城市生活垃圾厌氧消化处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对城市生活垃圾厌氧消化处理过程进行了试验研究。厌氧消化(简称AD)过程是在厌氧环境下通过细菌促进有机质自然降解。它提供了将垃圾转化为生物气体(含大量甲烷)、肥料、和液态肥料的有效方法。这种处理技术在处理城市生活垃圾的同时还能产生大量沼气,最终产品可用做肥料。从而实现了将能源的回收利用与环境治理有机的结合。厌氧消化(简称AD)过程是在厌氧环境下通过细菌促进有机质自然降解。厌氧消化提供了将垃圾转化为生物气体(含大量甲烷)、肥料、和液态肥料的有效方法。
    目前,利用厌氧消化来得到能量将成为越来越迫切的问题。 有机物来源稳定,而传统的燃料日趋减少成为发展中国家使用厌氧消化处理技术的重要原因。在欧洲和亚洲,厌氧消化技术将成为一些能量供给和填埋厂用来储存能量和处理垃圾的重要手段,更为复杂的处理工业废弃物的厌氧消化装置将会大量增加。
    论文试验分为小试试验和生产性中试两部分,在小试试验中,进行了厌氧发酵过程的可行性研究、动力学研究、最佳运转参数的选择,在试验的基础上,做了物料平衡计算和碳平衡计算。在生产性中试中,对厌氧消化处理工艺路线及工艺参数进行了试验研究与优化。
    最终的研究结果表明,用该工艺处理城市生活垃圾是可行的。在本论文条件下:中温最佳工艺参数为停留时间13天、固含量10%、负荷率10.1gTS/(L*D)。COD去除率为65.8%;产气量11.75L/kgts;甲烷含量63.5%;AN为1232(mg/l)KN为1697(mg/l)。由此可知:本实验物料平衡良好,COD 利用率也很高。
    厌氧消化处理技术同时存在着很多潜在的问题,任何厌氧消化装置将会产生一些危险并对环境造成一些潜在的负面影响。这些危险和影响一经出现就要马上解决或者至少使其降低到最低限度。选择正确的设计方案,采取严格的管理措施,选择最为合适的地点最好的建厂环境并选用最为合适的处理技术,都将有助于消除这种负面影响,并将其降到最低限度。
The thesis explores in anaerobic digestion of municipal solid waste Including small experimentation and middle experimentation. this approach boasts in its ability to combine pollution treatment with energy and material recovery as it can produce biogas and fertilizer. Anaerobic digesters produce conditions that encourage the natural breakdown of organic matter by bacteria in the absence of air. Anaerobic digestion (AD) provides an effective method for turning residues into: Biogas Fibre Liquo. A properly designed and operated AD plant can achieve a better energy balance,it also Reducing greenhouse gases, Displacing use of finite fossil fuels, Recycling nutrients, Reducing land and water pollution, Supporting Organic Farming, Efficient electricity distribution and so on.
    For tomorrow and the future, the authors expect the driving forces for the use of anaerobic digestion to continue to drift away from energy production. Organic stabilization and pathogen reduction, in addition to energy production will be important reasons to use AD in developing countries. Energy savings in operation and minimal sludge production from AD versus aerobic treatment will become more important in energy and landfill deficient areas of Europe and Asia. The use of more complex AD processes for industrial waste treatment will increase.
    Through stage and continues experiments, experiments were designed and carried out on the feasibility of the approach; dynamic research ;best reaction indexes, etc. Based on experimental data, material balance modle was built to calculate the COD and C balance in the thesis
    The results show that under the experimental conditions, the approach is feasible。The best reaction indexes are: retention time of 13d;solid concentration of 10% and load of 10.1gTS/(L*D)。The COD is reduced by 65.8%with a gas production of 11.75L/kgts and methane concentration of 63.5%. The material balance is excellent in the thesis with a COD utility ration. the balance of MSW is well .
    Anaerobic digestion projects, as with any development, will create some risks and have some potential negative environmental impacts. These need to be removed wherever possible, or at least minimised. With good design and proper management of digesters, and the appropriate technology in the right place in the right circumstances, all the potentially negative
    
    
    environmental and economic implications of AD can be minimised or removed completely.
引文
[1]杨中平.试验优化设计.西北农林科技大学.1999
    [2]徐文龙.深圳市玉龙坑垃圾填埋气体成分与产气规律研究.环境卫生工程.1999年第1期
    [3]徐文龙.发达国家城市垃圾处理技术现状与分析.国家建设部“21世纪中国城市垃圾问题对策研讨会”大会主题发言.城市垃圾处理技术.2001年第3期
    [4]国家环境保护总局污染控制司. 城市固体废物管理与处理处置技术[M] .中国石化出版社 1999
    [5]建设部城建院环卫所.城市生活垃圾厌氧消化处理科研报告.内部资料.1998
    [6]北京垃圾现状报告.内部资料.1999
    [7]厦门市生活垃圾分类回收和有机垃圾厌氧硝化处理中心工程可行性研究.内部资料
    [8]张希衡. 废水厌氧生物处理工程 [M]. 中国环境科学出版社 1996
    [9]刘春华.清华大学毕业论文.1995
    [10]张光明.清华大学毕业论文.1996
    [11]刘教昌.高浓度有机废水厌氧处理.中国环境科学出版社.1990
    [12]许葆玖.水处理工程.清华大学出版社.1987
    [13]顾夏声.废水生物处理数学模式.清华大学出版社.1992
    [14]国家环保局.城市垃圾处理处置.中国环境科学出版社.1991
    [15]王中民.城市垃圾处理处置.中国环境科学出版社.1986
    [16]刘国平.微生物学.科学出版社.1992
    [17]符征鸽.铁法预处理糖蜜酒精废液沼气发酵工艺的研究.中国沼气,1995,13(3):10-13
    [18]顾蕴漩.高硫酸盐废水厌氧俏化中硫酸盐抑制解除方法的研究.中国沼气1996,14(4):11-16
    [19]David A Stafford等著.张晋衡译.用有机废物生产沼气.上海科学技术文献出版社
    [20]王洪生编,杨向平,涂兆林主审.城市污水处理厂运行控制与维护管理.科学出版社
    [21]美怀.巳斯皮思著李亚新译.工业废水的厌氧生物技术.中国建筑工业出 版社
    [22]王国立,陈金朴.天津市东郊污水处理厂污泥厌氧消化.给水排水VOI.25 NO. 10 1999
    [23]王才,韩超,刘希光,袁琳.污泥消化处理试验研究.给水排水1999年25卷 第6期
    [24]王琳,王宝贞. 污泥减量技术.给水排水 VOI.26 NO.10 2000
    [25]任鹤云.污泥的处理和处置.中国给水排水 1989 VOI.5 NO.4
    [26]杨畸,刘广立,钱易.污泥处理与处置技术的新边展.上海环境科学1999年第18卷第3期
    [27]张辰.城市污水处理厂设计中热点问题剖析.给水排水VOI.25 No.9.1999
    [28]王秀月.污水处理厂污泥处理.上海环境科学.1998年第2卷第8期
    [29]杨宝林.污水处理厂技术概况和发展动向.中国给水排水.1991 VOI.7 NO.4
    [30]全国117座污水处理厂概况.给水排水.1995 NO.2
    [31]薛文源.城市污水污泥处理与处置的途径.中国给水排水.1992.VOL.8 NO.l
    [32]朱南文,高廷耀,周增炎.我国城市污水厂污泥处置途径的选择.上海环境科学1998年第17卷第11期
    
    [33]把污泥变为燃料可用来发电.环境科学动态(全国环境保护科技情报网).1989年6月
    [34] T.Calcutt.R.Frost将来污泥处置Al艺选择.环境科学动态.1989年8月
    [35]何品晶,邵立明,陈正夭,顾国维.污水厂污泥低温热化学转化过程机理研究.中国环境科学1998.18(4):39-42
    [36]傅大放,蔡明元,华建良,黄晨,叶公建.污水厂污泥微波处理试验研究.中国给水排水 1999 NO1.15
    [37]汪洪生.国外污水处理技术进展.污染防治技术.1998年3月第11卷第 1期
    [38]日本的污泥处理现状及展望.尹军,韩卫泽. 1995 VOI.11 NO.3
    [39]赵亚乾,R.D.Davis.英国污泥处置现状及其发展概述.给水排水Vol.24.No.9 1998
    [40]英国污泥加工技术新进展.国外环境科学技术. 1993年第4期
    [41]高水筹 .北京市高碑店污水处理厂一期工程简介.给水排水NO.3 1993.
    [42]刘志杰等.UASB工艺处理啤酒厂废水的生产性实验研究.中国沼气.1993.11(4):l- 5
    [43]林文波,李玉庆,聂有壮,马万军.污水处理厂沼气发电并网运行系统.中国给水排水.1999 1-15
    [44]颜丽等.我国大中型沼气工程现状及发展前景.探讨中国沼气.1996 4(1):19-22
    [45]徐迪民,陈绍伟,宋伟如,等.厌氧-好氧两段活性污泥处理垃圾填埋场惨滤水的研究[J]中国环境科学. 1989.9(4):311-314
    [46]申秀英,许晓路,蒋锦春.垃圾填埋沥滤水的活性污泥法处理[J].中国给水排水.1995.11(3):37-40
    [47]符征鸽.铁法预处理糖蜜酒精废液沼气发酵工艺的研究.中国沼气,1995,13(3):10-13
    [48]顾蕴漩等.高硫酸盐废水厌氧俏化中硫酸盐抑制解除方法的研究.中国沼气1996,14(4):11-16
    [49]闵航.厌氧微生物学.杭州浙江大学出版杜.1993;l臧文超.我国城市生活垃圾现状与管理问题.环境保护1998,(8):41-43
    [50]陈新庚.我国生活垃圾处置趋势分析.中山大学学报(自然科学版).1998,37(2):175-179
    [51]中科院成都生物所.沼气发酵常规分析.北京:科技出版社,1998
    [52]王中民主编.城市垃圾处理与处置.北京:中国建筑工业出版社.1991
    [53]申丘澈著,污水污泥处置.吴自迈译.北京:中国建筑工业出版杜.1981
    [54]金儒霖主编.污泥处置.北京:中国建筑工业出版杜.1993
    [55]扬振沂译.厌气消化设备设计手册.中国市政工程西南设计院.香港艺高工程有限公司.1994
    [56]北京市市政工程设计研究总院主编.给水排水设计手册第5册.城市排水.北京:中国建筑工业出版杜.1986
    [57]陈洪章,陈继贞.汽爆工艺的研究[J].纤维素科学与技术,1999.7(2):60- 64
    [58]陈洪章.纤维质原料微生物转化与生物量全利用的研究[D].北京:中国科学院化工冶金研究所1998,40-69
    [59]孙国朝,邵廷杰,郭学敏.沼气干发酵工艺必须的条件:沼气新技术应用研究[M].成都:四川
    
    
    科学技术出版杜.1998.47-58
    [60]赵友才.生活坟圾资源化原理与技术[M].北京:化学工业出版社. 2002
    [61]R.E.斯皮思.工业废水的厌氧主物技术[M].北京:中国建筑工业出版社.2001
    [62]小山泰正(日本)情况交流.中科院成都生物所内刊.1983
    [63]CH.Aubart.国外沼气.中国科技情报所重庆分所.1984;3
    [64]徐洁泉等.第四届国际厌氧消化会论文集.1985:65
    [65]P.Y.Yang等.国外沼气.中国科技情报所重庆分所.1986;6
    [67]N.E.H Riclden国外沼气.中国科技情技所重庆分所.1986;7
    [68]刘克鑫.垃圾堆肥的历史与现状.四川城市环境卫生.1987.2、3期合刊
    [69]刘克鑫.垃圾堆肥技术进展.农业现代化研究. 1988,l
    [70]刘克鑫.城市固体废物厌氧消化技术研究.生命科学进展.北京:中国医药科技出版社.1993
    [71] Jackson. A. P. Educes. G. H. An assessment of the lass associated with PCDD following the application of sewage sludge to agriculture land.Chemo sphere. 1994. 29( 12):2523~2543
    [72] U. Colombo, "A Contribution Towards Solving the Protein Deficient Problem in the Developing Countries," paper presented at the Asian Regional Seminar on the Contributions of Science and Technology to National Development, New Delhi, 4 - 6 October 1978.
    [73] R. E. Inman, "Silvicultural Biomass Farms," Meter Tech. Report 7347 11): 1 - 62 (1977).
    [74]Choi, E, and J. M. Rim, Competition and inhibition of sulfate reduces and menthane producers in anaerobic treatment. [M]Water Science and Technology. 23:1259~1264 ,1991
    [75]Dague, R. R. ,Aplication of digestion theory to digester control. Journal, [M]Water Pollution Control Federation 40: 2021-2032,1968 Oven,J.Water Science and Technology,V25,n2,p34-41 Oven,J.Water Science and Technology,V25,n2,p63-67 Oven,J.Water Science and Technology,V25,n2,p101-112
    [76] H.G. Schegel and J. Barnea, Microbial Energy Conversion, Pergamon Press, New York, 1977.
    [77] H.A. Wilcox, in N.T. Monney (ed.), Ocean Energy Resources, pp. 83 - 104, American Society of Mechanical Engineers, New York, 1 977.
    [78] B.C. Wolverton, R.C. McDonald, and J. Gordon, "Bioconversion of Water Hyacinths into Methane Gas: Part I," NASA Tech. Report TM-X-72715, Bay St. Louis, Mississippi, 1975.
    [79] R.J. Olembo, in W.R. Stanton and E.J. DaSilva (eds.), GIAM V. Global Impacts of Applied Microbiology. State of the Art: GIAM and its Relevance to Developing Countries, pp. 27 - 34, University of Malaya Press, Kuala Lumpur, 1978.
    [80] W.R. Stanton and DaSilva (eds.), GIAM V. Global Impacts of Applied Microbiology. State of the Art: GIAM and its Relevance to Developing Countries, University of Malaya Press, Kuala Lumpur, 1978.
    
    [82] C. Rolz, "Particular Problems of Solid Waste Reclamation in Developing Countries," J. Appl. Chem. Biotechnol. 28: 321 11978).
    [82] E.J. DaSilva, R. Olembo, and A. Burgers, "Integrated Microbial Technology for Developing Countries: Springboard for Economic Progress," Impact Sci. Soc. 28: 159 11978).
    [83] D. Pimentel, D. Nafus, W. Vergers, D. Papal, L. Jaconetta, M. Wolfe, L. Olsvig, K. Frech, M. Loye, and F. Mendoza, "Biological Solar Energy Conversion and U.S. Energy Policy," Bioscience 28: 376 (1978).
    [84] C. Norman, "Soft Technologies, Hard Choices," World watch Paper No. 21 11978).
    [85] C.-G. Hedén, "Enzyme Engineering and the Anatomy of Equilibrium Technology," Quart Rev. Biophysics 10: 113 (1977),
    [86] R. Espinosa, D. Maldonado, J.F. Menchu, and C. Rolz, "Aerobic Nonaseptic Growth of Verticillium on Coffee Waste Waters and Cane Blackstrap Molasses at a Pilot Plant Scale," Biotechnol. Bioeng. Symposium 7: 35 11977).
    [87] D. Altenpohl, "Assessment of Appropriate Technology (AT) for Emerging Nations," paper presented at the Asian Regional Seminar on the Contributions of Science and Technology to National Development, New Delhi, 4 - 6 October 1978.
    [88] A. Sanchez-Marroquin, "Mixed Cultures in the Production of Single-Cell Protein from Agave Juice," Biotechnol. Bioeng. Symposium 7: 23 (1977).
    [89] F.G. Priest, "Extracellular Enzyme Synthesis in the Genus Bacillus," Bacteriol. fey. 41: 711 (1977).
    [90] A.E. Reade and K.F. Gregory, "High-Temperature Production of Protein-Enriched Feed from Cassava by Fungi," Appl. Microbil. 30: 897 (1975).
    [91] T.J.B. Demonizes, T. Karaka, P.R. Delano, and A.M. Sales, "Fungal Celluloses as an Aid for the Saccharification of Cassava," Biotechnology. Boeing. 20: 555 (1978).
    [92] N.H. Mermelstein, "Immobilized Enzymes Produce High-Fructose Corn Syrup," Food Technology. 29:20 (1975).
    [93] A. Wiseman, Topics in Enzyme and Fermentation Biotechnology 1, Ellis Horwood, Chichester, England.
    [94] Y.D. Hang, D.F. Splittstoesser, and E.E, Woodams, "Utilization of Brewery Spent Grains Liquor by Aspergillus niger," Appl. Microbiol. 30:879 (1975).
    [95] B. Bhushan, Agricultural Residues and Their Utilization in Some Countries of South and Southeast Asia, Report UNEP/FAO/ISS 4/06, Rome, 18 - 21 January 1977.
    [96] R.C. Loehr, An Overview: Utilization of Residues from Agriculture and Agro-Industries, Report UNEP/FAO/ISS 4/02, Rome, 18 - 21 January 1977.
    
    [97] W.R. Stanton, Survey of Agricultural and Agro-Industrial Residues in Selected Countries in Africa, Report UNEP/FAO/ISS 4/07. Rome, 18 - 21 January 1977.
    [98] Y.W. Han and S.K. Smith, Utilization of Agricultural Crop Residues. An Annotated Bibliography of Selected Publications, 1966 - 76. p. 120, ARS W-53, U.S.D.A. and Oregon Agriculture Experiment Station, Corvallis, Oregon, 1978.
    [99] National Academy of Sciences-National Research Council, Methane Generation from Human, Animal, and Agricultural Wastes, NAS, Washington, D.C., 1977.
    [100] S.T. Chang and W.A. Hayes, The Biology and Cultivation of Edible Mushrooms, Academic Press, New York, 1978,
    [101] T. Kaneshiro, "Lignocellulosic Agricultural Wastes Degraded by Pleurotus ostreatus," Devel, Indust. Microbiol. 18: 591 11976).
    [102] F. Zadrazel, "The Ecology and Industrial Production of Pleurotus ostreatus, P. florida, P. cornucopiae, and P. eryagii," Mushroom Sci. 9 (1): 621 (1976).
    [103] B.V. Hofsten and A.V. Hofsten, "Ultrastructure of the Thermotolerant Basidiomycete Possibly Suitable for Production of Food Protein," Appl. Microbiology 27: 1142 (1974).
    [104] A.E. Humphrey, A. Moreira, W. Armiger, and D. Zabriskie "Production of Single-Cell Protein from Cellulose Wastes,' Biotechnol. Bioeng. Symposium 7: 45 (1975).
    [105] M. Mandels and D. Sternberg, "Recent Advances in Cellulase Technology," J. ferment Technol. 54: 267 (1976).
    [106] L.A. Spano, J. Medeiros, and M. Mandels, "Enzymatic Hydrolysis of Cellulosic Wastes to Glucose for the Production of Food, Fuel, and Chemicals. Trichoderma viride, Fungal Fermentative Agent," J. Wash. Acad. Sci. 66: 279 (1976).
    [107] C.L. Cooney and D.L. Wise, "Thermophilic Anaerobic Digestion of Solid Waste for Fuel Gas Production," Biotech. Bioeng. 17: 1119 (1975).
    [108] P.J. Weimer and J.D. Zeikus, "Fermentation of Cellulose and Cellobiose by Clostridium thermocellum in the Absence and Presence of Methanobacterium thermosutotrophicum," Appl. Environ. Microbiol. 33: 289 (1977).