双口无阀微泵的优化设计和研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扩散口/喷嘴式无阀微泵可集成在微流控芯片上作为系统结构中的流体驱动单元,因此一直是微流体领域的一个研究热点,受到人们的关注,十余年来取得了很大的进展。目前,扩散口/喷嘴微泵的流量还较低,某些场合不能满足要求。对此,研制了多扩散口/喷嘴式无阀微泵,在不增加微泵体积的基础之上增加了泵的流量。
     对压电驱动无阀微泵进行理论分析,建立无阀微泵的基本方程,分析扩散口/喷嘴的流动情况。对微泵的结构进行研究,在研究总结大量前人工作的基础上,提出一种双扩散口/喷嘴结构。应用ANSYS有限元分析软件对无阀微泵工作过程进行模拟分析,进行压电耦合场和流固耦合场相结合的多场瞬态分析。分析结果表明在同样电压条件下,双口微泵的瞬时流量比单口微泵大,并且随着电压的增大,双口微泵与单口微泵瞬时流量的比值增大,在170V电压下,增大了79%。
     经过清洗,氧化,光刻,各向异性腐蚀,静电键合等MEMS工艺制作出了单口和双口扩散口/喷嘴无阀微泵,用同样的材料和性能相同的压点片对单口泵和双口泵进行封装,使其在扩散口/喷嘴数量之外的其他条件都相同,便于对比分析。
     对单口微泵和双口微泵进行测试。在170V驱动电压和560Hz频率下,双口泵最大流量达到1.5mL/min,而单口微泵在同样电压下时,在625Hz频率下流量达到最大,为902μL/min。在170V电压和500Hz的频率下,双口泵的流量比单口泵增大了56%。测试结果表明双扩散口/喷嘴结构可以增加微泵的流量。测试结果与模拟结果相符。
Nozzle/diffuser valveless micropump can be integrated in micro fluidic chip as a fluid drive element, so it keeps a focus in micro fluid field, and get prominently developed. Nowadays, nozzle/diffuser micropump still have a low flow, cannot meet some requirement. Therefore, double nozzle/diffusers micropump is fabricated which has a higher flow without volume increase.
     The theory of nozzle/diffuser valveless micropump is analyzed, the equations are induced, and flow characteristic of nozzle/diffuser element is researched. Structure of the valveless micropump is researched, double nozzle/diffuser structure is presented after study of former research. Work status of valveless micropump is simulated by FEA software ANSYS, transient multiple coupling which combined with piezoelectric coupling and FSI coupling is executed. The results indicate that under the same condition, transient flow of double nozzle/diffuser micropump is higher than single nozzle/diffuser micropump, and with voltage increase, the ratio of flow between the two types of micropump increases, it can be up to 79% under a voltage of 170V.
     By MEMS technics including clearing, oxidation, photolithography, anisotropy etch, bonding, etc., single and double nozzle/diffuser micropumps are fabricated, ensure that two types of micropump have the same condition including PZT with membranes with same performance and same encapsulating materials, while only except numbers of nozzle/diffuser.
     Test single and double nozzle/diffuser micropumps and compare them. Under drive voltage of 170V and frequency of 560Hz, flow of double nozzle/diffuser micropumps is 1.5mL/min, while the single’s is 902μl/min. under the same 170V and 500Hz, flow of double nozzle/diffuser micropumps is 56% higher than that of single. The results show double nozzle/diffuser structure of micropumps increases the flow, it accords to the simulation results.
引文
1 Judy JW. Microelectromechanical Systems (MEMS): Fabrication, Design and Applications. J Smart Mater Structure. 2001, (10):1115–1134.
    2 Ziaie B, Baldi A, Lei M et al. Hard and Soft Micromachining for BioMEMS: Review of Techniques and Examples of Applications in Microfluidics and Drug Delivery. Adv Drug Deliv Rev 2004, 56:145–172.
    3冯焱颖,周兆英,叶雄英,汤扬华.微流体驱动与控制技术研究进展.力学进展. 2005, (1): 1-16
    4 Auroux PA, Iossifidis D, Reyes DR et al. Micro Total Analysis Systems. 2. Analytical standard operations and applications. Analytical Chemistry. 2002, 74:2637–2652.
    5 Reyes DR, Iossifidis D. Auroux PA et al. Micro total analysis systems. 1. Introduction, theory, and technology. Analytical Chemistry. 2002, 74: 2623–2636.
    6 Verpoorte E. Microfluidic Chips for Clinical and Forensic Analysis. Electrophoresis. 2002, 23: 677–712.
    7 Dario P et al. A Fluid Handling System for a Chemical Microanalyzer. J. Micromech. Microeng. 1996, (6): 95-98
    8 Elisabeth M J, Verpoorte et al. Three-dimensional Micro Flow Manifolds for Miniatured Chemical Analysis Systems, J. Micromech. Microeng. 1994, (4): 246-256
    9 A.K. da Silva, M.H. Kobayashi, C.F.M. Coimbra. Optimal Design of Non-Newtonian, Micro-Scale Viscous Pumps for Biomedical Devices. Biotechnology and Bioengineering. 2007, 96(1): 37-47
    10 Laser DJ, Santiago JG.. A Review of Micropumps. J. Micromech. Microeng. 2004, 14 (6): R35–R64.
    11 Nguyen NT, Huang X, Chuan TK. MEMS-micropumps: A Review. J. Fluids Eng. 2002, 124:384–392.
    12 Woias P. Micropumps—Past, Progress and Future Prospects. Sensors and Actuators. 2004, B105:28–38.
    13 Van Lintel H.T.G., Van De Pol F.C.M., Bouwstra S. A PiezoelectricMicropump Based on Micro-machining of Silicon. Sensor and Actuators. 1988, 15: 153-167
    14 Shuchi Shoji and Masayoshi Esashi. Microflow Devices and Systems. J. Micromech. Microeng. 1994, (4):157-171
    15 Masayoshi Esashi, Shuichi Schoji, Akira Nakano. Normally Closed Microvalve and Micropump Fabricated on a Silicon Wafer. Sensor and Actuators. 1989, A 20: 163-169
    16 Erik Stemme. A Valeless Diffuser/Nozzle-based Fluid Pump. Sensors and Actuators. 1993, A39: 159-167
    17 Erik Stemme and Goran Stemme. A Novel Piezoelectric Valveless Fluid Pump. The 7th International Conference on Solid-State Sensors and Actuators. 1993: 110-113
    18 X.N. Jiang, Z.Y. Zhou, X.Y. Huang et al. Micronozzle/diffuser flow and its application in micro valveless pumps, Sensors and Actuators. 1998, A70: 81–87.
    19 A. Olsson, G. Stemme, E. Stemme, Diffuser-element Design Investigation for Valve-less Pumps. Sensors and Actuators. 1996, A57: 137–143.
    20 M. Heschel, M. Mullenborn, S. Bouwstra. Fabrication and Characterization of Truly 3-D Diffuser/nozzle Microstructures in Silicon, J. Microelectromech. Systems. 1997, (6): 41–47.
    21 M. Koch, A.G.R. Evans, A. Brunnschweiler. The Dynamic Micropump Driven with a Screen Printed PZT Actuator, J. Micromechan. Microeng. 1998, (8): 119–122.
    22 T. Gerlach, Microdiffusers As Dynamic Passive Valves for Micropump Applications, Sensors and Actuators. 1998, A69: 181–191.
    23 C.J. Morris, F.K. Foster, Low-order Modeling of Resonance for Fixed-valve Micropumps Based on First Principles, J. Microelectromech. Systems. 2003, 12: 325–334.
    24 T. Gerlach, H. Wurmus. Working Principle and Performance of The Dynamic Micropump. Proc. IEEE workshop on Micro Electro Mechanical System MEMS’95, Amsterdam. 1995: 221-226
    25 T. Gerlach, M. Schuenemann and H. Wurmus. A New Micropump Principle of The Reciprocating Type Using Pyramidic Micro Flow Channels asPassive Valves. J. Micromech. Microeng. 1995, (5):199-201
    26 T. Gerlach, H. Wurmus. Working Principle and Performance of The Dynamic Micropump. Sensors and Actuators. 1995, A50: 135-140
    27 Anders Olsson, Goran Stemme and Erik Stemme. A Numerical Design Study of The Valveless Diffuser Pump Using a Lumped-mass Model. J. Micromech. Microeng. 1999, (9): 34-44
    28 Amos Ullmann. The Piezoelectric Valve-less Pump Performance Enhancement Analysis. Sensors and Actuators. 1998, A69: 97-105
    29 Anders Olsson, Olle Larsson, Johan Holm et al. Valve-less Diffuser Micropumps Fabricated Using Thermoplastic Replication. Sensors and Actuators. 1998, A64: 63-68
    30 Anders Olsson, Goran Stemme, Erik Stemme. Numerical and Experimental Studies of Flat-walled Diffuser Elements for Valve-less Micropumps. Sensors and Actuators. 2000, A84: 165-175
    31 Anders Olsson, Peter Enoksson, Erik Stemme, Goran Stemme. Micromachined Flat-Walled Valveless Diffuser Pumps. Journal of Microelectromechanical Systems. 1997, (6): 161-166
    32 Wouter Van der Wijngaart, Andersson H, Enoksson P et al. The First Self-priming and Bi-directional Valve-less Diffuser Micropump for Both Liquid and Gas. IEEE MEMS, 2000: 674-679
    33 Choi Bumkyoo. Diaphragm Stretching and Contact Problems for Microelectromechanical Pressure Transducers. The University of Wisconsin - Madison, Ph.D. Dissertation, 1992:118-134
    34 J. Ulrich and R. Zengerle. Static and Dynamic Flow Simulation of a KOH-etched Microvalve Using the Finite-Element Method. Sensors and Actuators. 1996, A53: 379-385
    35 Tachung C.Yih, T Chiming Wei and Bashar Hammad, Modeling and Characterization of A Nanoliter Drug-delivery MEMS Micropump with Circular Bossed Membrane. Nanomedicine: Nanotechnology, Biology, and Medicine. 2005: 164-175
    36 Qiulian Gong, Zhaoying Zhou, Yinhua Yang et al. Design, Optimization and Simulation on Microelectromagnetic Pump. Sensors and Actuators. 2000, A83:200-207
    37王立鹏.微泵的理论建模及静动态特性分析.沈阳工业大学硕士学位论文. 2003: 46-47
    38张卫平,陈文元,吴校生,陈晓梅,徐正福.动态被动阀微泵和设计优化和制造.机械设计与研究. 2003, (5): 64-67
    39陈坚美.微型机电系统端点特性建模技术研究.浙江大学硕士学位论文. 2004: 59-67
    40王立文,高殿荣,杨林杰.压电驱动无阀微泵泵腔流场分析.机床与液压. 2005, (12): 89-92
    41张万利,静电微泵的性能模拟的关健基础技术研究.东南大学硕士学位论文, 2005: 61-69
    42王伟,刘世炳,陈涛,蒋毅坚,陈继民,左铁钏.无阀微泵泵腔中流体流动的有限元模拟与分析.微纳电子技术. 2005, (9): 415-419
    43崔琦峰,刘成良, Xuan F. (William)Zha.串联压电微泵特性研究.传感技术学报. 2006, 19(5B): 1974-1982
    44 M Koch, et al. A Novel Micropump Design with Thick-Film Piezoelectric Actuation. Meas. Sci. Technol. 1997, (8): 49-57
    45 B. Husband, M. Bu, A.G.R. Evans, T. Melvin, Investigation for The Operation of An Integrated Peristaltic Micropump, J. Micromech. Microeng. 2004, 14: 64–69.
    46 M. Bu, T. Melvin, G. Ensell, J.S. Wilkinson, A.G.R. Evans, Design and Theoretical Evaluation of a Novel Microfluidic Device to Be Used for PCR, J. Micromech. Microeng. 2003, 13: 125–130.
    47 G.H. Feng, E.S. Kim, Micropump Based on PZT Unimorph and One-way Parylene Valves, J. Micromech. Microeng. 2004, (14): 429–435.
    48 C.G.J. Schabmueller, M. Koch, M.E. Mokhtari, A.G.R. Evans, A. Brunnschweiler, H. Sehr, Self-aligning Gas/liquid Micropump, J. Micromech. Microeng. 2002, (12): 420–424.
    49 S.C. Chen, C.H. Cheng, Y.C. Lin. Analysis and Experiment of a Novel Actuating Design with A Shear Mode PZT Actuator for Microfluidic Application. Sensors and Actuators. 2007, A135: 1–9
    50 V. Singhal, S.V. Garimella, J.Y. Murthy, Low Reynolds Number Flow through Nozzle-diffuser Elements in Valveless Micropumps, Sensors and Actuators. 2004, A113: 226–235.
    51 I. Izzo, D. Accoto, A. Menciassi, P. Dario, A New Fluid-structure Coupled Dynamic Model for Valveless Micropumps. Proceedings of the MME (Micromechanics Europe).2001. Cork, Ireland, 2001:81-87
    52张维佳,潘大林.工程流体力学.黑龙江科学技术出版社. 2001: 108-10
    53杨林杰.压电式无阀微泵振动分析及流场数值计算.燕山大学硕士学位论文. 2005:21-36
    54贾建援,黄新波,康春霞.微泵的结构与流体分析.微纳电子技术. 2004, (5):41-44
    55郭海鹰.大型通用有限元软件ANSYS简介及应用体会.无线电通信技术. 1996, 22 (5): 51-55
    56王立鹏.微泵的理论建模及静动态特性分析,沈阳工业大学硕士学位论文. 2003: 35
    57黄庆安.微硅机械加工技术.科学出版社. 1996:125-163
    58任建新.物理清洗.化学工业出版社. 2000:10-26
    59王蔚.微电子工艺讲义.哈尔滨工业大学出版社. 2002:27-36
    60孙慧明,于泉.半导体敏感元器件工艺原理.东北林业大学出版社. 2000: 68-95
    61 Kevin B. Albaugh. Rate Processes during Anodic Bonding. J. Am. Ceram. Soc. 1992, 75(10): 2644-2648
    62 Jeung Sang Go, Young-Ho Cho. Experimental Evaluation of Anodic Bonding Process Based on The Taguchi Analysis of Interfacial Fracture Toughness. Sensors and Actuators. 1999, A73: 52-57
    63 Christophe Yamahata, Frederic Lacharme, Martin A.M. Gijs. Glass Valveless Micropump Using Electromagnetic Actuation. Microelectronic Engineering 78–79, 2005: 132–137
    64赵强.基于MEMS技术的微型泵的研究.中科院电子学研究所博士论文. 2004: 59
    65 Mehrabian, Amin and Ahmadian, M.T. Effect of Actuation Frequency on The Performance of Diffuser Micropumps. Proceedings of the 4th International Conference on Nanochannels, Microchannels and Minichannels. ICNMM2006. Limerick, Ireland, 2006: 725-731