杂交小麦同化物输配规律及机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来作物源库流关系的研究表明:无论源强度、流的能力、还是库本身的特性都
    会对光合产物的输配产生影响,从而最终影响经济学产量。本文针对K型杂交小麦901
    叶片功能期长、同化能力强和生育后期青枝绿叶的特点,以杂交小麦901及其父本恢
    复系R205,母本不育系K3314A,常规小麦陕229、小偃22为试材,通过1997-2000年
    三年多的田间实验及盆栽实验,研究了小麦开花后源、流、库的特性,目的在于阐明
    同化物输配规律并探讨901生育后期同化物滞留源端的原因。
     对小麦花后旗叶净光合速率、叶面积、叶绿素含量、旗叶蒸腾速率、旗叶干重、叶
    片碳水化合物含量等指标进行了动态分析测定。结果表明,杂交小麦901开花后早期
    光合速率较低,但中后期光合速率高于对照,表现出优势。而且901叶面积大,叶绿
    素含量下降缓慢,叶片功能期长。因此,在灌浆中后期901的源叶能提供充足的同化
    物。但是,901后期叶片淀粉含量升高,滞留的可用性碳水化合物较多,叶片物质输出
    率低,说明还有较多的光合同化物滞留源端。这与其亲本恢复系的特性密切相关。
     用常规石蜡切片法和显微观测技术,对开花后28天的901、恢复系、不育系和陕229
    四个小麦品系的旗叶、叶鞘、节、节间、穗轴和籽粒腹沟区维管束进行显微观测。结
    果表明:杂交小麦901及其恢复系的旗叶、叶鞘、节、节间、穗轴的维管束数目和面
    积均比陕229的高,这些可能是其穗大、小穗数多、颖花较多的结构基础;而不育系
    的维管束数目少,面积小,则与其不育特性有关。但901的籽粒腹沟区维管束面积最
    小,则可能是其后期灌浆慢的原因之一。对源端装载区域和库端卸出区域的超微结构
    观察以及对装载部位进行ATP酶的细胞化学定位研究结果则表明,四品系间均未有明
    显的差异。
     对籽粒体积、含水量、干物质累积、可溶性糖、蔗糖、淀粉含量等指标进行了动态
    分析测定。结果表明:杂交小麦901籽粒形成期扩张生长快,体积增大快,灌浆中后
    期灌浆速率缓慢,灌浆时间延长。可溶性糖和蔗糖作为淀粉形成的底物,它们的含量
    变化与淀粉累积、灌浆速率的动态变化密切相关。对蔗糖降解的几种酶活性变化进行
    分析测定表明,转化酶主要在籽粒形成期起作用。而蔗糖合成酶在淀粉开始迅速累积
    时活性最高,说明它在蔗糖向淀粉的转化中对蔗糖的降解起主导作用。901籽粒灌浆中
    
    
     -杂交小麦同化物输配规律及机理的研究-第5页共96页
    一
    后期蔗糖合成酶活性低,是其生育后期灌浆慢的内在生理原因之一。
     利用’‘CO。饲喂标记和同位素测定技术,对盆栽小麦灌浆后期旗叶‘Y-同化物的源
    端装载和库端卸出规律进行进一步研究得出,常规小麦陕229’℃-同化物源端装载快、
    输出快,标记后第二无输出极少,转运周期为 1天。而杂交小麦 901及其恢复系‘℃-同
    化物则在源端装载慢,输出慢,标记后第2 天仍有较多输出,运转周期拉长。并且旗
    叶中滞留的‘℃-可溶性同化物和‘℃-蔗糖较多,也表明其’℃-蔗糖的输出慢。常规小麦
    库端卸出快,标记后第 2天卸出很少;而 901及其亲本’℃-同化物库端卸出慢,第 2天
    仍有较多卸出,周期延长。
     总之,杂交小麦90库处理源供应的‘℃-同化物能力低,需要时间长,分解蔗糖能。
    力较差,淀粉合成速率慢,即库活性弱,而源端物质输出率低,是杂交小麦 90 生育
    后期同化物滞留源端的主要原因。
Title: Transport and partitioning mechanism of assimilates in hybrid wheat.
    Supervisor: Professor Gaojunfen Ph.D Candidate: Gong yuehua
    The approaches on the sink-source relationship of crops in recent years provioded that either source strength, flow availability or the characteristics of sink itself would affect the transportation and the partitioning of photo assimilates, and thus the final yield. K-type hybid wheat 901 has the the following characteristics: long functionate duration of leaves, strong assimilatibility,green leaves and shoot in the end of growth stage.Accordingly, the present paper used hybrid wheat 901,the father plant R205 and the mother plant K3314A,the general plant Shan229 and Xiaoyan22 as experimetal materials,to study the characteristics of the sink,flow and source after anthesis using pot and field experiments from 1997 to 2000.The purposes for this study were to reveal the transport and partitioning of assimilates,and the mechanism of assimilates left in the source area in hybrid wheat 901 during the end of growth stage.
    After anthesis,the net photosynthesis speed(Pn),the transpiration speed and the size of flag leaves, and the content of chlorophll and carbohydrates in flag leave were determined.The results showed that the Pn of the hybrid wheat was lower just after anthesis,but higher than that of the controlled plant during the mid- and end of the filling stage,having priority in this aspect. Also, the leaves of 901 had a larger size,its chlorophyll content lowered slowly,and the functionate duration of leaves was longer. As a result,in the middle and the end of filling stage, the source leaves could provided enough assimilates for utility.However, in the end of filling stage,the content of starch in the leaves of the hrbrid wheat was high,and much available carbohydrates reserved were left in the leaves while the matter in the leaves were exported slowly.All these showed that much photoassimilates were not export and left in the souruce leaves.This was closely related to the characteristics of the father plant.
    Wax slicing technique and micro-structure determination methods were adopted to study the vascular bundle structure in flag leaves,sheath,internodes,the 1st node below the ear,rachis of hybrid wheat 901,the father and mother plant,and Shan229.The results showed that the numbers and the area of vascular bundle in the above tissues of hybrid wheat 901 and its father plant were larger than Shan229.These might be the structure basis for 901 yeilding larger ears,many spikelets and many glumiflorous.However, the vascular bundle area in kernel crease tissues of 901 was the smallest,and this
    
    
    
    
    would be one of clues why the kernels of 901 were slowly filled in the end of filling stage. The ultrastructure research in source loading area and sink unloading area and the histochemical research of ATPase activity in source loading area both revealed that no apparent difference occurred in four experiment materials.
    The sizes, water content.the accumulation speed of dry matter weight of kernels, and the content of total soluble carbohydrates(TSC), sucrose and starch in the wheat kernels were determined.The results indicated that, during the formation stage of kernels,hybrid wheat 901 grew more quickly in cell expansion of kernels, and the size increased faster,but during the middle and the end of the filling stage the filling speed became slower with the filling time lasting longer. While TSC and sucrose being the substrates for starch formation.the changes of their content in kernels were strongly related with that of the starch accumulation speed and the filling speed. The changes of enzyme activities which dissoluted the sucrose showed that the invertase activities mainly played a role during the kernel formation stage, and the sucrose synthase activities were the highest during the time when starch began to accumulate quickly.This proved that the sucrose synthase had a key role in sucrose degradation during the transformation of sucrose to starch.The lower
引文
1.赵全志,高尔明,黄丕生等.1999.源库质量与作物超高产栽培及育种.河南农业大学学报,33(3):226-230
    2.李绍长,王荣栋.1998.作物源库理论的发展及其在生产中的应用.作物杂志,(1),9~12
    3.王树安,王纪华,梁振兴.1994.杂种小麦源库基本特性的研究.作物学报,20(4):426-431
    4.张绍华等.我国杂交春小麦育种获重大突破.《人民日报》,1995.8.23
    5. Wilson WJ. 1972. Control of crop processes. IN: Crop Proceeses in Controlled Enviroments(Rees AR, Cockshull KE, Hand DW Hurd RG eds). pp. 7-30. London/New York: Academic
    6. Went1973
    7.肖凯,王殿武,张荣铣.等.1994.小麦叶片衰老衰老生理变化的研究.国外农学-麦类作物,(1):46-48
    8.张荣凯,陈在全.1992.南京师范大学学报,13(4):5-11
    9.屠乃美,官春云.1995.作物源-库关系研究的现状.作物研究,9(2):44-48
    10.殷毓芬,张存良,姚凤霞.1995.冬小麦不同品种之间叶片光合速率与气孔导度等形状之间的关系研究.作物学报,21(5):561-567
    11. Ogren (1982)
    12. Portis AR. 1992. Regulation of ribulose-1.5-bisphophate carboxylase/oxygenase activity. Annu Rev Plant Physiol Plant Mol Biol. 43: 415-37
    13. Sevaites JC. 1990. Inhibition of ribulose-1.5-bisphosphate carboxylase/oxygenase by 2-carboxyarabinitol-1-phosphate. Plant Physiol. 92: 867-70
    
    
    14.廖祥儒,朱新产.1996.Rubisco的活化机制.生命的化学,16(2):26-28
    15. Moore BD, Sharkey TD, Kobza J, Seemann JR. 1992. Identification and levels of 2'-carboxyarabinitol in leaves. Plant Physiol. 99: 1546-1550
    16. Gutteridge S, Julien B. 1989. A phosphatase from chloroplast stroma of Nicotina tabacum hydrolyze 2'-caroxyarabinitol-1-phophate, the natural inhibitor of Rubisco to 2'-carboxyarabinitol. FEBS Lett. 254: 224-230
    17. Holbrook GP, Bowes G, Salvucci MF. 1989. Degredation of 2-carboxyarabinitol 1-phosphate by aspecific chloroplast phosphatase. Plant Physiol. 90: 673-678
    18. Salvucci ME. 1989. Regulation of Rubisco activity in viva Physiol Plant. 77: 164-17
    19. Robinson SP, Portis AR. 1988. Release of the nocturnal inhibitor, carboxyarabinit ol-1-phosphate, from riulose bisphophate carboxylase/oxygenase by rubisco acti vase. FEBS Lett. 23: 413-416
    20. Edawards GE, Walker DA. 1984. Influence of glycerate on photosynthesis by wheat chloroplast. Arch Biochem Biophys. 231: 124-35
    21. Heber U. 1974. Metabolism exchange between chloroplast and cytoplasm. Annu Rev Plant Physiol. 25: 393-421;
    22. Heldt HW. 1976. Metaboilc Carriers of Chloroplasts, IN Encyclopedia of Plant Physio. N.S. Ⅲ. P37-184. Springer-Verlage Berlin.
    23. Walker DA. 1976. Regulatory mechanism in photosynthetic carbon metabolism. IN: Current Topics in Cellular Regulation. Vol Ⅱ. 204-241. Academic Press, New York;
    24. Ziegler H. 1975. Nature of Transport Substances, IN: Encyclopedia of Plant Physiol. N.S.I. p59-100. Berlin, Heidelberg, New York Springer.
    25. Fisher DB, Outlaw WH. 1979. Plant Physiol. 64: 481
    26. Mendicino J. 1960. J Bio Chem. 235: 3347
    27. Huber SC, Huber JL. 1992. Role of sucrose-phosphate synthase in sucrose metabolism in leaves. Plant Physiol. 99: 1275-1278
    28. Herold A, Walker DA. 1979. Transport across chloroplast envelops. The role of Pi. IN: Memberane Tranport in Biology. Ⅱ. 411-439. Springer-Verlage Berlin 29. Hawker JS. 1967. Inhibition of sucrose phosphatase by sucrose. Biochem J. 102: 401-406
    30.夏叔芳等(1981 夏叔芳,于新建,张政清.1981.叶片光合产物输出的抑制与淀粉和蔗糖的积累.植物生理学报,7(2):136-141
    31. Whittingham CP, Key AJ, Bird IF. 1979. The enzymology of sucrose in leaves. IN: Encyclopedia of Plant Physiol. NS. VI.313-326
    32. Briskin DP, Thorney WR, Wyse RE. 1985. Membrane transport in isolated vesicles from sugar beet taproot. Ⅱ. Evidence for a sucrose /H~+ antiport. Plant Physiol. 78: 871-875
    
    
    33. Champing ML. 1985. Phytosynthesis Res, 6: 273
    34. Ho LC. 1988 Metabolisom and compartmentation of imported sugars in sink organs in relation to sink strength. Annu Rev Plant Physiol Plant Mol Biol, 39: 355~78
    35.张政清.1989.光合碳在叶片淀粉和蔗糖间的调节.植物生理学通讯,(6):1-6
    36. Kleczkowski LA. 1994. Inhibitors of photosynthetic enzymes/carriers and metabolism. Annu Rev Plant Physiol Plant Mol Biol, 45: 339-367
    37.屠乃美,官春云.1995.作物源-库关系研究的现状.作物研究,9(2):44-48
    38. Stitt M, von Schaewen A, Williamitzer L. 1990. Sink regulation of photosynthetic metabolism in transgenic tobacco plant expressing yeast invertase in their cell wall involves a decrease of Calvin-cycle enzymes and an increase of glycolytic enzymes. Planta. 183: 40-50
    39. Cseke C, Buchmann BB. 1986. Regulation of the formation and utilization of photosynthate leaves. Biochim Biophys Acta. 853: 43-63
    40. Stiit M. 1990. Fructose-2.6-bisphosphoate as a regulatory metabolite in plants. Annu Rev Plant Physiol Plant Mol Biol. 41: 153-185
    41. Kleczkowski LA. 1994. Inhibitors of photosynthetic enzymes/carriers and metabolism. Annu Rev Plant Physiol Plant Mol Biol, 45: 339-367
    42. Kruckeberg AL, Neuhaus HE, Fei R. et al. 1989. Reduced activity mutants of phosphoglucose isomerase in the chloroplast and cytosol of Clarkia xantiana, Biochem J. 261: 457-467
    43. Koch KE. 1996. Carbohydrate-medulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol, 47: 509-40
    44. Krappa, 1994, Krapp A Hofmann B, Schafer C, Stiit M. 1993. Regulation of the expression of rbcS and other photosynthetic genes by carbohydrates: a mechanism for the "sink regulation" of photosynthesis? Plant J. 3: 817-28
    45. Krapp A, Stiit M. 1994. Influence of high-carbohydrate content on the activity of plastidic and cytosolic isoenzyme pairs in photosynthetic tissues. Plant Cell Environ. 17: 861-66
    46. Sheen J. 1990. Metabolic repression of transcrption in higher plants. Plant Cell. 2: 1027-38
    47. Sheen J. 1994. Feedback-control of gene-expression. Photosynth Res. 39: 427-438
    48. Xu J, Pemberton GH, Almira EC, et al. 1995. The Ivrl gene for invertase in maize. Plant Physiol. 108: 1293-94
    
    
    49. KoBrann J.Visser RGF, Muller-Rober BT, et al. 1991. Cloning and expression analysis of a potato cDNA that encodes branching enzyme:evidence for coexpression of starch biosynthetic genes. Mol Gen Genet. 230:39-44