-mechanical systems, The thirteenth annual international conference on MEMS, Jan 23-27 2000:86-91.
    [34] R Zengerle ,J Ulrich ,S Kluge ,et al.A bidirectional silicon micropump [J].Sensors andActuators A,1995,50:81-86.
    [35] W.J.Spencer,W.T.Corbett,L.R.Dominguez,et al.An electronically controlled piezoelectric insulin pump and valves[J].IEEE Trans.Sonics Ultrasonic,1978,25(3):153-156.
    [36] Nguyen N T,White R M.Design and optimization of an ultrasonic flexural plate wave micropump using simulation [J].Sensors and Actuators,1999,77:229-236.
    [37]张建辉,黎毅力,刘菊银,夏齐宵.“Y”形流管无阀压电泵模拟与试验[J].光学精密工程,2008,16(4):669-675.
    [38] H. K. Ma, B. R. Hou , H. Y. Wu Kou .Development and application of a diaphragm micro-pump with piezoelectric device [J].Microsystem Technologies,2008,14(7):1001-1007.
    [39] Ling-Sheng Jang ,Yung-Chiang Yu.Peristaltic micropump system with piezoelectric actuators[J].Microsystem technologies,2008,14(2):241-248.
    [40]崔琦峰,刘成良,Xuan F. (William) Zha .串联压电微泵特性研究[J].传感技术学报,2006,19(5):1974-1977.
    [41]彭太江.多腔体有阀压电泵设计理论及应用研究[D].长春:吉林大学,2006.
    [42] Matsu motoS,Kein A,Maeda R.Development of bi-directional valve-less micropump for liquid[C].Micro Electro Mechanical Systems, Twelfth IEEE International Conference,Jan 17-21 1999:141-146.
    [43] Meng AH,Nguyen N T,White R M .Focused flow micropump using ultrasonic flexural plate waves [J].Biomedical Microdevices,2000,2(3):169-174.
    [44] Cohen Y Bar,Chang Z.Piezoelectrically actuated miniature peristaltic pump[J].SPIE2002,3992:669-676.
    [45]何承宇.压电双晶片执行器的研究及其在振动给料器中的应用[D].大连:大连理工大学,1999.
    [46]刘九龙.压电泵为动力源的计算机芯片水冷系统研究[D].长春:吉林大学,2005.
    [47]张福学,王丽坤.现代压电学[M].北京:科学出版社,2002.
    [48]王矝奉,姜祖桐,石瑞大.压电振动[M].北京:科学出版社,1989.
    [49]穆廷荣.金属和压电陶瓷构成的两层复合薄圆板的强迫振动[J].声学学报,1984,9(5):298-309.
    [50]清华大学工程力学系固体力学教研组,振动组编.机械振动(上册)[M].北京:机械工业出版,1980:423-426.
    [51]栾桂冬,张金铎,王仁乾.压电换能器和换能器阵[M].北京:北京大学出版社,2004.
    [52]胡仁喜,王庆五,闫石.ANSYS 8.2机械设计高级应用实例[M].北京:机械工业出版社, 2005.
    [53]白葳,喻海良.通用有限元分析ANSYS 8.0基础教程[M].北京:清华大学出版社, 2005.
    [54]朴林华,栾桂冬,张福学.压电泵振动模态的有限元分析[J].压电与声光,2004,26(6):503-505.
    [55]杨尔庄.液压技术的发展动向及展望[J].液压气动与密封,2003,(4):1-7.
    [56]张也影.流体力学[M].北京:高等教育出版社,1986.
    [57]沈兴全.液压传动与控制[M].北京:国防工业出版社,2005.
    [58] A Geipel, A Doll, P Jantscheff..A novel two-stage backpressure independent micropump: modeling and characterization[J].Journal of Micromechanics and Microengineering,2007,17: 949-959.