结直肠癌组织差异表达蛋白质的鉴定与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:蛋白质组学可动态、整体、定量地观察肿瘤发生、进展中蛋白质种类、数量的改变,结合功能蛋白质组的研究,依托大规模双向电泳和质谱分析的体系和生物信息学分析技术,有希望找到控制肿瘤进程关键作用的蛋白分子。本研究拟采用双向电泳分离结直肠癌与正常组织的总蛋白质,建立双向电泳图谱,寻找表达差异点,通过质谱分析鉴定,寻找与结直肠癌发生发展相关的蛋白质。应用Realtime-PCR、Western blot和免疫组化等方法在转录和蛋白质水平对其表达差异进行验证,并分析其与结直肠癌组织学分级、临床分期和预后等的关联性。以期通过此研究,为进一步揭示结直肠癌发病机制,寻找有意义的肿瘤标记物及药物治疗的靶点,提供新的线索和思路。
     方法: 1.收集外科手术切除的12例结直肠腺癌和配对的12例正常结直肠粘膜新鲜组织标本,通过双向电泳技术分离总蛋白,得到12组双向电泳凝胶图谱。采用Imaging Master 2D分析软件进行合成、比对和差异分析,寻找结直肠癌组织和正常组织之间的差异表达蛋白斑点。选取差异蛋白质点,通过基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)及蛋白质数据库检索进行差异蛋白质鉴定。
     2.应用Realtime PCR和Western blot方法从mRNA水平和蛋白水平对候选分子Prohibitin(PHB)和14-3-3ζ在结直肠腺癌和配对正常肠粘膜组织的表达差异进行验证。
     3.组织芯片结合免疫组化方法检测PHB和14-3-3ζ在187例结直肠腺癌、150例正常肠粘膜组织和62例腺瘤石蜡标本中的表达,应用统计学方法对这两种蛋白在不同组织间的表达差异性和组织学分级、病理分期和预后等关联性进行分析。
     结果:1.12组结直肠癌与正常组织的双向电泳图谱分辨率高、重复性好,每块凝胶检测平均蛋白质斑点数分别为985±45和1012±53。选择表达差异2倍以上的40个点,经质谱分析和蛋白质数据库检索成功鉴定出35个蛋白,其中17个在癌组织中上调,18个下调。对鉴定出的差异蛋白进行了功能和细胞定位的分析和归类,选择确定结直肠癌相关蛋白候选分子PHB和14-3-3ζ进行深入研究。
     2.Western blot结果显示,与正常结直肠粘膜组织相比, PHB蛋白和14-3-3ζ蛋白在结直肠癌癌组织中表达明显增强(P<0.01),与蛋白质组学结果一致。
     3.免疫组化结果显示PHB蛋白在结直肠癌癌组织中表达显著高于正常组织和腺瘤组织(P<0.01);但PHB蛋白在正常粘膜组织和腺瘤中表达未见差异(P>0.05)。14-3-3ζ蛋白在正常粘膜组织、腺瘤组织和癌组织的表达呈现逐渐升高的趋势(P <0.001)。
     在癌组织中,PHB和14-3-3ζ蛋白表达与病理分级呈负相关(P<0.01);但与患者性别、年龄、肿瘤大小、发病部位、临床分期及预后无关联性(P>0.05)。
     4.Realtime PCR结果显示PHB mRNA和14-3-3ζmRNA在结直肠癌癌组织中与正常组织中无显著差异(P>0.05)。
     结论:1.运用双向电泳技术结合质谱分析及生物信息学分析方法筛选并鉴定出的35个差异蛋白质可能与结直肠癌的发生、发展有关。
     2.应用WesternBlot,组织芯片结合免疫组织化学技术验证筛选差异表达蛋白,发现PHB在结直肠癌中表达显著上调,而腺瘤与正常粘膜组织相比表达未见差异。从正常粘膜组织、腺瘤组织到癌组织,14-3-3ζ蛋白的表达呈现逐渐升高的趋势。PHB、14-3-3ζ表达与结直肠癌癌组织的分化程度相关,随着分化程度的降低其表达逐渐增强。
     3. PHB和14-3-3ζ可能在结直肠癌的发生发展过程中发挥作用,其机制与PHB和14-3-3ζ基因的转录无关,而与PHB和14-3-3ζ蛋白翻译后的修饰有关。PHB和14-3-3ζ有望成为结直肠癌潜在的肿瘤标记物和药物治疗的新靶点。
Objective: Proteomics can be used to detect the changes of protein type and quantity in the genesis and development of tumor dynamically, completely and quantitatively. Combined with functional proteome study and relied on large scale of two-dimensional electrophoresis (2-DE) , mass spectrometry (MS) analysis system, and bioinformatics analytical technique, it is promised to find key molecules which control the process of the progression of carcinoma. In present study 2-DE technique was employed to separate total proteins and to identify the differentials proteins in the groups of colorectal carcinoma (CRC) and corresponding normal tissues. Subsequently MS analysis was used to identify proteins in related to the genesis and development of CRC. Realtime PCR, Western blot, and immunohistochemistry etc were used to verify the different expression of mRNAs and proteins in two groups. Furthermore, the correlations between the differential proteins and histological grading, pathological staging, prognosis of CRC were also analysed. In view of this, it is expected to give new clues and thoughts for further revealing the pathogenesis of CRC and searching for significant tumor marker and target for gene interference.
     Methods 1. 12 cases of CRC and 12 intestinal normal mucosal tissues were collected and matched into 12 groups. Total proteins were extracted and separated by 2-DE technique. Then 12 sets of 2-DE gel maps were obtained. Synthesis, comparison and variance analysis were performed by Imaging Master 2D analysis software to identify the differentially expressed protein spots between CRC and normal tissues. The differential proteins in the gel were selected and dug in situ to be identified by matrix-assisted laser desorption ionization time of flight Time mass spectrometry (MALDI-TOF-MS) and protein database searching.
     2. PHB and 14-3-3ζwere selected as candidates of CRC-associated molecules, Real-time PCR and Western blot were used to detect the expression of mRNA and protein of these two candidates in the CRC and normal intestinal mucosa tissues.
     3. Tissue microarray combined with immunohistochemistry was applied to detect the expressions of PHB and 14-3-3ζproteins in 187 of CRC , 62 of low-grade intraepithelial neoplasia-adenoma, and 150 normal intestinal mucosa specimens. And statistics were used to analyse the the different expressions of the two proteins in three groups and the histological grading, pathological stage, prognosis in CRC.
     Results 1. 12 pairs of high-resolution, reproducible 2-DE maps for CRC and normal tissues were prepared. The average number of protein spots that can be detected in each gel were 985±45 and 1012±53 respectively, and 40 points were chosen for more than two-fold expression differences between the two groups. 35 differential proteins, including 17 up-regulated proteins and 18 down-regulated proteins were successfully identified by MS analysis and database searching. PHB and 14-3-3ζwas chosen as candidates of CRC-associated molecule for the further study after analysis and classification of function and cellular localization of these differential proteins.
     2. Western blot results showed that the expressions PHB and 14-3-3ζin CRC tissue were markedly enhanced, compared with the corresponding normal intestinal mucosa tissue (P <0.01). And these results were consistent with those of proteomics.
     3. Immunohistochemistry revealed that PHB protein expression was significantly higher in CRC than that in normal tissue and adenomas tissues (P <0.01).However, there was no significant difference between normal intestinal mucosa tissues and adenoma tissue(P> 0.05). Immunohistochemistry of 14-3-3ζdemonstrated that the expressions of 14-3-3ζin CRC and adenoma tissues were remarkably higher than that in the normal mucosa , and the expression was gradually increased in the development of CRC from normal intestinal mucosa, adenoma to CRC(P <0.001). In addition, the expression of PHB and 14-3-3ζwere histopathologically dependent. The higher of expression of PHB and 14-3-3ζprotein,the weaker of differentiation (P <0.01); However, we also could not observe the correlation of these two protein expression with gender,age,tumor size, disease location, clinical staging and prognosis (P > 0.05).
     Conclusion (ⅰ) 35 differentially expressed proteins which might be associated with the genesis and development of CRC were successfully screened from 12 pairs of CRC and corresponding normal intestinal mucosa tissues after identification by 2-DE combinding with MS and bioinformatics analysis of the total protein expression profile.
     (ⅱ) Western blot, tissue microarray combining with immunohistochemistry techniques were employed to further investigate and validate the clinical pathological significance of the differentially expressed proteins PHB and 14-3-3ζin CRC. We found the up-regulated expression of PHB in CRC tissue, whereas the expression was not enhanced in adenoma and normal intestinal mucosa tissue. The expression of 14-3-3ζin carcinoma and adenoma tissues was significantly higher than that in the normal mucosa tissue (P <0.01). The expression of 14-3-3ζdisplayed a gradually increased tendency from normal mucosa, adenoma to carcinoma. The expressions of PHB and 14-3-3ζproteins were differentiation degree dependent. The stronger the expressions of PHB and 14-3-3ζproteins , the weaker the differentiation degree of colorectal tissues. .
     (ⅲ) PHB and 14-3-3ζmight be involved in the development and progression of colorectal cacrinoma. And this action may be associated with its post-translational regulation.
     They might be involved in the process of malignant transformation from adenoma to carcinoma in CRC, and they are promised to become potential tumor biomarkers and potential therapeutic targets. .
引文
[1] WEITZ J, KOCH M, DEBUS J, et al. Colorectal cancer [J]. Lancet, 2005, 365(9454): 153-65.
    [2] VOGELSTEIN B, FEARON E R, HAMILTON S R, et al. Genetic alterations during colorectal-tumor development [J]. N Engl J Med, 1988, 319(9): 525-32.
    [3] ARENDS J W. Molecular interactions in the Vogelstein model of colorectal carcinoma [J]. J Pathol, 2000, 190(4): 412-6.
    [4] FEARON E R, VOGELSTEIN B. A genetic model for colorectal tumorigenesis [J]. Cell, 1990, 61(5): 759-67.
    [5] KERR D. Clinical development of gene therapy for colorectal cancer [J]. Nat Rev Cancer, 2003, 3(8): 615-22.
    [6] LOUKOLA A, EKLIN K, LAIHO P, et al. Microsatellite marker analysis in screening for hereditary nonpolyposis colorectal cancer (HNPCC) [J]. Cancer Res, 2001, 61(11): 4545-9.
    [7] KURAMITSU Y, NAKAMURA K. Proteomic analysis of cancer tissues: Shedding light on carcinogenesis and possible biomarkers [J]. Proteomics, 2006, 6(20): 5650-61.
    [8] KINZLER K W, VOGELSTEIN B. Lessons from hereditary colorectal cancer [J]. Cell, 1996, 87(2): 159-70.
    [9] RANSOHOFF D F. Cancer. Developing molecular biomarkers for cancer [J]. Science, 2003, 299(5613): 1679-80.
    [10] WASINGER V C, CORDWELL S J, CERPA-POLJAK A, et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium [J]. Electrophoresis, 1995, 16(7): 1090-4.
    [11] REYMOND M A, SCHIEGEL W. Proteomics in cancer [M]. Advances in Clinical Chemistry, Vol 44. 2007: 103-42.
    [12] COWAN M L, VERA J. Proteomics: advances in biomarker discovery [J]. Expert Rev Proteomics, 2008, 5(1): 21-3.
    [13] STULIK J, HERNYCHOVA L, PORKERTOVA S, et al. Proteome study of colorectal carcinogenesis [J]. Electrophoresis, 2001, 22(14): 3019-25.
    [14] PETROVA D, TONCHEVA D. Proteomic techniques in colorectal cancer research [J]. Biotechnology & Biotechnological Equipment, 2008, 22(2): 660-3.
    [15] STULIK J, KOUPILOVA K, OSTERREICHER J, et al. Protein abundance alterations in matched sets of macroscopically normal colon mucosa and colorectal carcinoma [J]. Electrophoresis, 1999, 20(18): 3638-46.
    [16] FRIEDMAN D B, HILL S, KELLER J W, et al. Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry [J]. Proteomics, 2004, 4(3): 793-811.
    [17] SIMPSON R J, CONNOLLY L M, EDDES J S, et al. Proteomic analysis of the human colon carcinoma cell line (LIM 1215): development of a membrane protein database [J]. Electrophoresis, 2000, 21(9): 1707-32.
    [18] HELFMAN D M, FLYNN P, KHAN P, et al. Tropomyosin as a regulator of cancer cell transformation [J]. Adv Exp Med Biol, 2008, 644(124-31.
    [19] PRASAD G L, MASUELLI L, RAJ M H, et al. Suppression of src-induced transformed phenotype by expression of tropomyosin-1 [J]. Oncogene, 1999, 18(11): 2027-31.
    [20] LUO Y X, CUI J, WANG L, et al. Identification of cancer-associated proteins by proteomics and downregulation of beta-tropomyosin expression in colorectal adenoma and cancer [J]. Proteomics Clinical Applications, 2009, 3(12): 1397-406.
    [21] DUNDAS S R, LAWRIE L C, ROONEY P H, et al. Mortalin is over-expressed by colorectal adenocarcinomas and correlates with poor survival [J]. J Pathol, 2005, 205(1): 74-81.
    [22] LANE C S, NISAR S, GRIFFITHS W J, et al. Identification of cytochrome P450 enzymes in human colorectal metastases and the surrounding liver: a proteomic approach [J]. European Journal of Cancer, 2004, 40(14): 2127-34.
    [23] PEI H P, ZHU H, ZENG S, et al. Proteome analysis and tissue microarray for profiling protein markers associated with lymph node metastasis in colorectal cancer [J]. Journal of Proteome Research, 2007, 6(7): 2495-501.
    [24] TACHIBANA M, OHKURA Y, KOBAYASHI Y, et al. Expression of apolipoprotein A1 in colonic adenocarcinoma [J]. Anticancer Res, 2003, 23(5b): 4161-7.
    [25] BITARTE N, BANDRES E, ZARATE R, et al. Moving forward in colorectal cancer research, what proteomics has to tell [J]. World J Gastroenterol, 2007, 13(44): 5813-21.
    [26] CHOI D S, LEE J M, PARK G W, et al. Proteomic analysis of microvesicles derived from human colorectal cancer cells [J]. J Proteome Res, 2007, 6(12): 4646-55.
    [27] MADOZ-GURPIDE J, CANAMERO M, SANCHEZ L, et al. A proteomics analysis of cell signaling alterations in colorectal cancer [J]. Mol Cell Proteomics, 2007, 6(12): 2150-64.
    [28] PEI H, ZHU H, ZENG S, et al. Proteome analysis and tissue microarray for profiling protein markers associated with lymph node metastasis in colorectal cancer [J]. J Proteome Res, 2007, 6(7): 2495-501.
    [29] WARD D G, SUGGETT N, CHENG Y, et al. Identification of serum biomarkers for colon cancer by proteomic analysis [J]. Br J Cancer, 2006, 94(12): 1898-905.
    [30] ZHAO L, WANG H, DENG Y J, et al. Transgelin as a suppressor is associated with poor prognosis in colorectal carcinoma patients [J]. Modern Pathology, 2009, 22(6): 786-96.
    [31] LIU L, ZHAO L, ZHANG Y, et al. Proteomic analysis of Tiam1-mediated metastasis in colorectal cancer [J]. Cell Biol Int, 2007, 31(8): 805-14.
    [32] RAMSOEKH D, VAN LEERDAM M E, VAN BALLEGOOIJEN M, et al. Population screening for colorectal cancer: faeces, endoscopes or X-rays? [J]. Cell Oncol, 2007, 29(3): 185-94.
    [33] NIBBE R K, CHANCE M R. Approaches to biomarkers in human colorectal cancer: looking back, to go forward [J]. Biomarkers in Medicine, 2009, 3(4): 385-96.
    [34] BAAK J P A, JANSSEN E A M, SOREIDE K, et al. Genomics and proteomics - the way forward, F, 2005 [C].
    [35] SRINIVAS P R, KRAMER B S, SRIVASTAVA S. Trends in biomarker research for cancer detection [J]. Lancet Oncol, 2001, 2(11): 698-704.
    [36] LI S, WANG J, LU Y, et al. Screening and early diagnosis of colorectal cancer in China: a 12 year retrospect (1994-2006) [J]. J Cancer Res Clin Oncol, 2007, 133(10): 679-86.
    [37] LEI T, CHEN W Q, ZHANG S W, et al. [Prevalence trend of colorectal cancer in 10 cities and counties in China from 1988 to 2002] [J]. Zhonghua Zhong Liu Za Zhi, 2009, 31(6): 428-33.
    [38] LI M, GU J. Changing patterns of colorectal cancer in China over a period of 20 years [J]. World J Gastroenterol, 2005, 11(30): 4685-8.
    [39] PENLAND S K, GOLDBERG R M. Current strategies in previously untreated advanced colorectal cancer [J]. Oncology (Williston Park), 2004, 18(6): 715-22, 27; discussion 27-9.
    [40] MIDGLEY R S, KERR D J. ABC of colorectal cancer: adjuvant therapy [J]. BMJ, 2000, 321(7270): 1208-11.
    [41] TANKE H J. Genomics and proteomics: the potential role of oral diagnostics [J]. Ann N Y Acad Sci, 2007, 1098(330-4.
    [42] CHUTHAPISITH S, LAYFIELD R, KERR I D, et al. Principles of proteomics and its applications in cancer [J]. Surgeon, 2007, 5(1): 14-22.
    [43] BALASUBRAMANI M, DAY B W, SCHOEN R E, et al. Altered expression and localization of creatine kinase B, heterogeneous nuclear ribonucleoprotein F, and high mobility group box 1 protein in the nuclear matrix associated with colon cancer [J]. Cancer Res, 2006, 66(2): 763-9.
    [44] CHEN G, GHARIB T G, HUANG C C, et al. Proteomic analysis of lung adenocarcinoma: identification of a highly expressed set of proteins in tumors [J]. Clin Cancer Res, 2002, 8(7): 2298-305.
    [45] TOMONAGA T, MATSUSHITA K, YAMAGUCHI S, et al. Identification of altered protein expression and post-translational modifications in primary colorectal cancer by using agarose two-dimensional gel electrophoresis [J]. Clin Cancer Res, 2004, 10(6): 2007-14.
    [46] NUELL M J, STEWART D A, WALKER L, et al. PROHIBITIN, AN EVOLUTIONARILY CONSERVED INTRACELLULAR PROTEIN THAT BLOCKS DNA-SYNTHESIS IN NORMAL FIBROBLASTS AND HELA-CELLS [J]. Molecular and Cellular Biology, 1991, 11(3): 1372-81.
    [47] NUELL M J, STEWART D A, WALKER L, et al. Prohibitin, an evolutionarily conserved intracellular protein that blocks DNA synthesis in normal fibroblasts and HeLa cells [J]. Mol Cell Biol, 1991, 11(3): 1372-81.
    [48] KANG X D, ZHANG L, SUN J, et al. Prohibitin: a potential biomarker for tissue-based detection of gastric cancer [J]. Journal of Gastroenterology, 2008, 43(8): 618-25.
    [49] ASAMOTO M, COHEN S M. Prohibitin gene is overexpressed but not mutated in rat bladder carcinomas and cell lines [J]. Cancer Lett, 1994, 83(1-2): 201-7.
    [50] GAMBLE S C, ODONTIADIS M, WAXMAN J, et al. Androgens target prohibitin to regulate proliferation of prostate cancer cells [J]. Oncogene, 2004, 23(17): 2996-3004.
    [51] ROBLICK U J, HIRSCHBERG D, HABERMANN J K, et al. Sequential proteome alterations during genesis and progression of colon cancer [J]. Cellular and Molecular Life Sciences, 2004, 61(10): 1246-55.
    [52] LEE M J, LEE H S, KIM W H, et al. Expression of mucins and cytokeratins in primary carcinomas of the digestive system [J]. Mod Pathol, 2003, 16(5): 403-10.
    [53] PARK S Y, KIM H S, HONG E K, et al. Expression of cytokeratins 7 and 20 in primary carcinomas of the stomach and colorectum and their value in the differential diagnosis of metastatic carcinomas to the ovary [J]. Hum Pathol, 2002, 33(11): 1078-85.
    [54] KOUKLIS P D, HUTTON E, FUCHS E. Making a connection: direct binding between keratin intermediate filaments and desmosomal proteins [J]. J Cell Biol, 1994, 127(4): 1049-60.
    [55] BUTTON E, SHAPLAND C, LAWSON D. Actin, its associated proteins and metastasis [J]. Cell Motil Cytoskeleton, 1995, 30(4): 247-51.
    [56] VIALE G, DELL'ORTO P, BIASI M O, et al. Comparative evaluation of an extensive histopathologic examination and a real-time reverse-transcription-polymerase chain reaction assay for mammaglobin and cytokeratin 19 on axillary sentinel lymph nodes of breast carcinoma patients [J]. Ann Surg, 2008, 247(1): 136-42.
    [57] THOMAS P A, KIRSCHMANN D A, CERHAN J R, et al. Association between keratin and vimentin expression, malignant phenotype, and survival in postmenopausal breast cancer patients [J]. Clin Cancer Res, 1999, 5(10): 2698-703.
    [58] SHEU C C, CHANG M Y, CHANG H C, et al. Combined detection of CEA, CK-19 and c-met mRNAs in peripheral blood: a highly sensitive panel for potential molecular diagnosis of non-small cell lung cancer [J]. Oncology, 2006, 70(3): 203-11.
    [59] ALFONSO P, NUNEZ A, MADOZ-GURPIDE J, et al. Proteomic expression analysis of colorectal cancer by two-dimensional differential gel electrophoresis [J]. Proteomics, 2005, 5(10): 2602-11.
    [60] CIECHANOVER A. Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting [J]. Cell Death Differ, 2005, 12(9): 1178-90.
    [61] MIYAGI T, TATSUMI T, TAKEHARA T, et al. Impaired expression of proteasome subunits and human leukocyte antigens class I in human colon cancer cells [J]. J Gastroenterol Hepatol, 2003, 18(1): 32-40.
    [62] ROESSLER M, ROLLINGER W, MANTOVANI-ENDL L, et al. Identification of PSME3 as a novel serum tumor marker for colorectal cancer by combining two-dimensional polyacrylamide gel electrophoresis with a strictly mass spectrometry-based approach for data analysis [J]. Mol Cell Proteomics, 2006, 5(11): 2092-101.
    [63] BEACHY P A, KARHADKAR S S, BERMAN D M. Tissue repair and stem cell renewal in carcinogenesis [J]. Nature, 2004, 432(7015): 324-31.
    [64] BAKIN A V, SAFINA A, RINEHART C, et al. A critical role of tropomyosins in TGF-beta regulation of the actin cytoskeleton and cell motility in epithelial cells [J]. Mol Biol Cell, 2004, 15(10): 4682-94.
    [65] BELLACOSA A. Genetic hits and mutation rate in colorectal tumorigenesis: versatility of Knudson's theory and implications for cancer prevention [J]. Genes Chromosomes Cancer, 2003, 38(4): 382-8.
    [66] RAVAL G N, BHARADWAJ S, LEVINE E A, et al. Loss of expression of tropomyosin-1, a novel class II tumor suppressor that induces anoikis, in primary breast tumors [J]. Oncogene, 2003, 22(40): 6194-203.
    [67] NEAL C L, YAO J, YANG W T, et al. 14-3-3 zeta Overexpression Defines High Risk for Breast Cancer Recurrence and Promotes Cancer Cell Survival [J]. Cancer Research, 2009, 69(8): 3425-32.
    [68] MATTA A, BAHADUR S, DUGGAL R, et al. Over-expression of 14-3-3zeta is an early event in oral cancer [J]. Bmc Cancer, 2007, 7(
    [69] TZIVION G, GUPTA V S, KAPLUN L, et al. 14-3-3 proteins as potential oncogenes [J]. Semin Cancer Biol, 2006, 16(3): 203-13.
    [70] CHEN C D, WANG C S, HUANG Y H, et al. Overexpression of CLIC1 in human gastric carcinoma and its clinicopathological significance [J]. Proteomics, 2007, 7(1): 155-67.
    [71] WULFKUHLE J D, SGROI D C, KRUTZSCH H, et al. Proteomics of human breast ductal carcinoma in situ [J]. Cancer Res, 2002, 62(22): 6740-9.
    [72] PETROVA D T, ASIF A R, ARMSTRONG V W, et al. Expression of chloride intracellular channel protein 1 (CLIC1) and tumor protein D52 (TPD52) as potential biomarkers for colorectal cancer [J]. Clin Biochem, 2008, 41(14-15): 1224-36.
    [73] VALENZUELA S M, MAZZANTI M, TONINI R, et al. The nuclear chloride ion channel NCC27 is involved in regulation of the cell cycle [J]. J Physiol, 2000, 529 Pt 3(541-52.
    [74] RAHMAN A, KUMAR S G, KIM S W, et al. Proteomic analysis for inhibitory effect of chitosan oligosaccharides on 3T3-L1 adipocyte differentiation [J]. Proteomics, 2008, 8(3): 569-81.
    [75] SAEKI K, YASUGI E, OKUMA E, et al. Proteomic analysis on insulin signaling in human hematopoietic cells: identification of CLIC1 and SRp20 as novel downstream effectors of insulin [J]. Am J Physiol Endocrinol Metab, 2005, 289(3): E419-28.
    [76] HUANG J S, CHAO C C, SU T L, et al. Diverse cellular transformation capability ofoverexpressed genes in human hepatocellular carcinoma [J]. Biochem Biophys Res Commun, 2004, 315(4): 950-8.
    [77] LIU S, SUN M Z, TANG J W, et al. High-performance liquid chromatography/nano-electrospray ionization tandem mass spectrometry, two-dimensional difference in-gel electrophoresis and gene microarray identification of lymphatic metastasis-associated biomarkers [J]. Rapid Commun Mass Spectrom, 2008, 22(20): 3172-8.
    [78] WANG J W, PENG S Y, LI J T, et al. Identification of metastasis-associated proteins involved in gallbladder carcinoma metastasis by proteomic analysis and functional exploration of chloride intracellular channel 1 [J]. Cancer Lett, 2009, 281(1): 71-81.
    [79] FENG Y Z, SHIOZAWA T, MIYAMOTO T, et al. Overexpression of hedgehog signaling molecules and its involvement in the proliferation of endometrial carcinoma cells [J]. Clin Cancer Res, 2007, 13(5): 1389-98.
    [80] CHO W C. Contribution of oncoproteomics to cancer biomarker discovery [J]. Mol Cancer, 2007, 6(25.
    [81] NIJTMANS L G, ARTAL S M, GRIVELL L A, et al. The mitochondrial PHB complex: roles in mitochondrial respiratory complex assembly, ageing and degenerative disease [J]. Cell Mol Life Sci, 2002, 59(1): 143-55.
    [82] FUSARO G, DASGUPTA P, RASTOGI S, et al. Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling [J]. Journal of Biological Chemistry, 2003, 278(48): 47853-61.
    [83] MISHRA S, MURPHY L C, NYOMBA B L G, et al. Prohibitin: a potential target for new therapeutics [J]. Trends in Molecular Medicine, 2005, 11(4): 192-7.
    [84] SONG P M, BAO H M, YU Y B, et al. Comprehensive profiling of metastasis-related proteins in paired hepatocellular carcinoma cells with different metastasis potentials [J]. Proteomics Clinical Applications, 2009, 3(7): 841-52.
    [85] TSAI H W, CHOW N H, LIN C P, et al. The significance of prohibitin and c-Met/hepatocyte growth factor receptor in the progression of cervical adenocarcinoma [J]. Hum Pathol, 2006, 37(2): 198-204.
    [86] MANJESHWAR S, BRANAM D E, LERNER M R, et al. Tumor suppression by the prohibitin gene 3'untranslated region RNA in human breast cancer [J]. Cancer Research, 2003, 63(17): 5251-6.
    [87] JUPE E R, LIU X T, KIEHLBAUCH J L, et al. Prohibitin in breast cancer cell lines: Loss of antiproliferative activity is linked to 3' untranslated region mutations [J]. Cell Growth & Differentiation, 1996, 7(7): 871-8.
    [88] MENGWASSER J, PIAU A, SCHLAG P, et al. Differential immunization identifies PHB1/PHB2 as blood-borne tumor antigens [J]. Oncogene, 2004, 23(44): 7430-5.
    [89]阻抑素在胃肠癌中的表达情况及其临床意义[M]//康向东张隆吴蓉盛霞孙健陈.检验医学. 2006: 610-2.
    [90] COATES P J, NENUTIL R, MCGREGOR A, et al. Mammalian prohibitin proteins respond to mitochondrial stress and decrease during cellular senescence [J]. Exp Cell Res, 2001, 265(2): 262-73.
    [91] XU D H, TANG J, LI Q F, et al. Positional and expressive alteration of prohibitin during the induced differentiation of human hepatocarcinoma SMMC-7721 cells [J]. World J Gastroenterol, 2008, 14(32): 5008-14.
    [92] GREENBAUM D, COLANGELO C, WILLIAMS K, et al. Comparing protein abundance and mRNA expression levels on a genomic scale [J]. Genome Biol, 2003, 4(9): 117.
    [93] LU B J, XU J, ZHU Y M, et al. Systemic analysis of the differential gene expression profile in acolonic adenoma-normal SSH library [J]. Clinica Chimica Acta, 2007, 378(1-2): 42-7.
    [94] MATTA A, DESOUZA L V, SHUKIA N K, et al. Prognostic significance of head-and-neck cancer biomarkers previously discovered and identified using iTRAQ-labeling and multidimensional liquid chromatography - Tandem mass spectrometry [J]. Journal of Proteome Research, 2008, 7(5): 2078-87.
    [95] JANG J S, CHO H Y, LEE Y J, et al. The differential proteome profile of stomach cancer: identification of the biomarker candidates [J]. Oncol Res, 2004, 14(10): 491-9.
    [96] SHEN J, PERSON M D, ZHU J, et al. Protein expression profiles in pancreatic adenocarcinoma compared with normal pancreatic tissue and tissue affected by pancreatitis as detected by two-dimensional gel electrophoresis and mass spectrometry [J]. Cancer Res, 2004, 64(24): 9018-26.
    [97] NIEMANTSVERDRIET M, WAGNER K, VISSER M, et al. Cellular functions of 14-3-3 zeta in apoptosis and cell adhesion emphasize its oncogenic character [J]. Oncogene, 2008, 27(9): 1315-9.
    [98] TAKAHASHI Y. The 14-3-3 proteins: gene, gene expression, and function [J]. Neurochem Res, 2003, 28(8): 1265-73.
    [99] MACKINTOSH C. Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes [J]. Biochem J, 2004, 381(Pt 2): 329-42.
    [100] PERATHONER A, PIRKEBNER D, BRANDACHER G, et al. 14-3-3sigma expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients [J]. Clin Cancer Res, 2005, 11(9): 3274-9.
    [101] IWATA N, YAMAMOTO H, SASAKI S, et al. Frequent hypermethylation of CpG islands and loss of expression of the 14-3-3 sigma gene in human hepatocellular carcinoma [J]. Oncogene, 2000, 19(46): 5298-302.
    [102] OSADA H, TATEMATSU Y, YATABE Y, et al. Frequent and histological type-specific inactivation of 14-3-3sigma in human lung cancers [J]. Oncogene, 2002, 21(15): 2418-24.
    [103] ITO Y, MIYOSHI E, UDA E, et al. 14-3-3 sigma possibly plays a constitutive role in papillary carcinoma, but not in follicular tumor of the thyroid [J]. Cancer Lett, 2003, 196(1): 87-91.
    [104] MIURA I, NAKAJIMA T, OHTANI H, et al. Molecular cloning of cDNA for the zeta isoform of the 14-3-3 protein: homologous sequences in the 3'-untranslated region of frog and human zeta isoforms [J]. Zoolog Sci, 1997, 14(5): 771-5.
    [105] MATTA A, DESOUZA L V, SHUKLA N K, et al. Prognostic significance of head-and-neck cancer biomarkers previously discovered and identified using iTRAQ-labeling and multidimensional liquid chromatography-tandem mass spectrometry [J]. J Proteome Res, 2008, 7(5): 2078-87.
    [106] RALHAN R, DESOUZA L V, MATTA A, et al. iTRAQ-multidimensional liquid chromatography and tandem mass spectrometry-based identification of potential biomarkers of oral epithelial dysplasia and novel networks between inflammation and premalignancy [J]. J Proteome Res, 2009, 8(1): 300-9.
    [107] FRASOR J, CHANG E C, KOMM B, et al. Gene expression preferentially regulated by tamoxifen in breast cancer cells and correlations with clinical outcome [J]. Cancer Res, 2006, 66(14): 7334-40.
    [108] FAN T, LI R Y, TODD N W, et al. Up-regulation of 14-3-3 zeta in lung cancer and its implication as prognostic and therapeutic target [J]. Cancer Research, 2007, 67(16): 7901-6.
    [109] PORTER G W, KHURI F R, FU H. Dynamic 14-3-3/client protein interactions integrate survival and apoptotic pathways [J]. Semin Cancer Biol, 2006, 16(3): 193-202.
    [110] FANGER G R, WIDMANN C, PORTER A C, et al. 14-3-3 proteins interact with specific MEK kinases [J]. J Biol Chem, 1998, 273(6): 3476-83.
    [111] XING H, ZHANG S, WEINHEIMER C, et al. 14-3-3 proteins block apoptosis and differentiallyregulate MAPK cascades [J]. EMBO J, 2000, 19(3): 349-58.
    [112] WILKER E, YAFFE M B. 14-3-3 Proteins--a focus on cancer and human disease [J]. J Mol Cell Cardiol, 2004, 37(3): 633-42.
    [113] NOMURA M, SHIMIZU S, SUGIYAMA T, et al. 14-3-3 Interacts directly with and negatively regulates pro-apoptotic Bax [J]. J Biol Chem, 2003, 278(3): 2058-65.
    [114] BASU S, TOTTY N F, IRWIN M S, et al. Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis [J]. Mol Cell, 2003, 11(1): 11-23.
    [115] ZHANG L, CHEN J, FU H. Suppression of apoptosis signal-regulating kinase 1-induced cell death by 14-3-3 proteins [J]. Proc Natl Acad Sci U S A, 1999, 96(15): 8511-5.
    [116] DIRKSEN E H, CLOOS J, BRAAKHUIS B J, et al. Human lymphoblastoid proteome analysis reveals a role for the inhibitor of acetyltransferases complex in DNA double-strand break response [J]. Cancer Res, 2006, 66(3): 1473-80.
    [1] WEITZ J, KOCH M, DEBUS J, et al. Colorectal cancer [J]. Lancet, 2005, 365(9454): 153-65.
    [2] PENLAND S K, GOLDBERG R M. Current strategies in previously untreated advanced colorectal cancer [J]. Oncology (Williston Park), 2004, 18(6): 715-22, 27; discussion 27-9.
    [3] MIDGLEY R S, KERR D J. ABC of colorectal cancer: adjuvant therapy [J]. BMJ, 2000, 321(7270): 1208-11.
    [4] TANKE H J. Genomics and proteomics: the potential role of oral diagnostics [J]. Ann N Y Acad Sci, 2007, 1098(330-4.
    [5] CHUTHAPISITH S, LAYFIELD R, KERR I D, et al. Principles of proteomics and its applications in cancer [J]. Surgeon, 2007, 5(1): 14-22.
    [6] WASINGER V C, CORDWELL S J, CERPA-POLJAK A, et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium [J]. Electrophoresis, 1995, 16(7): 1090-4.
    [7] JAIN K K. Recent advances in oncoproteomics [J]. Curr Opin Mol Ther, 2002, 4(3): 203-9.
    [8] SIMPSON R J, DOROW D S. Cancer proteomics: from signaling networks to tumor markers [J]. Trends in Biotechnology, 2001, 19(10): S40-S8.
    [9] MCDONALD W H, YATES J R, 3RD. Proteomic tools for cell biology [J]. Traffic, 2000, 1(10): 747-54.
    [10] HERBERT B. Advances in protein solubilisation for two-dimensional electrophoresis [J]. Electrophoresis, 1999, 20(4-5): 660-3.
    [11] LO Y L, SHEN C Y. Laser capture microdissection in carcinoma analysis [J]. Methods Enzymol, 2002, 356(137-44.
    [12] PAGE M J, AMESS B, TOWNSEND R R, et al. Proteomic definition of normal human luminal and myoepithelial breast cells purified from reduction mammoplasties [J]. Proc Natl Acad Sci U S A, 1999, 96(22): 12589-94.
    [13] EMMERT-BUCK M R, BONNER R F, SMITH P D, et al. Laser capture microdissection [J]. Science, 1996, 274(5289): 998-1001.
    [14] BONNER R F, EMMERT-BUCK M, COLE K, et al. Laser capture microdissection: molecular analysis of tissue [J]. Science, 1997, 278(5342): 1481,3.
    [15] O'FARRELL P H. High resolution two-dimensional electrophoresis of proteins [J]. J Biol Chem, 1975, 250(10): 4007-21.
    [16] MCHUGH S M, O'DONNELL J, GILLEN P. Genomic and oncoproteomic advances in detection and treatment of colorectal cancer [J]. World Journal of Surgical Oncology, 2009, 7(
    [17] YAN J X, DEVENISH A T, WAIT R, et al. Fluorescence two-dimensional difference gel electrophoresis and mass spectrometry based proteomic analysis of Escherichia coli [J]. Proteomics, 2002, 2(12): 1682-98.
    [18] LILLEY K S, FRIEDMAN D B. All about DIGE: quantification technology for differential-display 2D-gel proteomics [J]. Expert Rev Proteomics, 2004, 1(4): 401-9.
    [19] ZHU H, SNYDER M. Protein chip technology [J]. Curr Opin Chem Biol, 2003, 7(1): 55-63.
    [20] XIAO Z, JIANG X, BECKETT M L, et al. Generation of a baculovirus recombinant prostate-specific membrane antigen and its use in the development of a novel protein biochip quantitative immunoassay [J]. Protein Expr Purif, 2000, 19(1): 12-21.
    [21] URBANOWSKA T, MANGIALAIO S, HARTMANN C, et al. Development of protein microarray technology to monitor biomarkers of rheumatoid arthritis disease [J]. Cell Biol Toxicol, 2003, 19(3): 189-202.
    [22] TANG N, TORNATORE P, WEINBERGER S R. Current developments in SELDI affinitytechnology [J]. Mass Spectrom Rev, 2004, 23(1): 34-44.
    [23] ISSAQ H J, VEENSTRA T D, CONRADS T P, et al. The SELDI-TOF MS approach to proteomics: protein profiling and biomarker identification [J]. Biochem Biophys Res Commun, 2002, 292(3): 587-92.
    [24] GYGI S P, RIST B, AEBERSOLD R. Measuring gene expression by quantitative proteome analysis [J]. Curr Opin Biotechnol, 2000, 11(4): 396-401.
    [25] GYGI S P, RIST B, GERBER S A, et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags [J]. Nat Biotechnol, 1999, 17(10): 994-9.
    [26] FEARON E R, VOGELSTEIN B. A genetic model for colorectal tumorigenesis [J]. Cell, 1990, 61(5): 759-67.
    [27] KERR D. Clinical development of gene therapy for colorectal cancer [J]. Nat Rev Cancer, 2003, 3(8): 615-22.
    [28] KURAMITSU Y, NAKAMURA K. Proteomic analysis of cancer tissues: Shedding light on carcinogenesis and possible biomarkers [J]. Proteomics, 2006, 6(20): 5650-61.
    [29] MA Y L, PENG J Y, LIU W J, et al. Proteomics Identification of Desmin as a Potential Oncofetal Diagnostic and Prognostic Biomarker in Colorectal Cancer [J]. Molecular & Cellular Proteomics, 2009, 8(8): 1878-90.
    [30] MCHUGH S M, O'DONNELL J, GILLEN P. Genomic and oncoproteomic advances in detection and treatment of colorectal cancer [J]. World J Surg Oncol, 2009, 7(36.
    [31] LEE Y Y, YU C P, LIN C K, et al. Expression of survivin and cortactin in colorectal adenocarcinoma: association with clinicopathological parameters [J]. Dis Markers, 2009, 26(1): 9-18.
    [32] HABERMANN J K, BADER F G, FRANKE C, et al. From the genome to the proteome-biomarkers in colorectal cancer [J]. Langenbecks Archives of Surgery, 2008, 393(1): 93-104.
    [33] STULIK J, KOUPILOVA K, OSTERREICHER J, et al. Protein abundance alterations in matched sets of macroscopically normal colon mucosa and colorectal carcinoma [J]. Electrophoresis, 1999, 20(18): 3638-46.
    [34] ALFONSO P, NUNEZ A, MADOZ-GURPIDE J, et al. Proteomic expression analysis of colorectal cancer by two-dimensional differential gel electrophoresis [J]. Proteomics, 2005, 5(10): 2602-11.
    [35] FRIEDMAN D B, HILL S, KELLER J W, et al. Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry [J]. Proteomics, 2004, 4(3): 793-811.
    [36] SIMPSON R J, CONNOLLY L M, EDDES J S, et al. Proteomic analysis of the human colon carcinoma cell line (LIM 1215): development of a membrane protein database [J]. Electrophoresis, 2000, 21(9): 1707-32.
    [37] HELFMAN D M, FLYNN P, KHAN P, et al. Tropomyosin as a regulator of cancer cell transformation [J]. Adv Exp Med Biol, 2008, 644(124-31.
    [38] PRASAD G L, MASUELLI L, RAJ M H, et al. Suppression of src-induced transformed phenotype by expression of tropomyosin-1 [J]. Oncogene, 1999, 18(11): 2027-31.
    [39] BAKIN A V, SAFINA A, RINEHART C, et al. A critical role of tropomyosins in TGF-beta regulation of the actin cytoskeleton and cell motility in epithelial cells [J]. Mol Biol Cell, 2004, 15(10): 4682-94.
    [40] BELLACOSA A. Genetic hits and mutation rate in colorectal tumorigenesis: versatility of Knudson's theory and implications for cancer prevention [J]. Genes Chromosomes Cancer, 2003, 38(4): 382-8.
    [41] RAVAL G N, BHARADWAJ S, LEVINE E A, et al. Loss of expression of tropomyosin-1, a novel class II tumor suppressor that induces anoikis, in primary breast tumors [J]. Oncogene, 2003, 22(40): 6194-203.
    [42] LUO Y X, CUI J, WANG L, et al. Identification of cancer-associated proteins by proteomics and downregulation of beta-tropomyosin expression in colorectal adenoma and cancer [J]. Proteomics Clinical Applications, 2009, 3(12): 1397-406.
    [43] ZHAO L, WANG H, LI J M, et al. Overexpression of Rho GDP-dissociation inhibitor alpha is associated with tumor progression and poor prognosis of colorectal cancer [J]. Journal of Proteome Research, 2008, 7(9): 3994-4003.
    [44] ABU-FARHA M, ELISMA F, ZHOU H J, et al. Proteomics: From Technology Developments to Biological Applications [J]. Analytical Chemistry, 2009, 81(12): 4585-99.
    [45] ZHAO L, WANG H, DENG Y J, et al. Transgelin as a suppressor is associated with poor prognosis in colorectal carcinoma patients [J]. Modern Pathology, 2009, 22(6): 786-96.
    [46] DUNDAS S R, LAWRIE L C, ROONEY P H, et al. Mortalin is over-expressed by colorectal adenocarcinomas and correlates with poor survival [J]. J Pathol, 2005, 205(1): 74-81.
    [47] LANE C S, NISAR S, GRIFFITHS W J, et al. Identification of cytochrome P450 enzymes in human colorectal metastases and the surrounding liver: a proteomic approach [J]. European Journal of Cancer, 2004, 40(14): 2127-34.
    [48] PEI H P, ZHU H, ZENG S, et al. Proteome analysis and tissue microarray for profiling protein markers associated with lymph node metastasis in colorectal cancer [J]. Journal of Proteome Research, 2007, 6(7): 2495-501.
    [49] TACHIBANA M, OHKURA Y, KOBAYASHI Y, et al. Expression of apolipoprotein A1 in colonic adenocarcinoma [J]. Anticancer Res, 2003, 23(5b): 4161-7.
    [50] REYMOND M A, STEINERT R, KAHNE T, et al. Expression and functional proteomics studies in colorectal cancer [J]. Pathology Research and Practice, 2004, 200(2): 119-27.
    [51] NEAL C P, GARCEA G, DOUCAS H, et al. Molecular prognostic markers in resectable colorectal liver metastases: a systematic review [J]. Eur J Cancer, 2006, 42(12): 1728-43.
    [52] LAWRIE L C, MURRAY G I. Colorectal cancer: Identification of differentially expressed proteins using a proteomics approach [J]. British Journal of Cancer, 2002, 86(S54-S.
    [53] GYGI S P, RIST B, GRIFFIN T J, et al. Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags [J]. J Proteome Res, 2002, 1(1): 47-54.
    [54] JAIN K K. Innovations, challenges and future prospects of oncoproteomics [J]. Molecular Oncology, 2008, 2(2): 153-60.