静电微器件的模型自由度缩减方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用有限元或边界元等方法分析和仿真MEMS器件,需要耗费大量的计算资源来求解大规模耦合常微分方程组。这些方法还难以满足器件的优化设计、实时反馈控制和系统级仿真的需求。寻求能准确刻画器件复杂行为特性的低自由度数简化模型,来替代原有的大规模复杂系统,用于器件的优化设计和MEMS系统级仿真,以大幅降低计算费用,是实现MEMSCAD的关键技术之一。对其它工程领域也同样具有重大的应用价值。
     论文以静电驱动的MEMS器件为对象,研究适合于多物理场耦合MEMS器件的模型自由度缩减(MOR)方法及其相关的计算技术。
     在系统综述了器件MOR技术研究现状之后,论文对静电—非线性结构(梁、板)耦合器件的模型自由度缩减(MOR)方法进行研究,以结构件无阻尼模态振型为基函数,结合Galerkin方法,建立器件的缩减自由度模型(ROM)。利用Simulink(?)建立静电微梁器件ROM,对器件从Pull-in到释放全过程进行仿真,探讨静电器件共有的非线性特性;以非线性板理论为基础,导出以广义模态坐标表达的静电非线性板器件的系统能量无量纲表达式,利用Rayleigh-Ritz法和系统能量辨识的方法建立器件ROM,将ROM的仿真结果与有限元或文献报道的结果比较,验证了MOR方法的正确性和ROM的有效性。
     微器件的动态特性受到器件中流体环境的显著影响,建立能考察器件中流固耦合效应的ROM对微器件的精确设计和优化,提高其动态性能至关重要。本文对基于本征正交分解(POD)和Galerkin映射的MOR方法进行研究。给出了Hilbert空间下连续形式POD的理论和计算方法,利用POD从全网格全耦合非线性瞬态仿真数据集合中提取出位移和压力变量的最优基集合,将非线性梁方程和非线性可压缩Reynolds方程映射到由最优基张成的子空间上,构造出能考虑结构大变形几何非线性和挤压膜阻尼耦合特性的ROM。为提高ROM的适应性,本文提出了自适应参数化ROMs的建模新方法,利用子空间角度内插值技术,构造参数化ROMs。将ROMs的仿真结果与全网格全耦合瞬态仿真结果、文献报道的实验和仿真结果相比较,表明:自适应参数化ROMs能够替代全网格耦合非线性模型,对多种载荷输入情况进行快速仿真计算,计算效率高且具有足够的仿真精度,当器件的几何参数和材料参数发生变化时,ROMs也具有足够的仿真能力。
     在论文的最后部分,给出了主要研究结果并展望了今后的研究工作。
Using the finite element methods or boundary element methods for Micro-Electro-Mechanical Systems (MEMS) devices simulation require of intensive computational resource for solving the time integration of a very high dimensional of coupled ordinary-differential equations. Even so, those methods are inadequate for MEMS devices optimization, real-time feedback control, and predicting the MEMS dynamical behaviors under system-level simulation. As a result, abstracting lower dimensional systems from these higher dimensional ones while retaining the essence of the physical phenomena as a way to make system-level simulation and optimization is gaining attention and becomes one of the key technologies for MEMS CAD realization. It is also extremely necessary for other engineering applications
     The objective of this dissertation is to develop an accurate model order reduction (MOR) methods and associated numerical technology which suit for the electrostatic- mechanical coupling microdevices and the electrostatic-mechanical-fluidic coupling microdevices.
     A systematic review of the state of the MOR for MEMS applications is presented in the first part of the dessertation. Following that, a MOR procedures for the electrostatic-mechanical coupling microdevices is introduced, which uses the undamped modal shape functions of the structural element as a basis function sets for Galerkin projection. The nonlinear characteristics of the electrostatically actuated micorbeam device were probed by using the reduced order model (ROM), and the Pull-in and release dynamic process of the devices were simulated in Simulink(?) environment. After that, The derivation of strain energy and kinetic energy expression based on nonlinear plate theory have been developed, and the formulation of the ROM of an electrostatically actuated micro-plate device has been obtained by using Rayleigh-Ritz method, and a MOR method based on system energy identification has been presented. The simulation results by using the ROM are compared well with those from high-fidelity finite element model under various electric loads, and thus this MOR approach has been validated.
     Considered that the dynamical behavior of MEMS devices is strongly affected by viscous fluid damping effects from the surrounding, these damping effects have to be carefully accounted for the design and optimization. The ROM of microdevices should have the ability of capturing the fluidic-structural interactions of the microdevice. And the MOR method based on Galerkin projection and subspace angles interpolation technique has been developed. The commercial software ESI-CFD(?) has been used to achieve the full coupling transient results. Subsequently, the global optimal basis functions are extracted from the full-order solution by the application of proper orthogonal decomposition (POD) methods. The nonlinear Euler-Bernoulli beam equation and the nonlinear compressible Reynolds equation are projected on the subspaces spanned by those optimal basis functions, and thus the ROMs have been obtained. Since the constructed ROMs by POD/Galerkin are valid only within a limited state-space, a subspace angles interpolation strategy is introduced to widen the range of electric loads under which the ROMs are applicable. The numerical results of ROMs show good agreement with the ESI-CFD(?) data and the experimental data available in the literature. All those have demonstrated that the ROMs can be used in the place of the full meshed coupling models for various electric loads inputs and device paramenters changing with reduced computational complexity immensely.
     In the final part of this dissertation, the main conclusions are summarized and the prospects for future research are suggested.
引文
[1]Nadim M., Kirt W. An Introduction to Microelectromechanical Systems Engineering (2nd edition) [M]. Artech House Publishers 2004.
    [2]Fulitman J. Microsystems Technology:Objectives. [J]. Sensors and Actuators A.1996, 56:p151-165.
    [3]Senturia S.D. Perspectives on MEMS, past and future:the tortuous pathway from bright ideas to real products[C]. TRANSDUCERS Solid-State Sensors, Actuators and Microsystems,2003,1:p.10-15.
    [4]Lienemann J., Rudnyi E. B., Korvink J. G.. MST-MEMS model order reduction: Requirements and benchmarks[J]. Linear Algebra and its Applications,2006,415:p. 469-498.
    [5]Senturia S.D. Simulation and design of microsystems:a 10-year perspective [J]. Sensors and Actuators, A:Physical,1998,67(1-3) pt 1:p.1-7.
    [6]Gosalvez, M.A., Manufacture and Processing of MEMS Structures, in Handbook of Silicon Based MEMS Materials and Technologies (First edition) [M]. William Andrew Publishing:Boston.2009:p.157-177.
    [7]David J. N. Design of MEMS and Microsystems [C]. SPIE 2000,3680:p.20-29.
    [8]Schroth A., Blochwitz T. Gerlach G. Simulation Of A Complex Sensor System Using Coupled Simulation Programs [C]. Solid-State Sensors and Actuators,1995,2:p.33-35.
    [9]Eccardt P. C., Knoth M., Ebest G. et al. Coupled finite element and network simulation for microsystem components[J]. Microsystem Technologies,1998,7(5-6):p.205-208.
    [10]Senturia S. D., White A. N. Simulating the behavior of MEMS devices:Computational methods and needs [J]. IEEE Computational Science & Engineering,1997,.4(1):p.30-43.
    [11]McCorquodale M. S., Gebara F.H. A top-down microsystems design methodology and associated challenges [C]. Design. Automation and Test in Europe Conference and Exhibition,2003:p.292-296.
    [12]Bielefeld, J., Pelz, G., Zimmer, G. Electrical network formulations of mechanical finite-element models [J]. IEEE TRANSACTIONS ON VLSI,1997,5(3):p.277-282.
    [13]Sagoo, J., Tiwari A. and Alcock, J. A Descriptive Model of the Current MEMS Development Process.[C]. International Conference on Engineering Design, ICED'09, Stanford, California, USA 2009,1:p.607-616.
    [14]Evgenii B. R., Jan G. K. Review:Automatic Model Reduction for Transient Simulation of MEMS-based Device [J]. Sensors Update 2002,11(1):p.3-33.
    [15]Spearing S. M. Materials issues in microelectromechanical systems (MEMS) [J]. Acta materialia,2000,48 (1):p.179-196.
    [16]Shulman M. A., Ramaswamy M., Heytens M. L. An object-oriented material-property database architecture for microelectromechanical [C]. CAD Solid-State Sensors and Actuators,1991:P.486-489.
    [17]Tang W. C. Overview of microelectromechanical systems and design processes [C]. Proceedings of Design Automation Conference,1997:p.670-673.
    [18]Clark J. V., Bindel D., Kao W., et. al. Addressing the needs of complex MEMS design [C]. Proceedings of the IEEE Micro Electro Mechanical Systems,2002:p.204-209.
    [19]Qian J., Ya-Pu Z. Materials selection in mechanical design for microsensors and microactuators [J]. Materials and Design 2002,23 (7):p.619-625.
    [20]Pu L., Yuming F. A Molecular Dynamics Simulation Approach For The Squeeze-Film Damping Of MEMS Devices In The Free Molecular Regime [J]. Journal of Micromechanics and Microengineering,2010,20 (3):p.035005.
    [21]Senturia S. D. CAD challenges for microsensors,microactuators and microsystems [J]. Proceedings of the IEEE,1998,86(8):p.1611-1622.
    [22]王立鼎,罗怡.中国MEMS的研究与开发进程[J].仪表技术与传感器,2003,1:p.1-3.
    [23]孙立宁周兆英.龚振邦MEMS国内外发展状况及我国MEMS发展战略的思考[J].机器人技术与应用2002(1):p.2-5.
    [24]丁衡高朱荣.微米纳米科学技术发展及产业化启示[J].纳米技术与精密工程2007Vol.5(04):p.235-240.
    [25]丁衡高.微机电系统的科学研究与技术开发[J].清华大学学报(自然科学版)1997,Vol 37(9):p.1-5.
    [1] Athanasios C A. Approximation of Large-Scale dynamical Systems [J]. Int. J. Appl. Math.Comput. Sci., 2001, Vol.11(5): p.1093-1121.
    [2] Zu-Qing-Q. Model Order Reduction Techniques: with Applications in Finite ElementAnalysis [M]. Springer, 2004.
    [3] Roger O. Reduced models for fluid-structure interaction problems [J]. InternationalJournal for Numerical Methods in Engineering, 2004, 60(1): p.139-152.
    [4] Rudnyi E. B., Korvink J. G. Review: Automatic model reduction for transient simulationof MEMS-based devices[J]. Sens. Update, 2002.vol. 11 (1): pp.3-33.
    [5] Marek T. Zhijian C. Automated Generation of Compact Models for Fluidic Microsystems[J]. Analog Integrated Circuits and Signal Processing, 2001, 29(1-2): p.27-36.
    [6] Peter V. Compact Modeling of Microsystems[D]. Ph.D. Dissertation.
    [7]闻飞纳,李伟华,戎华.梳状谐振器的F-类比宏模型及SPICE分析[J]固体电子学研究与进展,2003,23(3):P.344-348
    [8] Tilmans H. A. C. Equivalent circuit representation of electromechanical transducers: I.Lumped-parameter systems [J]. J. Micromech. Microeng., 1996, 6: p.157-176.
    [9] Tilmans H. A. C. Equivalent circuit representation of electromechanical transducers: II.Distributed-parameter systems [J]. J. Micromech. Microeng., 1997, 7: p.285-309.
    [10]Vandemeer J. E. Nodal Design of Actuators and Sensors (NODAS) [R]. Carnegie MellonUniversity 1998.
    [11]Haase J., Reitz S., Schwarz P. Behavioural modeling for heterogeneous systems based onFEM descriptions.[C]. BMAS99, Orlando, 1999: p~4-10.
    [12]Jing Q. Modeling and simulation for design of suspended MEMS [D]. PhD. dissertation.Carnegie Mellon University, 2003.
    [13]Schneider P., Huck E., Reitz, S. et al. A modular approach for simulation-basedoptimization of MEMS [C]. Proceedings of SPIE, 2000, Vol. 4228: p.71-82.
    [14]Schwarz P., Schneider Pr Model Library and Tool Support for MEMS Simulation[C]. Proceedings of SPIE 2001, V4407: p. 10-23.
    [15]Zhou, Ningning. Simulation and synthesis of MicroElectroMechanical systems.[D]. Ph.D. dissertation. University of California, Berkeley.2002.
    [16]http://www-bsac.eecs.berkeley.edu/cadtools/sugar/sugar/#Overview.
    [17]霍鹏飞.MEMs的集成设计平台建模及其系统级设计技术[D].硕士学位论文西北工业大学2002.
    [18]常洪龙.基于‘T,op一Down’’的MEMs集成设计方法及关键技术研究[]D.硕士学位论文西北工业大学2002.
    [19]余才佳.MEMs系统级的跨平台建模技术研究[D].硕士学位论文西北工业大学2050
    [20]何洋.MEMs微变形镜的系统级建模研究「D」.硕士学位论文西北工业大学2050.
    [21]闻飞纳.MEMs器件系统级仿真技术研究[Dl.硕士学位论文东南大学2004.
    [22]戎华,黄庆安,李伟华.系统级模拟的MEMs器件宏模型[月.真空科学与技术2020,22(5):366一371.
    [23]孙振新,黄庆安,李伟华.MEMs器件vHDL一AMs宏模型J[].微纳电子技术2003,5:P.33一38.
    [24]Sheldon T., Lei H. Advanced model order reduction techniques in VLSI design[M]. Cambridge University Press, Landon, 2007
    [25]Antoulas A. C. Approximation of Large-Scale Dynamical Systems. [M]. SIAMPublications, Philadelphia, PA 2005.
    [26]Bechtold T., Rudnyi E. B., Korvink J. G. Fast Simulation of Electro-Thermal MEMS[M]. Springer, 2006.
    [27]Schilders, W. H. A.; Vorst, H. A., Rommes J. (Eds.) Model Order Reduction: Theory,Research Aspects and Applications [M]. Springer, 2008.
    [28]Lienemann J. B., Rudnyi E. B., Korvink J. G.. MST - MEMS model order reduction:Requirements and benchmarks [J] . Linear Algebra and its Applications,2006,415:469-498
    [29]Lienemann J. B., Rudnyi E. B., Evgenii B.et al. MEMS compact modeling meets modelorder reduction: Examples of the application of Arnoldi methods to microsystemdevices[C]. NSTI Nanotechnology Conference and Trade Show, Boston, MA, United
    States,2004, 2: p.303.
    [30]Grimme E., Gallivan K.A. Approximate solves in Krylov-based modeling methods[C]. Decision and Control Proc of the 36th IEEE Conference^ 997,4, 10-12: p.3849-3854
    [31]Bai Z. Krylov subspace techniques for reduced-order modeling of large-scale dynamicalsystems [J]. Applied Numerical Mathematics, 2002, 43(1-2): p.9-44.
    [32]Bai, Z. J., Slone, R. D., Smith W. T.. Error bound for reduced system model by Padeapproximation via the Lanczos process [J]. IEEE Trans. CAD Integrated Circuits andSystems. 1999, 18: 133-141.
    [33]Phillips J., Daniel L., Silveira L. M. Guaranteed passive balancing transformations formodel order reduction [C]. Proc of 39th Design Automation Conference, 2002: p.52-7.
    [34]Gugercin S., Antoulas A. C. A survey of model reduction by balanced truncation andsome new results [J]. International Journal of Control, , 2004. V 77 (8): p.748-766.
    [35]Rewie'nski, M. and White, J.. A trajectory piecewise -linear approach to model orderreduction and fast simulation of nonlinear circuits and micromachined devices[J]. IEEETrans, on CAD of Integrated Circuits and Systems 2003, 22: p.155-170.
    [36]Jinghong C, Sung-Mo K. Model-order reduction of weakly nonlinear MEMS deviceswith Taylor series expansion and Arnoldi process [C]. Midwest Symposium on Circuitsand Systems, 2000,v 1: p.248-251.
    [37]Innocent M., Wambacq P., Donnay S., et al. An Analytic Volterra- Series -Based Modelfor a MEMS Variable Capacitor [J]. IEEE Transactions on Computer-Aided Design ofIntegrated Circuits and Systems, 2003, 22(1): p.124-31.
    [38]Rewienski M. A trajectory piecewise-linear approach to model order reduction ofnonlinear dynamic systems [D]. PhD. dissertation, MIT, 2003.
    [39]Vandendorpe A., Dooren P. V. model reduction of interconnected systems[C]. Proceedings of the 16th International Symposium of Mathematical Theory ofNetworks and Systems, Belgium, 2004: 305-321
    [40]Li R. C. Bai Z., Structure-preserving model reduction using a Krylov subspace projectionformulation [J]. Comm. Math. Sci., 2005 (3), p.179-199.
    [41]Chia-Chi C, Hung-Chi T., Ming-Hong L. Structure preserving model-order reductions ofMIMO second-order systems using Arnoldi methods [J]. Mathematical and ComputerModelling, 2010,Vol. 51(7-8): p.956-973.
    [42]Beattie C, Gugercin S. Interpolatory projection methods for structure-preserving modelreduction [J]. Systems & Control Letters 2009, Vol 58, 3: P 225-232
    [43]Senturia S D., White A. N. Simulating the behavior of MEMS devices: Computationalmethods and needs [J]. IEEE Computational Science & Engineering, 1997,v 4(1):p.30-43. [44]Anathasuresh G. K., Gupta R. K., Senturia S. D. An approach to macromodelling ofiV4CiV/ie f^r nnnlit,oar Hiraamic oimnlatirin TP1 Prnrppdinos nf thp> Svmnnsiiim on
    Mechanics in MEMS, ASME-DSC, Atlanta, GA, 1996: p.401-407.
    [45]Gabbay L. D., Mehner J. E, Senturia S. D. Computer-aided generation of nonlinearreduced-order dynamic macromodels Part I: Non-stress-stiffened case [J]. Journal ofMicroelectromechanical Systems, 2000, 9: p.262-269.
    [46]Mehner J. E., Gabbay L. D., Senturia S D. Computer-aided generation of nonlinearreduced-order dynamic macromodels Part II: Stress-stiffened case [J]. Journal ofMicroelectromechanical Systems, 2000, 9: p.270-278
    [47]Nayfeh A. H., Pai P. F. Linear and Nonlinear Structural Mechanics[M]. Wiley, 2004
    [48]Younis M. I., Abdel-Rahman E. M., Nayfeh A. H. A reduced-order model for electricallyactuated microbeam-based MEMS [J]. J. Micromech. Microeng., 2003, 12(5): p.672- 680.
    [49]Zhao X., Abdel-Rahman E. M., Nayfeh A. H. A reduced-order model for electricallyactuated microplates [J]. J. Micromech. Microeng., 2004, 14: p.900-906.
    [50]Gregory W. V., Nayfeh A. H. A reduced-order model for electrically actuated clampedcircular plates [J]. J. Micromech. Microeng., 2005, 15(4): p.690-697.
    [51]Krylov S., Seretensky S. and Schreiber D. Pull-in behavior and multistability of a curvedmicrobeam actuated by a distributed electrostatic force [C]- IEEE 21st Int. Conf. onMicro Electro Mechanical Systems, ed S Seretensky, 2008 : p.499-502.
    [52]KryIov S., Bojan R. I., and David S. et al. The pull-in behavior of electrostaticallyactuated bistable microstructures [J]. J. Micromech. Microeng. 2008, 18: p.055026.
    [53]Bennini F., Mehner J., Dotzel W. Computational methods for reduced order modeling ofcoupled domain simulations [C]. Proceedings of the International Conference onSolid-State Sensors and Actuators, Munich, Germany, 2001: p.260-263.
    [54]Mehner J. .E, Doetzel W., Schauwecker B., et al. Reduced order modeling of fluidstructural interactions in MEMS based on modal projection techniques [C]. Proceedingsof Solid-State Sensors, Actuators and Microsystems, Boston, MA, 2003, 2: p. 1840-1843.
    [55]Pandey, A. K. and Pratap R., Effect of flexural modes on squeeze film damping in MEMScantilever resonators [J]. J. Micromech. Microeng., 2007. 17(12): p.2475.
    [56]Soma A., DePasquale G. Numerical and experimental comparison of MEMS suspendedplates dynamic behaviour under squeeze film damping effect.[J]. Analog Integr CircuitsSignal Process. 2008, vol.57(3): p.213-224.
    [57]Nayfeh A. H, Younis I. M. A new approach to the modeling and simulation of flexiblemicrostructures under the effect of squeeze-film damping [J] . Journal ofMicroelectromechanical Systems, 2004, 14: p.170-181.
    [58] Younis M. I., Nayfeh A H. Simulation of squeeze-film damping of microplates actuatedby large electrostatic load. [J]. J. Comput. Nonlinear Dyn. 2007, 2 :pp.232-41.
    [59]Younis M. I., Nayfeh A H. Microplate modeling under coupled structural- fluidic-electrostatic forces. [C]. 7th Int. Conf. on Modeling and Simulation of Microsystems,7004- nn 2S1-4.
    [60]Missoffe A., J. Juillard, and D. Aubry. A reduced-order model of squeeze-film dampingfor deformable micromechanical structures including large displacement effects [J]. J.Micromech. Microeng., 2008. 18(3): p035042.
    [61]Alexander I. J. Forrester, Andras Sobester and Andy J. Keane. Engineering Design viaSurrogate Modelling-- A Practical Guide. [M]. John Wiley & Sons Ltd. 2008: Preface.
    [62]Liang Y. C, Lin W. Z., Lee H. P, et al. Proper orthogonal decomposition and itsapplications Part I: theory [J]. Journal of Sound and Vibration, 2002, 252(3): p.527-544.
    [63]Holmes P., Lumley J., Berkooz G. Turbulence, Coherent Structures, Dynamical Systemsand Symmetry [M]. Cambridge University Press, Landon, 1996.
    [64]Kerschen, G., et al., The Method of Proper Orthogonal Decomposition for DynamicalCharacterization and Order Reduction of Mechanical Systems: An Overview.[J]. Nonlinear Dynamics, 2005. 41(1): p.147.
    [65]Gl6smann, P. and kreuzer E. Nonlinear System Analysis with Karhunen-LoeveTransform. [J]. Nonlinear Dynamics, 2005. 41(1): p.111.
    [66]Berkooz G., Holmes P. and Lumley J. L. The proper orthogonal decomposition in theanalysis of turbulent flows.[J]. Annual Review of Fluid Mechanics 1993, 25, p.539-575.
    [67]Rega G. and Troger H. Dimension reduction of dynamical systems: Methods, models,applications^]. . Nonlinear Dynamics, 2005. 41(1-3): p.1-21.
    [68]Ma X. and Vakakis A.F. Nonlinear transient localization and beat phenomena due tobacklash in a coupled exible system.[J]. Journal of Vibration and Acoustics 2001, 123:p.36-44.
    [69]Kreuzer E. Kust O. Proper orthogonal decomposition- an ecient means of controllingself-excited vibrations of-teng torsional strings. [J]. Nonlinear Dynamics and ControlASME 1996, 91: p.105-110.
    [70]Lenaerts V., Kerschen G. and J. C. Golinval. Proper orthogonal decomposition for modelupdating of non-linear mechanical systems. [J]. Mechanical Systems and SignalProcessing 2001, 15: p.31-43.
    [71]Hasselman T. K., Anderson M.C. and Gan W. G. Principal component analysis fornonlinear model correlation, updating and uncertainty evaluation. [C]. Proceedings ofthe 16th International Modal Analysis Conference, Santa Barbara, USA, 1998,pp644-651.
    [72]Hemez F. M. and Doebling S. W. Test analysis correlation andnite element modelupdating for nonlinear transient dynamics. [C]. Proceedings of the 17th InternationalModal Analysis Conference, Kissimmee, U.S.A. 1999: p.1501-1510.
    [73]Lenaerts V., Kerschen G. and Golinval J. C. Identication of a continuous structure with ageometrical nonlinearity,part II: proper orthogonal decomposition.[J]. Journal of Soundand Vibration 2003, 262: p.907-919. [74]Aquino W. An object-oriented framework for reduced-order models using proper
    orthogonal decomPosition[J].ComPut.Methods APPI.Meeh.Eng.2007,196:P.4375.
    [75]王瑞文.流体力学及海洋数值模拟基于POD技术的降维方法研究〔D〕.博士论文.首都师范大学200.7
    [76]Cosku K. Reduced order modeling, nonlinear analysis and control methods for flowcontrol problems [D]. PhD dissertation The Ohio State University 2007.
    [77]Rowley C. W. Modeling, simulation, and control of cavity flow oscillations.[R]. Technical Report California Institute of Technology Pasadena, California, 2002.
    [78]Gunzburger M. Perspectives in Flow Control and Optimization [M]. Society forIndustrial Mathematics 2003: P150-210.
    [79]lollo A., Lanteri S., and D'esid^eri J.-A. Stability properties of POD-Galerkinapproximations for the compressible Navier-Stokes equations. [J]. Theore. Comput.Fluid Dynamics, 2003, 13: p.377-396.
    [80]Dowell E. H., Tang D. Dynamics of Very High Dimensional Systems [M]. WorldScientific Publishing Co.Pte.Ltd, Singapore 2003.
    [81]Barone M., D. Segalman H., et al. Galerkin Reduced Order Models for CompressibleFlow with Structural Interaction. [J]. AIAA Paper 2008-612.
    [82]Utturkar Y., Zhang B. Reduced order description of fluid flow with moving boundariesby proper orthogonal decomposition [J]. International Journal of Heat and Fluid Flow,2005, 26: p.276-288.
    [83]Anttonen J. S. R. Techniques for reduced order modeling of aeroelastic structures withdeforming grids. [M]. PhD thesis, Air Force Institute of Technology, 2001.
    [84][Hung E. S., Senturia S D. Generating efficient dynamical models for micro-electromechanical systems from a few finite-element simulations runs [J]. Journal ofMicroelectromechanical Systems, 1999, 8: p.280-289.
    [85]Chen J. H., Kang S. M. Techniques for Coupled Circuit and Micromechanical[C]. Proceedings of the International Conference on Modeling and Simulation ofMicrosystems San Diego, CA, 2000: p.213-216.
    [86jChen J. H., Kang S. M. Model-order reduction of nonlinear MEMS devices througharclengh-based Karhunen-Loeve decomposition [C]. Proceedings of the InternationalSymposium on Circuits and Systems, Sydney, Australia, 2001, 3: p.457-460.
    [87]Liang Y. C, Lin W. Z., Lee H. P. et al. A neural-network-based method of modelreduction for the dynamic simulation of MEMS [J]. J. Micromech. Microeng, 2001, 11:p.226-233.
    [88]Liang Y C, Lin W Z, Lee H P, et al. Proper orthogonal decomposition and its applicationsPart II: Model reduction for MEMS dynamical analysis [J]. Journal of Sound andVibration, 2002, 256(3): p.515-532.
    [89]Lin W. Z., Lee K. H., Lim S. P. et al. Proper orthogonal decomposition and component
    MEMS device「J].J.Mieromeeh.Microeng,2003,13:P.646一654.
    [90]郝文涛,田凌,童秉枢.支持系统级仿真与优化的流场模型降阶技术[J].清华大学学报(自然科学版),2007,47(11):p.5691一8691.
    [91]吴锤结,赵红亮.不依赖数据库的最优动力系统建模理论及其应用[J].力学学报,2001,33(3):P.289一300.
    [92]Shaw S. W., Pierre C. Normal modes of vibration for nonlinear continuous systems[J]. Journal of Sound and Vibration, 1994, 169 (3): p.319 ~ 347.
    [93]Westby E. R., Fjeldly T. A. Nonlinear analytical reduced-order models for MEMS[C]. the International Conference on Modeling and Simulation of Microsystems, 2002, 1:p.150-153.
    [94]Xie W. C, Lee, H. P., Lim, S. P. Nonlinear dynamic analysis of MEMS switches bynonlinear modal analysis [J]. Nonlinear Dynamics, 2003, 31: p.243-256.
    [95]Gorban A. N., Kazantzis N. K., Kevrekidis I. G. et al. Model Reduction andCoarse-Graining Approaches for Multiscale Phenomena. [M]. Springer. 2006. [96] Wu, C. J., Wang, L., A method of constructing a database-free optimal dynamical systemand the global optimal dynamical systemfJ]. Science in China(G), 2008, 51(7): p905-915.
    [1] Lee C. S., Han S., and MacDonald N. C. Multiple depth single crystal siliconmicroactuators for large displacements fabricated by deep reactive ion etching[C]. Solid-State Sens. Actuator Workshop, Hilton Head Island, SC, 1998, p.45-50.
    [2] Mukherjee T., Fedder G. K, Ramaswamy D. et al. Emerging simulation approaches formicromachined devices [J]. Computer Aided Design of Integrated Circuits and Systems,IEEE Transactions on 2000, 19(12): p.1572-1589.
    [3] Chan E. K. and Dutton R. W., Electrostatic micromechanical actuator with extendedrange of travel [J]. J. Microelectromech. Syst. 2000, 9: p. 321-328.
    [4] Nadal-Guardia R., Dehe A., Aligner R. et al. Current drive methods to extend the rangeof travel of electrostatic microactuators beyond the voltage pull-in point [J]. J.Microelectromech. Syst. 2002, 11(3): p. 255-263.
    [5] Seeger,J.I., Boser,B.E. charge control of parallel plate electrostatic actuators and tip-ininstability [J]. J. Microelectromech Syst. 2003, 12 (5): p. 656-671.
    [6] Pamidighantam S., Puers R. , Baert K., et al. Pull-in voltage analysis of electrostaticallyactuated beam structures with fixed-fixed and fixed-free end conditions [J]. J.Micromech. Microeng ,2002. 12: pp.458-464.
    [7] O'Mahony C, Hill M. and Duane R. et al. Analysis of electromechanical boundaryeffects on the pull-in of micromachined fixed-fixed beams [J]. J. Micromech. Microeng,2003, 13: p. S75-S80.
    [8] Hu Y. C, Chang P. Z., and Chuang W. C. An approximate analytical solution to thepull-in voltage of a micro bridge with an elastic boundary [J]. J. Micromech. Microeng,2007, vol. 17: p.1870-1876.
    [9] Chan E. K. and Dutton R. W. Electrostatic micromechanical actuator with extended rangeof travel [J]. J. Microelectromech. Syst. 2000, vol. 9: p. 321-328.
    [10]Zhang W. M. and Meng G., Nonlinear dynamic analysis of electrostatically actuatedresonant MEMS sensors under parametricexcitation [J]. IEEE Sensors Journal, 2007, 7:p. 370-380. [13]Castaner L. M. and Senturia S. D. Speed-energy optimization of electrostatic actuatorsbased on oull-in TJ1. J. Microelectromech. Svst. 1999. vol. 8: d. 290-298.
    [12]Busta H., Amantea R., Furst D., Chen J. M. et al A MEMS shield structure for controllingpull-in forces and obtaining increased pull-in voltages [J]. J. Micromech. Microeng,2001, vol. 11: p. 720-725.
    [13]KryIov, S. Lyapunov exponents as a criterion for the dynamic pull-in instability ofelectrostatically actuated microstructures [J]. International Journal of Non-LinearMechanics 2007, 42(4): p.626-642.
    [14]Yiming F. Zhang J. Electromechanical dynamic buckling phenomenon in symmetricelectric fields actuated microbeams considering damping [J]. Acta Mechanica 2010 DOI10.1007/S00707-010-0302-0
    [15]McCarthy B., Adams G. G., McGruer N. E. A dynamic model, including contact bounce,of an electrostatically actuated microswitch [J]. J. Microelectromech. Syst. 2002,vol.ll:p. 276-283.
    [16]Agarwal M. A study of electrostatic force nonlinearities in resonant microstructures[J]. Appl. Phys. Lett. 2008, 92 (10) p. 3.
    [17]Kuo-Shen C, Kuang-Shun O. Command-Shaping Techniques for Electrostatic MEMSActuation: Analysis and Simulation [J]. J. Microelectromech. Syst. 2007, 16(3):p.537-549
    [18]Ye W. J., Mukherjee S., and MacDonald N. C. Optimal shape design of an electrostaticcomb drive in microelectromechanical systems [J]. J. Microelectromech. Syst. 1998, vol.7, p. 16-26.
    [19]Hu Y. C. Wei C. S., An analytical model considering the fringing fields for calculatingthe pull-in voltage of micro curled cantilever beams [J]. J. Micromech. Microeng, 2007,vol. 17: p. 61-67.
    [20]Osterberg P. Electrostatically actuated microelectromechanical test structures formaterial property measurement [D]. . Ph.D dissertation, MIT. 1997.Appendix B.
    [21]Batra R.C., Porfiri M., Spinello D. Electromechanical model of electrically actuatednarrow microbeams [J]. J. Microelectromech. Syst. 2006, 15(5): p.1175-1189.
    [22]Krylov S., Seretensky S. Higher order correction of electrostatic pressure and itsinfluence on the pull-in behaviour of microstructures [J]. J. Micromech. Microeng,2006,16: p.1382-1396.
    [23]Nayfeh A. H. and Mook D. T. (**H, ^'iH, ft^t) MK^[M]. Kf-tfjBJK*Uk* 1990
    [24]Mehner J. E., Gabbay L. D. and Senturia S. D., Computer-aided generation of nonlinear reduced-order dynamic macromodels. II: stress-stiffened case [J]. J. Microelectromech. Syst. 2000, 9: p. 270-277.
    [25]Gabbay L D, Mehner J E, Senturia S D. Computer-aided generation of nonlinear reduced-order dynamic macromodels Part I: Non-stress-stiffened case [J] . J.
    [26]Younis M.I. and Nayfeh A.H., A study of the nonlinear response of a resonant microbeamto an electric actuation, Nonlinear Dynamics. 2003, 31: p. 91-117.
    [27]Bao.M. Analysis and design Principles of MEMS Devices. [M]. Eleservier (2005): p79
    [28]H§,?. ##■&#*$?#&&?* [D]. #±##ft* *#*# 2004
    [29]Moghimi Z., Ahmadian M., et al. Semi-analytic solutions to nonlinear vibrations ofmicrobeams under suddenly applied voltages [J]. Journal of Sound and Vibration 2009.325(1-2): p.382-398.
    [30]Zhang Y., Zhao Y. P.: Numerical and analytical study on the pull-in instability ofmicro-structure under electrostatic loading [J]. Sens. Actuators A. 2006, 127, 366 380 Galerkin 方法求解微梁的非线性动态影响 [D]. 硕士学位论文 2007
    [32]Xie W.C. Lee H.P. Lim, S.P. Nonlinear dynamic analysis of MEMS switches by nonlinearmodal analysis. Nonlinear Dynamics2003, Vol 31(3): p. 243-256.
    [33]Abdel-Rahman E. M. et al.Characterization of the mechanical behavior of an electricallyactuated microbeam [J]. J. Micromech. Microeng. 2002, 12: p. 759-766.
    [34]Senturia S. D (刘泽文) 微系统设计 [M], 电子工业出版社 2004 (Kluwer AcademicPublishers, 2001).
    [35]Bochobza D. O., Elata D. and Nemirovsky Y., An efficient DIPIE algorithm for CAD ofelectrostatically actuated MEMS devices. [J]. J. Micromech. Microeng., 2002, 11:p.612-620.
    [36]Younis M.I., Abdel-Rahman E. M., Nayfeh A. A reduced-order model for electricallyactuated microbeam-based MEMS[J]. J. Microelectromech. Syst. 2003, 12(5): p 672-680.
    [37]Coventor Inc., Pull-in Voltage Analysis of Electrostatically Actuated Beams verifyingAccuracy of Coventor Behavioural Models.( http://www.coventor.com/media/fem_comparisons/pullin_voltage.pdf) .
    [38]Gang L., Aluru N. R. Efficient mixed-domain analysis of electrostatic MEMS.Computer-Aided Design of Integrated Circuits and Systems [J]. IEEE Transactions on.2003,22(9): p.1228.
    [39]Wang Q., Li H. Analysis of Microelectromechanical Systems (MEMS) Devices by theMeshless Point Weighted Least-squares Method [J]. Computational Mechanics. 2007,40(1): p. 1-11.
    [40]Mojahedi M., Zand M. M. and Ahmadian M.T. Static pull-in analysis of electrostaticallyactuated microbeams using homotopy perturbation method [J]. Applied MathematicalModelling, 2010, Vol.34(4): p.1032-1041.
    [41]Kuang J. H., Chen C. J. Dynamic characteristics of shaped micro-actuators solved usingthe differential quadrature method [J]. J. Micromech.Microeng., 2004, 14(4): p.647-655.
    [42]Gupta R. K. Pull-in dynamics of electrostatically actuated microstructuresm. Semiconductor Research Cnrnoration fSRO TF.CHCON
    [43]Hung E S, Senturia S D. Generating efficient dynamical models for micro-electromechanical systems from a few finite-element simulations runs [J]. J. Microelectromech. Syst.1999, 8: p.280-289.
    [44]ANSYS, ANSYS Release 8.0 Documentation, ANSYSInc. (2003).
    [45]Osterberg P. M., Senturia S. D., M-Test: a test chip for MEMS material property measurement using electrostatically actuated test structures [J]. J. Microelectromech. Syst. 1997, 6: p.107-117.
    [46]Chen H. Olivier F.; Olivier G. et. al Large amplitude effects on the resonant frequency of electrostatically driven microresonators: theory and experimental validation. Smart structures, devices, and systems [C]. Conference, Melbourne , AUSTRALIE Proc. SPIE, 2002,4935: p. 296-307.
    [47]Kaajakari V., Mattila T., Oja A. Nonlinear limits for single-crystal silicon micro-resonators. [J]. J. Microelectromech. Syst. 2004, 13: p.715-724.
    [48]Veijola T, Mattila T, Jaakkola O, etal Large-displacement modeling and simulation of micromechanical electrostatically driven resonators using the harmonic balance method. [C]. Proc. Int. Microwave Symp, 2000: p. 99-102.
    [49]Batra, R. C, M. Porfiri, et al. Vibrations of narrow tnicrobeams predeformed by an electric field [J]. Journal of Sound and Vibration 2008, 309(3-5): p.600-612.
    [50]Agarwal M. Optimal drive condition for nonlinearity reduction in electrostatic micro-resonators. [J]. Applied Physics Letters, 2006, 89(21): p.214105
    [51]Agarwal M. Scaling of amplitude-frequency-dependence nonlinearities in electro--statically transduced microresonators.[J]. J. of Applied Physics 2007,102: p. 074903.
    [52]Shao L. C, Palaniapan M. and Tan W. W. The nonlinearity cancellation phenomenon in micromechanical resonators [J]. J. Micromech. Microeng. 18(6): p.065014.
    [53]Shames I. H. and Dym C. L. Energy Methods and Finite Ekment Methods. [M]. McGraw-Hill, New York, 1985, Chs. 3 and 7.
    [54]Meirovitch L. Fundamentals of Vibrations [M]. McGraw-Hill, Boston, 2001.
    [55]Jntema D. J. and Tilmans H. A. C. Static and dynamic aspects of an air gap capacitor. [J]. Sensor and Actuators A, 1992, 35 : p.121-128.
    [56]Tilmans H. A. C. Legtenberg R.. Electrostatically driven vacuum-encapsulated poly-silicon resonators part II. theory and performance. [J]. Sensors and Actuators A: Physical 1994, 45 (1): p.67-84.
    [57]Gui C, Legrenberg, R., Tilmans, H.A., et al. Nonlinearity and hysteresis of resonant strain oanaesMl. J. Mio.rneier.trnmer.h Svst 1998 7- n 122-127
    [1] Epureanu, B I , Dowell E H. Compact methodology for computing limit-cycleoscillations in aeroelasticity [J]. Journal of Aircraft 2003, 40 (5): p.955-963.
    [2] Hopkins, M.A., Nonlinear Equations of Motion for a Panel Subject to External Loads.WL-TM-93-308-FIBG, Interim rept. 1993 (AD# A273 142). http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA273142&Location=U2&doc=GetTRDoc.pdf
    [3] Gabbay L D, Mehner J E, and Senturia S D. Computer-aided generation of nonlinearreduced-order dynamic macromodels. Part I. Non-stress-stiffened case [J]. Journal ofMicroelectromechanical Systems, 2000, 9: p.262-269.
    [4] Bennini F, Mehner J , and Dotzel W. Computational methods for reduced order modelingof coupled domain simulations[C]. Proc. of the International. Conference on Solid-StateSensors and Actuators Transducers, Munich, Germany, 2001: p.260-263.
    [5] Mehner J E, Gabbay L D, and Senturia S D. Computer-aided generation of nonlinearreduced-order dynamic macromodels. Part II. Stress-stiffened case [J]. Journal ofMicroelectromechanical Systems 2000, 9: p.270-278.
    [6] P. Howell, G. Kozyreff and J.Ockendo. Applied Solid Mechanics [M] CambridgeUniversity Press 2009 ch4 and ch5.
    [7] Szilard R. Theories and Applications of Plate Analysis: Classical Numerical andEngineering Methods [M]. Wiley, 2001
    [8] 曹国雄。弹性矩形薄板振动[M] 中国建筑工业出版社 北京 1983
    [9] Nayfeh A. H., Mook D. T. ( 宋家骕,罗惟德,陈守吉 ) 非线性振动社,北京 1990
    [10]Kerschen G., Worden K., and A.F. Vakakis, et al. Past, present and future of nonlinearsystem identification in structural dynamics [J]. . Mechanical Systems and SignalProcessing, 2006, 20: p.505-592. [11]Rizzi S. and Przekop A. System identification-guided basis selection for reduced-ordernonlinear response analysis [J]. Joural of Sound and Vibration 2008, 315,
    [1] Nayfeh A. H, Younis M. I. Modeling and simulations of thermoelastic damping in microplates [J]. J. Micromech. Microeng, 2004, 14: p. 1711-1717.
    [2] Bao, M. and H. Yang, Squeeze film air damping in MEMS [J]. Sensors and Actuators A: Physical, 2007. 136(1): p.3
    [3] Yang, Y.-J., Squeeze-Film Damping For Mems Structures. [D]. MS Dissertation, 1998, Massachusetts Institute of Technology, p.99.
    [4] Rebeiz G.M., RF MEMS: Theory, Design, and Technology [M]. Wiley-Interscience, Hoboken, NJ, 2003.
    [5] ftt. #*1fc?*## [M]. ??T$L&}fcfr &* 2003
    [6] Gad-el-Hak, M. The fluid mechanics of microdevices--the Freeman scholar lecture Journal of Fluids Engineering.[J], ASME MARCH 1999, 121: 5-33
    [7] Gupta R. K. et al. Pull-in dynamics of electrostatically-actuated microstructures. [J]. Semiconductor Research Corporation (SRC) TECHCON 1996.
    [8] Hung E S, Senturia S D . Generating efficient dynamical models for micro-electromechanical systems from a few finite-element simulations runs [J]. Journal of
    Microelectromechanical Systems, 1999, 8: p.280 289.
    [9] 苏金明,王永利 MATLAB7。0实用指南(下册) [M]. 电子工业出版社 2008
    [10]任玉杰。数值分析及AATLAB实现 [M]. 高等教育出版社北京 M 2005 [ll]Krylov S., Maimon R. Pull-in Dynamics of an Elastic Beam Actuated by ContinuouslyDistributed Electrostatic Force [J]. Journal of Vibration and Acoustics, 2004, 126(3):p.332-342.
    [12]Andrew V. K., Merico E. A. A Principal Angles between Subspaces in an A-Based ScalarProduct: Algorithms and Perturbation Estimates. [J]. SIAM Journal on ScientificComputing, 2002, Vol.23, 6: P. 2008-2040.
    [13]Lieu T. Adaptation of Reduced Order Models for Applications in Aeroelasticity [D]. PhDdissertation,.University of Colorado 2004.
    [14]Lieu, T. and Lesoinne, M., Parameter Adaptation of Reduced Order Models for Three-Dimensional Flutter Analysis[J]. AIAA Paper 2004-0888.
    [15]Kerschen, G., Golinval J.-c, et al. The Method of Proper Orthogonal Decomposition forDynamical Characterization and Order Reduction of Mechanical Systems: An Overview.[J]. Nonlinear Dynamics, 2005, 41(1): p. 147.
    [16]Feeny, B. F. On the proper orthogonal modes and normal modes of continuous vibrationsystems. [J]. Journal of Vibration and Acoustics 2002, 124: p.157-60.
    [17]Gad-el-Hak, M. The fluid mechanics of microdevices~the Freeman scholar lecture[J]. Journal of Fluids Engineering 1999, 121: p.5-33.
    [18]Karniadakis G. E. and Beskok A. Microflows and Nanoflows: Fundamentals andSimulation. [M]. Springer-Verlag New York: 2005.
    [19]Rowley C. W., Colonius T., and Murray R.M.. Model reduction for compressible flowsusing POD and Galerkin projection. [J]. Physica D, 2004, 189: p.115-129.
    [20]Thanh T. B., Willcox K., Ghattas O. Goal-oriented, model constrained optimization forreduction of large-scale systems. [J]. J. Comp. Phys. , 2007, 224: p.880-896.
    [21]Amsal3em D., Farhat C. An interpolation method for adapting reduced-order models andapplication to aeroelasticity. [J]. AIAA Journal 2008; 46(7): p.1803-1813.
    [22]BoIton R. J., D. J. Hand, et al. Projection techniques for nonlinear principal componentanalysis. [J]. Statistics and Computing , 2003. 13(3): p.267.
    [23]Kerschen G. and Golinval, J. C. Feature extraction using auto-associative neuralnetworks [J]. Smart Materials and Structures, 2004 , 13, p.211-219.
    [24]Hyvarinen A., Karhunen, J. Independent Component Analysis[M]. Wiley New York, 2001. [25]Kerschen G. and Golinva J. C. A model updating strategy of non-linear vibratingstructure. [J]. Int. J. Numer. Meth. Engng 2004; 60:
    detection. [R] . Los Alamos National Laboratory Report, LA-14353, 2007. http://institute.lanl.gov/ei/jiocs/Annual.../LA_14353_NonlinearReport.pdf.
    [27]Fritzen, C. P. and Kraemer P. Self-diagnosis of smart structures based on dynamical properties. [J]. Mechanical Systems and Signal Processing, 2009,.23(6): p. 1830.
    1] Sirisup S., Xiu D., Karniadakis G. E. et al. Equation free Galerkin-free POD-assistedComputation of Incompressible Flows [J]. J. Comput. Phys, 2005, 207, 568-587.
    [2] 王瑞文流体力学及海洋数值模拟基于#* *fri7#£*#ft*£aijfcf- POD
    [3]戴正德郭柏灵。惯性流形与 [M]. 科学出版社 北京大学 2000。1
    [4] Steindl, A. and Troger, H. Methods for dimension reduction and their application in nonlinear dynamics. [J]. Intl. Journal of Solids and Structures, 2001, 38: p.2131 2147.
    [5] Garcia-Archilla, B., Novo, J., and Titi, E. S. Postprocessing the Galerkin method: A novel approach to approximate inertial manifold. [J]. SIAM J. Numer. Anal.,1998,35: p941-972.
    [6] Margolin L., Titi E. S. The postprocessing Galerkin and nonlinear Galerkin methods a truncation analysis point of view[J]. SIAM, J. Numer. Anal., 2003, 41: 714.
    [1] CFD-ACE Theory Manual, Ver. 4.0, CFD Research Corporation, Huntsville, AL.1998
    [2] Gupta R. K. et al. Pull-in dynamics of electrostatically-actuated microstructures [R]. Semiconductor Research Corporation (SRC) TECHCON 1996.
    [3] Hung E S, Senturia S D. Generating efficient dynamical models for micro-electromechanical systems from a few finite-element simulations runs [J]. Journal of Microelectromechanical Systems, 1999, 8: p.280-289.
    [4] Sudipta B, Arvind R and Garimella S V, Hydrodynamic loading of microcantilevers vibrating in viscous fluids [J]. Journal Of Applied Physics, 2006, 99: p.114906.
    [5] 沈青稀薄气体动力学 [M]. 国防工业出版社 北京2003.
    [6] Jang L.S., Sharma N.R., Forster F.K., The effect of particles on the performance of fixed-valve micropumps [C]. In: van den Berg A., W. Olthuis (Eds.), Micro Total Analysis Systems 2000, Kluwer Academic Publ, Dordrecht, 2000, p. 283-328.
    [7] Woias P. Micropumps-past, progress and future prospects.[JJ. Sens. Actuator B 2005, 105: p. 28-38.
    [8] Morris C. J. and Forster F. K. Low-order modeling of resonance for fixed-valve micropumps based on first principles [J]. J. Microelectromech. Syst. 2003, 12: p.325-34.
    [9] Bourouina T. and Grandchamp J. P. Modeling micropumps with electrical equivalent
    networks Ml. I Mir.rnmer.h Mir.rneno 1996 fi- n
    [lO]JOlsson A., Stemme G. and Stemme E. A numerical design study of the valveless diffuser pump using a lumped-mass model. [J]. J. Micromech. Microeng. 1999, 9: p.34-44.
    [ll]Moussa W. A. and Gonzalez U. F. Simulation of MEMS piezoelectric micropump for biomedical applications. [C]. Proc. ASME Int. Mechanical Engineering Congress and Exposition (New Orleans, LA) 2002, 36509: p.187-192.
    [12]Faris, Waleed F Abdel-Rahman, Eihab M and Nayfeh, Ali H. Mechanical behavior of an electrostatically actuated micropump. [J]. 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, USA, 2002, AIAA2002-1303.
    [13]Morris C. J. and Forster F. K. Optimization of a circular piezoelectric bimorph for amipmnnmn HrivprFTI T Mir.rnmprh Mic.rnpno 9f)00 10 n
    [14]王立文高殿荣杨林杰等.压电驱动微泵泵膜振动有限元分析【j].机械工程学报,2006,42(4):P.230一235.
    [15]Ullman A. and Fono I. The piezoelectric valve-less pump梚mproved dynamic model[J]. J. Microelectromech. Syst. 2002, 11: p.655-64.
    [16]Pan L S, Ng T Y, Wu X H and Lee H P. Analysis of valveless micropumps with inertialeffects [J]. J. Micromech. Microeng, 2003, 13, p.390-9.
    [17]MacHauf A. Nemirovsky Y. and U. Dinnar, A membrane micropump electrostaticallyactuated across the working fiuidfJl. J. Micromech. Microeng, 2005, 15(12): p. 2309.
    [18]白兰冯志庆吴一辉.无阀微泵动态特性的固液祸合分析【月.机械工程学报,2080,44(7):P.69一74.
    [19]崔琦峰,刘成良,查选芳.基于MEMs的压电微泵建模与优化[月.机械工程学报2008,vol.44(12):P.131一135.
    [20]谢海波傅新杨华勇微型无阀泵流动特征仿真与试验研究[]J.机械工程学报2020,38(7):P.54一57.
    [21]杨恺祥.压电无阀式微泵浦制造与测量分析[D].博士学位论文云林科技大毕2040.
    [22]鲁立君.吴健康无阀压电微流体泵工作特性与结构参数「月.机械工程学报2080,44(11):P.121一125.
    [23]Tsui, Y. Y. , Lu S-L. Evaluation of the performance of a valveless micropump by CFD and lumped-system analyses. Sensors and Actuators A: Physical, 2008.148(1): p. 138.
    [24]Yao Q., Xu D., Pan L. S., et al. CFD simulation of flows in valveless micropumps [J]. Eng. Appl. Comput. Fluid Mech. 2007, 1 (3): p. 181-188.
    [25]Jeong J. and Chang N. K. A numerical simulation on diffuser-nozzle based piezoelectric micropumps with two different numerical models.[J]. International journal for numericalmpthnHt in fluids 9flfl7 ^ 1 ? n ^61-^71
    [1] Chatterjee A. An introduction to the proper orthogonal decomposition.[4}. Curr. Sci.
    2000, 78 (7): p.808-817.
    [2] Smith T. R., Moehlis J., Low-dimensional modelling of turbulence using the proper
    orthogonal decomposition: a tutorial [J]. Nonlinear Dyn. 2005, 41(1-3): p.275-307.
    [3] Holmes, L. et al. Low-dimensional models of coherent structures in turbulence.
    [J]. Physics reports 1997, vol. 287(4): p. 337-384.
    [4] 许天周 应用泛函数分析[M ]科学出版社2002 北京
    [5] Fahl M. Trust-region Methods for Flow Control based on Reduced Order Modelling.
    [D]. PhD dissertation, Trier university. 2000.
    [6] 吴春国 正规正交分解与RBP神经网络若干问题研究 [D]. 硕士学位论文吉林大学
    2002. [7] Volkwein S. Proper Orthogonal Decomposition and singular value decomposition.
    [R]. Technical report institut Furmathematikl53,Graz universtiy 1999.
    http://www.kfunigraz.ac.at/imawww/volkwein/publist.html. [8] Golub,G. H. Van Loan C.F. (袁亚湘等) 矩阵计算科学出版社# 北京 2001. [9] Joel D., Laurent C. and J.-P.l Bonnet.
     structure identification and control in
    turbulent shear flows. Flow Control: fundamental and practives[C]. in M.Gad-el-Hak,
    A.Pollard eds, Lecture Notes in Physics monographs Vol 53,1998 springer : P.199-273.
    [10]Rathinamt, M. and L.R. Petzold, a new look at proper orthogonal decomposition.[J]. SIAM Journal on Numerical Analysis, 2003. 41(5): p. 1893.
    [ll]Rowley C.W., Colonius T. Model reduction for compressible flows using POD andGalerkin projection. [J]. Physica D: Nonlinear Phenomena, 2004. 189(1-2): p. 115-132.
    [12]Sirovich L. Chaotic dynamics of coherent structures.[J]. Physica D,1989, 37: