8-羟基喹啉及其类似物抑制体外H460细胞增殖的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜是人和动物组织必需的微量元素之一,也是细胞调整蛋白骨架必需的化学元素。多项癌症研究发现,血清中铜的浓度与肿瘤发生,肿瘤负荷,肿瘤恶性进展及肿瘤复发有关。铜在肿瘤发生过程中发挥着积极的作用,肿瘤细胞的特性之一是积聚高浓度铜,有目的的消耗铜是目前研究者认为比较理想的抗肿瘤策略之一。目前一些上市的抗铜试剂比如四硫钼酸盐Tetrathiomolybdate(TM)、卡托普利(Captoril)、锌(Zinc)和曲恩汀(Trientine)等被发现在抗肿瘤治疗中有一定功效,它们的作用主要是降低肿瘤组织中过量的铜,但是它们的最大局限性表现为疗期过长、副作用高、毒性大等。
     8-羟基喹啉8-hvdroxyquinoline(Ox)和5-氯-7-碘-8-羟基喹啉5-chloro-7-iodo-8-hydroxyquinoline(CQ)是一类常见的金属配合物。有资料证实CQ与Cu(Ⅱ)形成的复合物可能依赖于8位羟基和吡啶环上的N。近几年有研究发现CQ不但可以有效的治疗老年痴呆症还可以抑制8种不同的人体肿瘤细胞系的生长,而且这个抑制作用会随着金属离子Cu~(2+)或者Zn~(2+)的介入而增强。有研究还表明Cu~(2+)存在的条件下,Ox和CQ是一类新型的蛋白酶体抑制剂。但是Ox及其CQ在Cu~(2+)存在的条件下对肿瘤细胞的作用机制目前还不清楚。
     基于以上研究,本论文将着重探讨Ox、CQ在内源性铜的介入下抑制H460肺癌细胞增殖的作用机制。论文将围绕三个部分展开研究:第一部分研究Ox、CQ对H460肺癌细胞生长的抑制作用,重点探讨Ox、CQ对铜的依赖性与其抗肿瘤活性的关系;第二部分通过将Ox、CQ的8-位羟基进行取代得到70个Ox类似物,研究这些类似物的抗肿瘤活性是否依赖于铜;第三部分初步探讨Ox、CQ及其Ox类似物对H460细胞生长抑制作用的机理。
     论文另一部分的主要工作是运用HPLC/MS/UV检测器创建一种新的分析方法,对50种结构不同的有机物在储存和生物筛选过程中的自校正绝对定量法的可行性应用进行评价。
     论文的主要工作及其结果如下:
     第一部分,为了研究Ox及其CQ对H460细胞的活性是否依赖于Cu~(2+),我们比较了三种不同的加药方式对H460细胞的生长抑制作用,测定三种不同加药条件下H460细胞中Cu~(2+)的含量,运用紫外光谱滴定法测定Ox-Cu~(2+)和CQ-Cu~(2+)在体外细胞环境中的结合常数K_(b1)和K_(b2)。结果发现这两种有机配体本身具有抑制H460细胞生长的活性,且Ox的活性比CQ的活性强,内源铜的介入可以促进有机配体对H460细胞的生长抑制作用。通过测定细胞中Cu~(2+)含量,发现有机配体CQ、Ox能促使细胞中Cu~(2+)含量的升高,利用光谱分析测得Ox、CQ能有效的结合Cu~(2+),Ox-Cu~(2+)的结合常数K_(b1)比CQ-Cu~(2+)结合常数K_(b2)大。
     第二部分,我们研究了70个Ox类似物对H460细胞的毒性,结果发现当Ox及其CQ的8位-OH被其它取代基取代后对H460细胞没有毒性,Ox类似物的抗肿瘤活性依赖于Cu~(2+),内源性Cu~(2+)存在时17个Ox类似物表现出抗肿瘤活性。通过比较17个抗肿瘤活性依赖于铜的Ox类似物的IC_(50),发现类似物1#、5#、6#和115#对癌细胞生长的抑制作用较强,但是比Ox、CQ弱。利用紫外光谱分析这些化合物与Cu~(2+)的结合作用,发现Ox类似物与Cu~(2+)不结合。
     第三部分,通过进一步研究Ox、CQ及其17个有活性的化合物对H460细胞的生长抑制作用,发现17个化合物在内源性铜的介入下对H460细胞的生长抑制作用增强。着重研究115#、CQ、Ox对细胞中Cu~(2+)含量的影响,发现Ox及其类似物能促使细胞内铜含量的升高,其中Ox把Cu~(2+)带入细胞内的量比CQ带入的多;而类似物115#带入Cu~(2+)的量较少。另外我们测定了有无内源性铜的条件下,H460细胞中ROS的水平变化,发现加入Ox、CQ、及其有活性的17个化合物都能促使H460细胞中ROS含量的升高,但是通过比较发现ROS含量的升高不是化合物抑制H460细胞增殖的主要原因。
     第四部分,运用HPLC/MS/UV检测器,对用于生物活性筛选的50个不同结构的化合物进行绝对定量,发现HPLC/MS/UV检测器绝对定量对用于生物活性筛选的药物具有一定的优势:在化合物的生物活性试验中,有利于高通量筛储存已久的化合物,测定其真实浓度,用于前期筛选和IC_(50)的测定;有利于对因储存已久而被分解的药品进行重新收集和再分析。
     结论:
     1)Ox、CQ能有效的抑制H460细胞的增殖,在内源性铜的参与下Ox、CQ对H460细胞的生长抑制作用加强,其抑制作用可能与有机配体和铜的结合能力有关:
     2)Ox类似物当8位羟基被取代后对H460细胞没有毒性,说明Ox及其CQ的8位羟基是羟基喹啉类化合物的抗癌活性位点。Ox类似物的抗肿瘤活性依赖于内源性铜,但是其机制与化合物和铜的结合机制无关。
     3)Ox、CQ及其Ox类似物对H460细胞的生长抑制作用均依赖于铜,能促进细胞内铜升高。但是这种依赖机制不完全是由于结合作用产生的。
     4)OX、CQ及其OX类似物可以促使H460细胞中ROS含量升高,但是ROS升高不是化合物抑制H460细胞生长的主要因素。
     5)运用HPLC/MS/UV检测器对储存已久的药物进行绝对定量是可行的,但是具有一定的局限性。
Cu is an essential trace element in human and animal tissues. The copper ion is also an integral part of many metalloenzymes. It has been found the serum copper concentration correlates with tumor incidence and burden, malignant progression and recurrence in a variety of human cancer. Copper ions seem to play on important role in the stimulation of angiogenesis. Therefore, copper became one of the targets in antiangiogenic cancer treatment. In vitro and in vivo studies have confirmed the efficacy of copper-reducing and copper-chelating agents in antiangiogenic treatment. Based on the experimental data coming from in vitro and in vivo studies, it seems reasonable to use copper chelators or copper-reducing agents in antiangiogenic treatment alone or in combination with other therapeutic approaches like surgery or classic chemotherapy, such as tetrathiomolybdate (TM), Captoril、Zinc and Trientine . However, there are certain limitations of using anti-copper compounds in antitumour treatment. One of them is the long time of drug administration required to produce therapeutic effects. In addition, more work has to be done to explore the exact mechanisms of action of copper-reducing agents and even more important, to define the effects of a long-term copper deficiency.
     In recently a kind of organic-copper compounds, (8-hydroxyquinoline) Ox and (5-chloro-7-iodo-8-hydroxyquinoline) CQ were found to inhibit the chymotrypsin-like activity of the proteasome in vitro and in human tumor cell culture. Proteasome inhibition and apoptosis were also studied in copper-containing cancer breast cells treated with 8-hydroxyquinoline. CQ is capable of binding copper, forming new complexes that have proteasome-inhibitory to cancer breast cells. Dou concludes the complex between CQ and copper in tumor cellular is a novel proteasome inhibitor. CQ also has the effects on the viability of eight human cancer cell lines. Varia group analyzed the crystal structure of CQ-Cu (II) complex by the way of X ray diffractometry and proved the binding of CQ - Cu (II) is depended on the 8- hydroxyl and N of pyridine.
     Based on the research referred we presumed the 8- hydroxyl of Ox and CQ is bind to Cu (II) and has antitumor bioactivity to cancer cells. While 8- hydroxyl is substituted it is unable to bind Cu (II) and have no bioactivity. The content of this paper consists four parts. In the first part, the anti-proliferative effects of Ox and CQ on H460 cell line was studied in copper-enrichment or not. Especially the mechanism of anti-proliferative effects of Ox and CQ on H460 was discussed in this paper. In the second part, the 8- hydroxyl of Ox and CQ was substituted by alkane and the library of 8-OHQ analogs was synthesized by combinatory chemistry approach. The library of Ox analogs were screened for their antitumor activity on H460 cell line. In the third part, the mechanism of antitumor activity for Ox, CQ and Ox analogs were discussed. In the last part the feasibility of a self-calibrated LC/MS/UV method to determine the absolute amount of compounds in their storage and screening lifecycle was evaluated.
     The major research work and results of the paper are as follows:
     Part 1 the anti-proliferative effects on H460 cell line were compared under three treatments and UV-Vis titration was used to study the binding constant between Ox, CQ and Cu (II). The copper level of H460 per cell was determined under three treatments. The cytotoxic activity of Ox, CQ was investigated and the Ox was more potent than CQ on H460 cell line. Moreover the cytotoxic activity was more active for the ligands in copper-enrichment than without copper. The chelators were able to increase the level of copper of per cell when the cell line was cultured in copper-enrichment medium and the binding constants took great effect on the copper level of H460 cell line, which also influenced the cell viability. The binding constant of Ox-Cu~(2+) is larger than the binding constant of CQ-Cu~(2+) so Ox is easier to combine with Cu (II) than CQ, which raised the Cu level of cell line.
     Part 2, the Ox analogs were found inactive on H460 cell line when 8-hydroxyl was substituted by alkine. While six of 8-hydroxyquinoline derivatives and eleven of 8-hydroxyquinoline analogs were active on H460 cell line when mixed with Cu (II). By contrast to their IC50 values of six 8-hydroxyquinoline derivatives and eleven of 8-hydroxyquinoline analogs compounds 1#, B, C and 115 # were particularly potent on H460 cell line but were less than Ox and CQ. They are unable to combine with Cu (II) by UV-vis titration.
     Part 3 In contrast the anti-proliferative effects of Ox, CQ and Ox analogs in four different treatments are more potent to inhibit the cell viability when fully mixed with Cu more time and were determined higher level of Cu in per cell. It was found that the intracellular Cu level was connected with binding constants in four different treatments. In contrast the binding constant of Ox-Cu~(2+) is larger so higher level of Cu~(2+) were transferred into cells than CQ. However 115# was capable to transfer Cu~(2+) into the cells even though it didn't combine with Cu (II). In addition Ox, CQ and OX analogs at low concentrations in the presence of copper or not generates reactive oxygen species (ROS). The level of intracellular ROS was not the main mechanism of inhibition of H460 cells proliferation.
     Part 4 HPLC/MS/UV detector was applied to determine the self-calibrated quantification for the library of 50 pure compounds. There are several immediate applications of this method: 1) quantification of storage compounds at the time of screening to determine the real concentration for primary screening and IC50 measurements; 2) re-analyze compound collection by quantification of compound loss due to decomposition, freeze/thaw, and other effects during storage.
     Conclusions:
     1) Ox and CQ are potent to inhibit H460 cells proliferation. The anti-tumor proliferative effect is related with binding constant
     2) Ox analogs are inactive on H460 cell line but it is highly potent on H460 cell line in the presence of Cu (II).
     3) Ox, CQ and Ox analogs generates reactive oxygen species in the presence of Cu (II) nor not. The generation of ROS was not the main mechanism of inhibition of H460 cells proliferation.
     4) The self-calibrated LC/MS/UV method to determine the absolute amount of compounds in their storage and screening lifecycle is feasible but it has some limitation.
引文
[1] Bradberry, S. Copper[J]. Medicine 2007, 35, 608-608.
    [2] Halliwell, B., Gutteridge, J.M.C. Role of Free-Radicals and Catalytic Metal-Ions in Human-Disease - an Overview[J]. Methods in Enzymology 1990, 186, 1-85.
    [3] Aust, S.D., Morehouse, L.A., Thomas, C.E. Role of metals in oxygen radical reactions[J]. Journal of Free Radicals in Biology & Medicine 1985, 1, 3-25.
    [4] Tamai, K. T., Gralla, E. B., Ellerby, L. M., et al. Yeast and Mammalian Metallothioneins Functionally Substitute for Yeast Copper-Zinc Superoxide-Dismutase[J]. Proceedings of the National Academy of Sciences of the United States of America 1993, 90, 8013-8017.
    [5] Halliwell, B., Gutteridge, J.M.C. Oxygen Free-Radicals and Iron in Relation to Biology and Medicine-Some Problems and Concepts[J]. Arch. Biochem. Biophys.1986, 246, 501-514.
    [6] Bar-Or, D, Rael, L.T., Lau, E.P, et al. An analog of the human albumin N-terminus (Asp-Ala-His-Lys) prevents formation of copper-induced reactive oxygen species[J]. Biochem. Biophys. Res. Commun. 2001, 284, 856-862.
    [7] Obata, H., Sawada, N., Isomura, H., et al. Abnormal accumulation of copper in LEC rat liver induces expression of p53 and nuclear matrix-bound p21(wafl/cip1)[J]. Carcinogenesis 1996, 17, 2157-2161.
    [8] Burkitt, M.J., Lester, P. Copper-DNA adducts[J]. Methods Enzymol. 1994,234,66-79.
    [9] Oikawa, S., Hirosawa, I., Hirakawa, K., et al. Site specificity and mechanism of oxidative DNA damage induced by carcinogenic catechol[J]. Carcinogenesis 2001,22,1239-1245.
    [10] Maskos K. The interaction of metal ions with nucleic acids NMR study of the copper (Ⅱ) interaction with inosine derivatives[J]. ActaBiochimPol.1981,28,317-35.
    [11] Zhu, Z., Thiele, D.J. Toxic metal-responsive gene transcription[J]. Exs.1996, 77,307-20.
    [12] Burkitt, M.J., Lester, P. Copper-DNA adducts[J]. Methods Enzymol. 1994,234,66-79.
    [13] Zhou, P., Thiele, D.J. Rapid transcriptional autoregulation of yeast metalloregulatory transcription factor is essential for high-level copper detoxification[J]. Genes Dev 1993,7,1824-35.
    [14] Milne, L., Nicotera, P., Orrenius, S., et al. Effects of glutathione and chelating agents on copper-mediated DNA oxidation: pro-oxidant and antioxidant properties of glutathione[J]. Arch Biochem Biophys. 1993, 304,102-6.
    [15] Sakano, K., Oikawa, S., Murata, M., et al. Mechanism of metal-mediated DNA damage induced by metabolites of carcinogenic 2-nitropropane[J]. Mutat Res.2001,479,101-11.
    
    [16] Brewer, G.J. Wilson disease and canine copper toxicosis[J]. Am J Clin Nutr.1998, 67,1087-90.
    
    [17] Harris, E.D. Copper transport and metabolism an update[J]. The Journal of Trace elements in experimental medicine. 1998,11, 163-176.
    
    [18] Lutenko, S., Kaplan, J.H. Organization of P-type ATPases: significance of structural diversity[J]. Biochemistry, 1995, 34,15607-15613
    
    [19] Rae, T.D., Schmidt, P.J., Pufahl, R.A., et al. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase[J].Science, 1999, 284,805-808.
    [20] Halliwell, B., Gutteridge, J.M. Role of free radicals and catalytic metal ions in human disease: an overview[J]. Methods Enzymol. 1990,186,1-85.
    [21] Pufahl, R.A. et al. Metal ion chaperone function of the soluble Cu (I) receptor Atxl[J]. Science 1997,278, 853-856.
    [22] Brewer, G.J., Dick, R.D., Grover, D.K., et al. Treatment of metastatic cancer with tetrathiomolybdate, and an anticopper, antiangiogenic agent: phase I study[J]. Clin Cancer Res 2000,6,1-10.
    
    [23] Atanassova, A., Lam,R.;Zamble, D.B. A high-performanceliquid chromatography method for determining transition metal content in proteins. Anal. Biochem. 2004,335,103-111.
    [24] Folkman, J. Tumor angiogenesis: therapeutic implications[J]. New England Journal of Medicine 1971,285,1182-1186.
    [25] Scappaticci, F.A. Mechanisms and future directions for angiogenesis-based cancer therapies[J]. Journal of Clinical Oncology. 2002,20,3906-3927.
    [26] Kuo, H.W., Chen, S.F., Wu, C.C., et al. Serum and tissue trace elements in patients with breast cancer in Taiwan[J]. Biological Trace Element Research 2002,89,1-11.
    
    [27] Brem, S., Wotoczek-Obadia, M.C. Regulation of angiogenesis by copper reduction and penicillamine: antagonism of cytokine and growth factor activity.AACR Special Conference: Angiogenesis and Cancer Research, Orlando, USA,January 24-28,1998, Abstract A-16.
    
    [28] Ziche, M., Jones, J., Gullino, P.M. Role of prostaglandin El and copper in angiogenesis[J]. Journal of the National Cancer Institute 1982, 69, 475-482.
    [29] Imajohohmi, S., Kawaguchi, T., Sugiyama, S., et al. Lactacystin, a Specific Inhibitor of the Proteasome, Induces Apoptosis in Human Monoblast U937 Cells[J]. Biochem. Biophys. Res. Commun. 1995, 217, 1070-1077.
    [30] Fett, J.W., Strydom, D.J., Lobb, R.R. et al. Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells[J].Biochemistry1985, 24,5480-6.
    
    [31] Badet, J., Soncin, F., Guitton, J.D., et al. Specific binding of angiogenin to calf pulmonary artery endothelial cells[J]. Proc Natl Acad Sci U S A. 1989,86,8427-31.
    
    [32] Soncin, F., Guitton, J.D., Cartwright, T., et al. Interaction of human angiogenin with copper modulates angiogenin binding to endothelial cells[J]. Biochem Biophys Res Commun.1997, 236,604-610.
    [33] Hu, G.F. Copper stimulates proliferation of human endothelial cells under culture [J]. Journal of Cellular Biochemistry 1998, 69,326-335.
    [34] Starkebaum, G., Root, R.K. D-Penicillamine: analysis of the mechanism of copper-catalyzed hydrogen peroxide generation[J]. J Immunol. 1985,134,3371-8.
    [35] Apelgot, S., Copey, J., Fromentin, A., et al. Altered distribution of copper (~(64)Cu) in tumor-bearing mice and rats[J]. Anticancer Res 1986,6,159-64.
    [36] Walshe, J.M. Treatment of Wilson's disease with trientine (triethylene tetramine) dihydrochloride[J].Lancet 1982,1,643-7.
    [37] Yoshii, J., Yoshiji, H., Kuriyama, S., et al. The copper-chelating agent, trientine, suppresses tumor development and angiogenesis in the murine hepatocellular carcinoma cells[J]. InternationalJournal of Cancer 2001,94,768-773.
    [38] Lakshmanan, V., Nagaraja, K.S., Udupa, M.R. Synthesis and characterization of copper (I) tetrathiomolybdates[J]. Ind J Chem. 1994, 33,772-4.
    [39] Cox, C, Teknos, T.N., Barrios, M., et al. The role of copper suppression as an antiangiogenic strategy in head and neck squamous cell carcinoma[J].Laryngoscope 2001,111, 696-701.
    [40] Pan, Q., Kleer, C.G., Golen, K.L., et al. Copper deficiency induced by tetrathiomolybdate suppresses tumor growth and angiogenesis[J]. Cancer Res 2002, 62,4854-9.
    [41] Tsubaki, T., Honma, Y., Hoshi, M. Neurological syndrome associated with clioquinol [J]. Lancet 1971,1,696-7.
    [42] Vaira, D.M., Bazzicalupi, C, Orioli, P., et al. Clioquinol, a drug for Alzheimer's disease specifically interfering with brain metal metabolism: structural characterization of its zinc(II) and copper(II) complexes[J]. Inorg.Chem. 2004,43 ,3795 - 3797.
    [43] Wei, Q.D., Bolin, L., Joshua, L., et al. Anticancer activity of the Antibiotic Clioquinol[J]. Cancer research 2005,65,8.
    [44] Daniel, K.G, Gupta, P., Harbach, R.H., Guida, W.C., Dou, Q. P. Organic copper complexes as a new class of proteasome inhibitors and apoptosis inducers in human cancer cells. Biochemical Pharmacology 2004, 67, 1139-1151.
    [45] Chen, D., Cui, Q.Z.C., Yang, H.J, Dou, Q.P. Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer Research 2006, 66, 10425-10433.
    
    [46] An, B., Goldfarb, R.H., Siman, R., Dou, Q.P. Novel dipeptidyl proteasome inhibitors overcome Bcl-2 protective function and selectively accumulate the cyclin-dependent kinase inhibitor p27 and induce apoptosis in transformed, but not normal, human fibroblasts. Cell Death Differ. 1998, 5,1062-75.
    
    [47] Marikovsky, M, Nevo, N., Vadai, E., et al. Cu/ Zn superoxide dismutase plays a role in angiogenesis[J]. Int J Cancer 2002,97,34-41.
    
    [48] Moriguchi, M, Nakjima, T., Kimura, H., et al. The copper chelator trientine has an antiangiogenic effect against hepatocellular carcinoma, possibly through inhibition of interleukin-8 production[J]. IntJ Cancer 2002,102,445-52.
    [49] Kotsaki-Kovatsi, V.P., Koehler-Samouilidis, G., Kovatsis, A., et al. Fluctuation of zinc, copper, magnesium and calcium concentrations in guinea pig tissues after administration of captopril[J]. J Trace Elem Med Biol. 1997,11,32-6.
    [50] Mueller, S.A., Driscoll, W.J., Mueller, G.P. Captopril inhibits peptidylglycine-alpha-hydroxylating monoxygenase: implication for therapeutic effects[J]. Pharmacology. 1999, 58,270-80.
    
    [51] McKee, M.L., Kerwin, S.M. Synthesis, metal ion binding, and biological evaluation of new anticancer 2-(2'-hydroxyphenyl)benzoxazole analogs of UK-1.Bioorganic & Medicinal Chemistry. 2008, 16, 1775-1783.
    
    [52] Adams, J., Palombella, V.J., Sausville, E.A., et al. Proteasome inhibitors: A novel class of potent and effective antitumor agents[J]. Cancer Research. 1999, 59,2615-2622.
    [53] Conley, R.T. Infrared spectroscopy. Boston: Allyn and Bacon, 1966.
    [54] An, B., Goldfarb, R.H, Siman, R., Dou, Q.P. Novel dipeptidyl proteasome inhibitors overcome Bcl-2 protective function and selectively accumulate the cyclin-dependent kinase inhibitor p27 and induce apoptosis in transformed, but not normal, human fibroblasts. Cell Death Differ 1998, 5,1062-75.
    [55] Lopes, U.G., Erhardt, P., Yao, R., Cooper, G.M. P53-dependent induction of apoptosis by proteasome inhibitors. J Biol Chem 1997,272,12893-6.
    [56] Adams, J. The proteasome: structure, function, and role in the cell. Cancer Treat Rev 2003, 3-9.
    [57] Viola-Rhenals, M., Rieber, M.S., Rieber, M. Role of peroxidases, thiols and Bak/Bax in tumor cell susceptibility to Cu [DEDTC])2. Biochemical Pharmacology 2007, 74, 841-850.
    [58] Julnar, U., Georges, N., Walid, S., et al. Copper-adenine complex: A new class of compounds with multi-in vitro biochemical effects on cancer cells. Toxicology 2006, 226, 53-54.
    [59] Roy, S., Banerjee, R., Sarkar, M. Direct binding of Cu(II)-complexes of oxicam NSAIDs with DNA backbone. Journal of Inorganic Biochemistry 2006, 100,1320-1331.
    [60] Merritt, A.T. Solution phase combinatorial chemistry [J]. Comb Chem High Throughput Screen. 1998, 1, 57 - 72.
    [61] Pirrung, M.C., Chen, J. Preparation and Screening against Acetylcholinesterase of a Non-Peptide "Indexed" Combinatorial Library [J]. J Am Chem Soc. 1995,117,1240-1245.
    [1] Cherny, R.A., Atwood, C.S., Xilinas, M.E., et al. Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer's disease transgenic mice[J]. Neuron. 2001,30, 665-676.
    
    [2] Kaur, D., Yantiri, F., Rajagopalan, S., et al. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: A novel therapy for Parkinson's disease[J]. Neuron 2003, 37, 899-909.
    
    [3] Vaira, D.M., Bazzicalupi, C, Orioli, P., et al. Clioquinol, a drug for Alzheimer's disease specifically interfering with brain metal metabolism: Structural characterization of its zinc(II) and copper(II) complexes[J]. Inorg. Chem. 2004,43,3795-3797.
    
    [4] Ferrada, E., Arancibia, V., Loeb, B., et al. Stoichiometry and conditional stability constants of Cu(II) or Zn(II) clioquinol complexes; implications for Alzheimer's and Huntington's disease therapy[J]. Neurotoxicology 2007,28, 445-449.
    [5] Daniel, K.G, Chen, D., Orlu, S., et al. Clioquinol and pyrrolidine dithiocarbamate complex with copper to form proteasome inhibitors and apoptosis inducers in human breast cancer cells[J]. Breast Cancer Res. 2005, 7, 897-908.
    [6] Chen, D., Cui, Q.C., Yang, H.J, et al. Clioquinol, a therapeutic agent for Alzheimer's disease, has proteasome-inhibitory, androgen receptor-suppressing,apoptosis-inducing, and antitumor activities in human prostate cancer cells and xenografts[J]. Cancer Res. 2007, 67,1636-1644.
    
    [7] Daniel, K.G., Gupta, P., Harbach, R.H., et al. Organic copper complexes as a new class of proteasome inhibitors and apoptosis inducers in human cancer cells[J].Biochem. Pharmacol. 2004, 67, 1139-1151.
    [8] Ding, W.Q., Liu, B.L., Vaught, J.L., et al. Anticancer activity of the antibiotic clioquinol[J]. Cancer Res. 2005, 65, 3389-3395.
    [9] Harrison, M.D., Jones, C.E., Dameron, C.T. Copper chaperones: function,structure and copper-binding properties[J]. J. Biol Inorg.Chem. 1999,4,145-53.
    [1] Daniel, K.G, Chen, D., Orlμ, S., et al. Clioqμinol and pyrrolidine dithiocarbamate complex with copper to form proteasome inhibitors and apoptosis inducers in human breast cancer cells[J]. Breast Cancer Res. 2005, 7, 897-908.
    [2] Ding, W.Q., Liu, B.L., Vaught, J.L. et al. Anticancer activity of the antibiotic clioqμinol[J]. Cancer Res. 2005, 65, 3389-3395.
    [3] Cherny, R.A., Atwood, C.S., Xilinas, M.E., et al. Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid acCumμlation in Alzheimer's disease transgenic mice[J]. Neμron 2001, 30, 665-676.
    [4] Ritchie, C.W., Bush, A.I., Mackinnon, A., et al. Metal-protein attenμation with iodochlorhydroxyqμin (clioqμinol) targeting A beta amyloid deposition and toxicity in Alzheimer disease - A pilot phase 2 clinical trial[J]. Arch. Neμrol. 2003,60,1685-1691.
    [5] Ding, W.Q., Liu, B.L., Vaught, J.L., et al. Clioqμinol and docosahexaenoic acid act synergistically to kill tumor cells[J]. Mol. Cancer Then 2006, 5,1864-1872.
    [6] Ding, W.Q., Yu, H.J., Lind, S.E. Zinc-binding compoμnds indμce cancer cell death via distinct modes of action[J]. Cancer Lett. 2008, 271, 251-259.
    [1] Brewer, G.J. Copper control as an antiangiogenic anticancer therapy: Lessons from treating Wilson's disease[J]. Exp. Biol. Med. 2001,226, 665-673.
    [2] Brewer, G.J., Dick, R.D., Grover, D.K., et al. Treatment of metastatic cancer with tetrathiomolybdate, an anticopper, antiangiogenic agent: Phase I study[J]. Clin.Cancer Res. 2000, 6,1-10.
    [3] Theophanide, T., Anastassopoulou, J. Copper and carcinogenesis-the razor's edge[J]. Clin. Biochem. 2004, 37,1130-1130.
    [4] Daniel, K.G, Harbach, R.H., Guida, W.C. et al. Copper storage diseases: Menkes, Wilson's, and cancer[J]. Front. Biosci. 2004, 9, 2652-2662.
    [5] Ding, W.Q., Liu, B.L., Vaught, J.L., et al. Anticancer activity of the antibiotic clioquinol[J]. Cancer Res. 2005, 65, 3389-3395.
    [6] Ritchie, C.W., Bush, A.I., Mackinnon, A., et al. Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting A beta amyloid deposition and toxicity in Alzheimer disease - A pilot phase 2 clinical trial[J]. Arch. Neurol. 2003,60,1685-1691.
    [7] Ding, W.Q., Yu, H.J., Lind, S.E. Zinc-binding compounds induce cancer cell death via distinct modes of action[J]. Cancer Lett. 2008,271,251-259.
    [8] Daniel, K.G, Gupta, P., Harbach, R.H., et al. Organic copper complexes as a new class of proteasome inhibitors and apoptosis inducers in human cancer cells[J].Biochem. Pharmacol. 2004, 67, 1139-1151.
    [9] Daniel, K.G, Chen, D., Orlu, S., et al. Clioquinol and pyrrolidine dithiocarbamate complex with copper to form proteasome inhibitors and apoptosis inducers in human breast cancer cells[J]. Breast Cancer Res. 2005, 7, 897-908.
    [10] Harrison, M.D., Jones, C.E., Dameron, C.T. Copper chaperones: function,structure and copper-binding properties[J]. J. Biol. Inorg. Chem. 1999. 4. 145-153.
    [1] Kozikowski, B. A.; Burt, T. M.; Tirey, D. A.; et al. The effect of room-temperature storage on the stability of compounds in DMSO. J Biomol Screen 2003, 8, (2),205-209.
    [2] Bowes, S.; Sun, D.; Kaffashan, A.; et al. Quality assessment and analysis of Biogen Idec compound library. J Biomol Screen 2006, 11, (7), 828-35.
    [3] Kozikowski, B. A.; Burt, T. M.; Tirey, D. A.; et al. The effect of freeze/thaw cycles on the stability of compounds in DMSO. J Biomol Screen, 2003, 8, (2), 210-215.
    [4] Cheng, X.; Hochlowski, J.; Tang, H.; et al. Studies on repository compound stability in DMSO under various conditions. J Biomol Screen 2003, 8, (3),292-304.
    [5] Hochlowski, J.; Cheng, X.; Sauer, D.; et al. Studies of the relative stability of TFA adducts vs non-TFA analogues for combinatorial chemistry library members in DMSO in a repository compound collection. J Comb Chem 2003, 5, (4), 345-349.
    [6] Kibbey, C.E. Quantitation of combinatorial libraries of small organic molecules by normal-phase HPLC with evaporative light-scattering detection. Mol. Diversity 1996,1,247-258.
    [7] Hsu, B.H.; Orton, E., Tang, S.Y.; et al. Application of evaporative light scattering detection to the characterization of combinatorial and parallel synthesis libraries for pharmaceutical drug discovery. J. Chromatogr., B 1999, 725,103-112.
    [8] Fang, L.; Pan, J.; Yan, B. High-throughput determination of identity, purity, and quantity of combinatorial library members using LC/MS/UV/ELSD. Bioeng.Biotechnol. (Comb. Chem.) 2001, 71, 162-171.
    [9] Webster, GK.; Jensen, J.S.; Diaz, A.R. An investigation into detector limitations using evaporative light-scattering detectors for pharmaceutical applications. J.Chromatogr. Sci. 2004,42(9), 484-490.
    
    [10] Fang, L.; Wan, M.; Pennacchio, M.; et al. Evaluation of evaporative light-scattering detector for combinatorial library quantitation by reversed phase HPLC.J. Comb, Chem. 2000,2(3), 254-257.
    
    [11] Teutenberg, T.; Tuerk, J.; Holzhauser, M.; et al. Evaluation of column bleed by using an ultraviolet and a charged aerosol detector coupled to a high-temperature liquid chromatographic system. J. Chromatogr., A 2006,1119(1-2), 197-201.
    [12] Gorecki, T; Lynen, F.; Szucs, R.; et al. Universal response in liquid chromatography using charged aerosol detection. Anal. Chem. 2006, 78(9),3186-3192.
    
    [13] Fujinari, E.M. High Performance Liquid Chromatography-Chemiluminescent Nitrogen Detection: HPLC-CLND. Instrumental Methods in Food and Beverage Analysis. Elsevier Science B. V., 1998:385.
    
    [14] Fitch, W.L.; Szardenings, A.K.; Fujinari, E.M. Chemiluminescent nitrogen detection for HPLC: An important new tool in organic analytical chemistry.Tetrahedron Lett. 1997,38(10), 1689-1692.
    [15] Borny, J.F.A.; Homan, M.E. Curr. Trends Dev. Drug Discovery , 2000, 18,514-519.
    
    [16] Brannegan, D.; Ashraf-Khorassani, M.; Taylor, L.T. High-performance liquid chromatography coupled with chemiluminescence nitrogen detection for the study of ethoxyquin antioxidant and related organic bases. J. Chromatogr. Sci.2001, 39(6), 217-221.
    
    [17] Yurek, D.A.; Branch, D.L.; Kuo, M.S. Development of a system to evaluate compound identity, purity, and concentration in a single experiment and its application in quality assessment of combinatorial libraries and screening hits. J.Comb. Chem. 2002,4,138-148.
    
    [18] Petritis, K.; Elfakir, C; Dreux, M. A comparative study of commercial liquid chromatographic detectors for the analysis of underivatized amino acids. J.Chromatogr., A 2002, 961(1), 9-21.
    
    [19] Bizanek, R.; Manes, J. D.; et al. Chemiluminescent nitrogen detection as a new technique for purity assessment of synthetic peptides separated by reversed-phase HPLC. Pept. Res. 1996, 9(1), 40-44.
    [20] Shi, H.; Strode, III, J. T. B.; Taylor, L. T.; et al. Feasibility of supercritical fluid chromatography-chemiluminescent nitrogen detection with open tubular columns.J. Chromatogr. A. 1996, 734, 303-310.
    
    [21] Shi, H.; Taylor, L. T.; Fujinari, E. M. Chemiluminescence nitrogen detection for packed-column supercritical fluid chromatography with methanol modified carbon dioxide. J. Chromatogr., A 1997, 757, 183-191.
    
    [22] Shi, H.; Taylor, L. T.; Fujinari, E. M. Open-tubular supercritical fluid chromatography with simultaneous flame ionization and chemiluminescent nitrogen detection. J. High Resol Chromatogr. 1996,19(4), 213-216.
    
    [23] Taylor, E.W.; Qian, M.G.; Dollinger, G.D. Simultaneous On-Line Characterization of Small Organic Molecules Derived from Combinatorial Libraries for Identity, Quantity, and Purity by Reversed-Phase HPLC with Chemiluminescent Nitrogen, UV, and Mass Spectrometric Detection. Anal.Chem. 1998, 70(16), 3339-3347.
    
    [24] Harrison, C.R.; Lucy, C.A. Determination of zwitterionic and cationic surfactants by high-performance liquid chromatography with chemiluminescenscent nitrogen detection. J. Chromatogr., A 2002, 956(1-2), 237-244.
    
    [25] Taylor, E.W.; Jia, W.P.; Bush, M.; et al. Accelerating the drug optimization process: identification, structure elucidation, and quantification of in vivo metabolites using stable isotopes with LC/MSn and the chemiluminescent nitrogen detector. Anal. Chem. 2002, 74(13), 3232-3238.
    
    [26] Nussbaum, M.A.; Baertschi, S.W.; Jansen, P.J. Determination of relative UV response factors for HPLC by use of a chemiluminescent nitrogen-specific detector. J. Pharmaceut. Biomed. Anal. 2002, 27(6), 983-993.
    
    [27] Bhattachar, S. N.; Wesley, J. A.; Seadeek, C. Evaluation of the chemiluminescent nitrogen detector for solubility determinations to support drug discovery. J.Pharm. Biomed. Anal. 2006, 41(1), 152-157.
    
    [28] Shah, N.; Gao, M.; Tsutsui, K.; et al. A novel approach to high-throughput quality control of parallel synthesis libraries. J. Comb. Chem. 2000, 2(5), 453-460.
    [39] Lane, S.; Boughtflower, B.; Mutton, I.; et al. Toward single-calibrant quantification in HPLC. A comparison of three detection strategies: evaporative light scattering, chemiluminescent nitrogen, and proton NMR. Anal. Chem. 2005,77(14),4354-4365.
    [30] Letot, E.; Koch, G; Falchetto, R.; et al. Quality control in combinatorial chemistry: determinations of amounts and comparison of the "purity" of LC-MS-purified samples by NMR, LC-UV and CLND. J. Comb. Chem. 2005,7(3), 364-371.
    [31] Corens, D.; Carpentier, M.; Schroven, M.; et al. Liquid chromatography-mass spectrometry with chemiluminescent nitrogen detection for on-line quantitative analysis of compound collections: advantages and limitations. J. Chromatogr., A 2004,1056(1-2), 67-75.
    [32] Yan, B.; Zhao, J.; Leopold, K.; et al. Structure-dependent response of a chemiluminescence nitrogen detector for organic compounds with adjacent nitrogen atoms connected by a single bond. Anal. Chem. 2007, 79(2), 718-726.
    [33] Williams, D.H.; Fleming, I. Spectroscopic Methods in Organic Chemistry, Fourth edition, Mc. Graw-Hill Book Company Europe, 1989: 1-29.
    
    [34] WilliamL.Fitch.;MalcolmMcGregor.;MatiKarelson. Prediction of ultraviolet spectral absorbance using quantitative structure-property relationships.J.Chem.Inf.Comput.Sci.2004,42(4), 830-840.