不同玉米基因型叶片保绿性生理机理及遗传研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1、玉米抽丝后相对绿叶面积的衰减符合方程:y=ae~(b-cx)/(1+e~(b-cx)),不同基因型玉米保绿度、叶片衰减速率、植株衰老启动时间等存在着显著的差异,根据叶片保绿度和衰减速率,按照Hierarchical聚类分析方法,将不同玉米基因型划分为保绿型和非保绿型。保绿型玉米叶片保绿度在60%以上,叶片衰减速率低,在0.516~0.868%·d~(-1)范围内;非保绿型保绿度平均为20.56%;平均叶片衰减速率高,变幅是0.798~2.371%·d~(-1),叶片保绿度与叶面积持续期、单株产量呈正相关。
     保绿型玉米在抽丝后积累较多的干物质,植株干物质转移率和经济系数相对低;植株可溶性糖含量显著高于非保绿型;根量增加,根活力增强;叶片开始衰老时间略晚,衰减速率较慢,后期能维持较高的绿叶面积和叶面积持续期,有利于提高光合面积,延长光合时间;库容量与源供应能力的比值小,果穗的秃顶和败育粒数减少,库充实度较高。籽粒灌浆期延长,灌浆速率差异不大,灌浆后期ADPGPPase、UDPGPPase、SSS、GBSS的活性明显高于其它类型,有利于粒重增加。
     2、保绿型玉米叶片光合色素含量降低缓慢,后期含量较高,叶绿素与蛋白质结合牢固;光合速率、气孔导度、量子效率和羧化效率在抽丝期的差异并不明显,在灌浆期以后,保绿型玉米表现出明显的优势。功能叶片PEPase、RuBPase、SPS和SS活性在灌浆后期显著高于非保绿型。
     荧光参数的变化变化表明,在一定时期内Fm、Fv变化幅度较小,基本维持稳定,蜡熟期以后Fm、FV、Fv/Fm和Fv/Fo有降低的趋势,表明在叶片衰老的后期,PSⅡ电子传递、PSⅡ的最大光化学效率和潜在活性都有所降低。玉米叶片电子传递速率光量子产量Φ_(PSⅡ)、光化学猝灭系数qP和ETR随着生育时期的推进均呈降低趋势,非光化学淬灭
    
    刘开昌:不同基因型玉米叶片保绿性生理机理及其遗传研究
    系数N户Q则呈增加的趋势,在生育后期更为明显。保绿型玉米有较高的PSn的潜在活
    性和最大光化学效率,光能的捕获效率、光化学电子传递份额和电子传递效率的降低幅
    度小,后期光合机构保持完整,有较高的光合活性。
     3、保绿型玉米叶片、茎鞘氮含量高,植株氮素抽丝前积累量、抽丝后积累量、总
    同化量高,其转移量、转移率和氮素收获指数则显著低于非保绿型,抽丝后积累量的比
    例增加;氮素代谢的关键酶如硝酸还原酶、GS活性、GOGAT活性在各时期均高于NSG,
    其活力大小则与保绿性呈显著正相关。
     4、保绿型玉米叶片SOD、POD和CAT活性显著高于非保绿型,膜脂过氧化的产
    物MDA含量很低,避免由于膜脂过氧化造成的叶片衰老。相关分析显示,叶片的保绿
    度与内源保护酶SOD、POD和CAI,活性的大小呈显著正相关。保绿型玉米有较高的ZR
    含量和较低的ABA含量,二者的比值ZR/ABA显著高于非保绿型。较高的玉米素含量
    和相对低的脱落酸含量是玉米叶片保绿的生理原因之一。
     5、叶片保绿度、叶片衰减速率、叶片衰老启动的时间均受加性和非加性基因的共
    同作用。保绿度的广义遗传力为99.87%,狭义遗传力为%.26%。叶片衰减速率的广义
    遗传力为99.71%,狭义遗传力为8629%。叶片衰老启动时间的广义遗传力为98.91%,
    狭义遗传力为5.70%,它主要是由基因型决定,加性遗传方差在表型遗传中比例非常小。
     玉米杂交Fl代的优势是许多生理优势的综合体现。玉米的根系中根活力、根千重、
    根活性表面等指标,玉米光合性能中,叶面积持续期、梭化效率、光合速率、C02固定
    的关键酶pE户梭化酶和RuB户梭化酶等生理指标,氮素代谢中,氮积累量、转移率、氮
    收获指数和硝酸还原酶活性等指标,叶片保护酶CAT、500、户00活性和内源激素ZR
    等指标,均有较强杂种优势;而MDA、ABA含量等指标则表现为负优势。
In order to elucidate the physiological mechanism and inheritance of leaf stay-green traits, a full diallel was designed by crossing three stay-green inbred lines and three non stay-green inbred lines. The studies were conducted combining the field experiment and analysis in the lab by using physiological analysis, biochemical methods, and their integrations. Leaf photosynthesis and photochemical mechanism, enzymology characten'stic related to carbon assimilation, physiological characteristic of nitrogen metabolic activity, some cell protective enzymes to eliminate active oxygen, and regulation of endogenous hormone were researched, the genetic effect of leaf green trait and physiological heterosis were estimated. The main results were as follows:
    1. The changes of relative green leaf area after silking were fit the equation: y=aeb-cx/(1+eb-cx) There were significant differences in stay green degree, leaf reducing velocity, and the time of beginning to senescence between maize genotypes. According to Hierarchical's classify method, based on the stay green degree in maturity and leaf reducing velocity, all the maize genotypes were classified into two analogs: one was stay green type(SG), its stay green degree was higher than 60 percent, its reducing velocity was in the range of 0.516 to 0.868%-d-1; another was non stay green type(NSG), its average stay green degree was 20.56 percent, the range of reducing velocity was 0.798 to 2.371%-d-1. Correlation analysis proved that there was positive correlation between stay green degree and yield per plant and leaf area duration.
    Maize hybrid with stay green trait accumulated more dry matter after silking, had lower translocation rate and economic index; Its soluble sugar content in plant was higher than that of non stay green types; and its root number added, root vigor increased; the time of its leafs beginning to senescence was delayed, and leaf reducing velocity was very low, which resulted in higher green leaf area and longer leaf area duration; the ratio of sink capacity to source supplying ability was smaller, and bald length and abortive kernel number decreased, which resulted in higher sink capacity realize;!; its kernel filling duration was longer, ADPGPPase activity, UDPGPPase activity, SSS activity and GBSS activity in kernels were higher than that of non stay-green type after filling stage, and this was very helpful to increase kernel weight.
    2. Maize hybrid with stay green trait had higher photosynthetic pigment and chlorophyll-protein binding degree. Its photosynthetic rate, stomatal conductance, quantum efficiency and carbonxylation efficiency had not significant difference between the stay greemand non stay green in silking stage, but after filling stage, stay .green type was superior to non stay green in all the photosynthetic traits. PEPase activity, RuBPase activity, SPS activity and SS activity in ear leaf of stay green were higher than that of non stay green.
    Changes of fluorescence parameters indicated that there were steady Fm and Fv within silking stage and waxy maturity stage, but after waxy maturity stage, Fm, Fv, Fv/Fm, and Fv/Fo began to decrease, and PS ,qP, ETR decreased too, but NPQ increased. The stay green type had higher PS potential activity and Maximum photochemical efficiency.
    
    
    3. There was higher nitrogen content in leaf, stem and sheath of stay green type, and its nitrogen accumulation before silking, nitrogen accumulation after silking, total nitrogen accumulation were also higher, but its nitrogen translocation, translocation rate and nitrogen harvest index were significantly lower than that of non stay green type. Some key enzymes to physiological characten'stic of nitrogen metabolic activity such as nitrate reductase. activity(NR), glutamate synthetase(GOGAT), glutamine synthetase(GS) in leaf of stay green type were significantly higher than that of non stay green type, and their activity were positive related to stay green degree.
    4. SOD activity, POD activity, and CAT activity in leaf of s
引文
1.赵全志、高尔明等,源库质量与作物超高产栽培及育种,河南农业大学学报,1999,33(4):226-229
    2.席章营、陈彦惠、吴建宇,玉米穗位叶光合速率的初步研究,河南农业科学,1998,33:3-5
    3.李少昆、赵明、许启风等,我国常用自交系光合特性研究,中国农业科学,1999,32(2):53-59
    4.李少昆、赵明、郭小强等,玉米自交系株型及其光合特性的研究,中国农业大学学报,1999,4(5):77-81
    5.赵明、王美云,玉米亲本及杂交种光合速率的关系,北京农业大学学报,1995,21(3) 265-269
    6.张红伟、孔繁玲,玉米籽粒性状的遗传模型研究,遗传学报,2000,27(1) 56-64
    7.董树亭、王空军、胡昌浩,玉米品种更替过程中群体光合特性的演变,作物学报,2000,26(2):200-204
    8.王振华、王义波、王永晋等,玉米株型和产量性状的遗传改良效果,作物杂志,2000,(1)15-16
    9.王维光,RuBPase的测定,《植物生理学实验手册》1985,P125
    10.倪中福、孙其信、刘志勇,普通小麦不同产量优势杂种与亲本苗期叶片基因表达差异的研究,农业生物技术学报,1999,7(1)95-101
    11.汪小全、邹喻苹、张大明等,RAPD应用于遗传多样性和系统学研究中的问题,植物学报,1996,38(12):954-962
    12.尚宗波、杨继武、殷红等,玉米生理生态学模拟模型,植物学报,2000,42(2):184-194
    13.赵明、李少昆、王志敏等,论作物源的数量、质量关系及其类型划分,中国农业大学学报,1998,3(3):53-58
    14.池书敏、孟义江、陈景堂等,玉米过氧化物同工酶遗传距离与杂种优势的关系,玉米科学,1997,5(4)2-5
    15.王懿波、王振华、王永普等,中国玉米主要种质的改良与杂优模式的利用,玉米科学,1999,7(1)1-8
    16.何萍、金继运,保绿型玉米的营养生理研究进展,玉米科学,2000,8(4):41-44
    17.潭震波、沈爽利、袁祚廉等,水稻再生能力和头季稻产量性状的QTL定位及遗传效应分析,作物学报,1997,23(3)289-295
    18.董树亭、胡昌浩、王空军等,玉米花粒期群体光合性能写高产潜力的研究,作物学报,1997,23(3)318-325
    19.曹他,小麦叶片RUBP羧化酶活性对湿害逆境的响应能力及亲本效应分析,作物学报,1997,23(1)102-106
    20.陈国祥、何兵、魏锦城等,扬麦5号旗叶光合功能衰退进程中光温逆境下PSI特性的变化,作物学报,2000,26(6):783-788
    21.许晓明、戴新宾、张荣铣,籼、粳稻叶片老化过程中光抑制特性的差异,作物学报,2000,26(6):795-790
    22.沈成果、张福锁、毛达如,植物叶片衰老过程中基因的表达与调控,植物生理学通讯,1998,34(4):304-312
    23.程宁辉、杨金水、高燕萍等,玉米杂种一代与亲本基因表达差异的初步研究,科学通报,1996,41(5)450-454
    24.杨巧凤、江华、许大全,小麦旗叶发育过程中光合效率的变化,植物生理学报,1999,25(4):408-412
    25.季本华、焦德茂,光抑制条件下水稻籼粳亚种及其正反交杂种的PSII光化学效率和CO_2交换特点,植物学报,1999,41(5):508-514
    26.许长城、李德全、邹琦等,干旱条件下冬小麦不同叶龄叶绿素荧光急叶黄素循环组分的变化,植物生理学报,1999,25(1):29-37
    
    
    27.唐如航、贾伟军、李立人,烟草Rubisco活化酶的醇化及其特性,植物生理学报,1997,23(1):89-94
    28.高玲、叶茂炳、张荣铣,小麦旗叶老化期间的内肽酶,植物生理学报,1998,24(2):183-188
    29.程宁辉、杨金水、高燕萍等,水稻杂种一代与亲本幼苗基因表达差异的分析,植物学报,1997,39(4):379-382
    30.裴真明、傅伟、郭连旺等,低温及高光强使大豆叶片PSⅡQB-非还原中心的比例增加,科学通报,1996,41(1):71-74
    31.许长城、赵世杰、樊继莲等,干旱胁迫下大豆与玉米叶片光破坏的防御,植物生理学报,1998,24(1):17-23
    32.赫利民、王洪亮、粱厚果,复水对玉米光系统Ⅱ捕光叶绿素a/b-蛋白符合体的影响,植物学报,1999,41(6):613-616
    33.师素云、薛启汉、刘蔼民等,羧甲基壳聚糖对玉米籽粒氮代谢关键酶和种子贮藏蛋白含量的影响,植物生理学报,1999,25(2):187-192
    34.孙庆泉等,我国不同年代玉米品种叶片iPAS和ABA比较研究,华北农学报,2000(15):105-108
    35.陈举林、王玉林、苏波等,杂种优势模式在山东省玉米育种上的应用,杂粮作物,2000,20(2):5-7
    36.方昭著、王明录、彭代平等,硝酸还原酶活性与氮素营养的关系,植物生理学报,1979,5(2):123-128
    37.王宪泽、张树芹,不同蛋白质含量小麦品种叶片NRA与氮素积累关系的研究,西北植物学报,1999,19(2):122-126
    38.赵明等,我国玉米自交系株型和光合性状的演变特点,华北农学报,1998,(13):1-4
    39.董树亭等,玉米品种更替过程中生理特性演变规律研究,华北农学报,1998,(13):9-14
    40.黄明勤、杨素铀、张仲明等,硝酸还原酶活力与作物耐肥性的研究,玉米幼苗硝酸还原酶活力与品种耐肥性的关系,作物学报,1987,13(1):19-22
    41.林振武、陈敬祥、汤玉玮等,硝酸还原酶活力与作物耐肥性的研究,不同耐肥性的水稻、小麦、玉米的硝酸还原酶活力,中国农业科学,1983(3):37-43
    42.冯福生、陈文龙、李洁等,不同供氮水平下冬小麦叶片中RUBP羧化酶和硝酸还原酶的活性变化,植物生理学通讯,1986(6):20-22
    43.罗瑶年等,玉米衰老的田间因素分析及其与产量的关系玉米科学,1995,(4):36-39
    44.施教耐、吴敏贤,植物磷酸烯醇式丙酮酸羧化酶的研究,植物生理学报,1979,5(3):225-229
    45.高群英、D Glover,玉米籽粒发育过程中胚乳核DNA含量的变化同籽粒性状的关系,作物学报,1994,20(1):46-51
    46.宋建民、田纪春、赵世杰,小麦光合碳、氮代谢平衡调节酶研究进展,麦类作物,1997,6:52-55(66)
    47.印莉萍、柴晓清、刘详林等,叶绿体发育和光对小麦叶谷氨酰胺合成酶基因表达的影响,植物学报,1994,36(8):597-602
    48.沈成国、余松烈、于振文,一次结实植物的衰老与氮再分配,植物生理学通讯,1998,34(4):288-296
    49.柴小清、印莉萍、刘祥林等,不同浓度的NO_3~-和NH_4~+对小麦根谷氨酰胺合成酶及其相关酶的影响,植物学报,1996,38(10):803-808
    50.高新学等,玉米光强——光合速率的数学模型,山东农业科学,1987,(3)
    51.董金铎等,玉米杂交种籽粒品质和光合性状遗传的研究,莱阳农学院学报,1985,(2)
    52.张德水,玉米光合性状和产量的遗传相关与通径分析,山东农业大学学报,1992,(4)
    53.董树亭等,玉米叶片气孔导度、蒸腾和光合特性的关系,玉米科学,1993,(2)34-37
    54.王庆成等,株型紧凑对玉米群体光合速率和产量的影响,作物学报,1996,(2)221-225
    55.刘开昌等,玉米光合性能与耐密性的研究,山东农业科学,2001,(6)4-9
    56.史新海等,山东主要杂交种种质基础的综合分析与评价,山东农业科学,1994,(1)1-9
    
    
    57.张雄,用TTC还原法测定小麦根系和花粉的活力及其应用,植物生理学通讯,1982,(3):48-50
    58.张振清,植物材料中可溶性糖的测定,《植物生理学实验手册》,上海植物生理学会编,上海科学技术出版社,1985,PP:134-138
    59.於新建,蔗糖合成酶、蔗糖磷酸合成酶活性的测定,《植物生理学实验手册》,上海植物生理学会编,上海科学技术出版社,1985,PP:148-150
    60.张振清,淀粉合成酶、ADPG焦磷化酶和UDPG焦磷酸化酶的测定,《植物生理学实验手册》,上海植物生理学会编,上海科学技术出版社,1985,PP:153-158
    61.陈薇等,植物组织中硝酸还原酶的提取测定,植物生理学通讯,1980,2(1):1-10
    62.戴秋杰、汪宗立,水稻耐盐性的生理研究,盐渍对体内核酸和核糖核酸酶活力的影响,江苏农业学报,1988,4(1):31-36
    63.张荣铣、戴新宾、许晓明等,叶片光合功能期与作物光合生产潜力,娄成后,王学成主编.作物产量形成的生理学基础。北京:中国农业出版社,2000:52-63
    64.张荣铣、刘晓忠、方志伟等,小麦叶片展开后碳同化能力-叶源量的估算,中国农业科学,1997,30(1):84-91
    65.曹树青、翟虎渠、张荣铣等,不同类型水稻品种叶源量及有关光合生理指标的研究,中国水稻科学,1999,13(2):91-94
    66.陆巍、曹树青、张荣铣等,水稻品种剑叶源量及其与产量性状的关系研究,南京农业大学学报,2001,24(1):1-4
    67.程式华、翟虎渠,水稻亚种间超高产杂交组合若干株型因子的比较,作物学报,2000,26(6):713-718
    68.曹树青、翟虎渠、张荣铣等,高产杂交籼糊优129光合碳同化特性的研究,杂交水稻,2001,16(1):46-50
    69.曹树青、翟虎渠、张荣铣等,籼型杂交水稻光合性状的配合力及遗传力分析,作物学报,2002,28(2):164-160
    70.屠增平、林秀珍、蔡惟涓等,水稻高光效育种的再探索,植物学报,1995,37(8):641-651
    71.杜维广,张桂如、满为群等,大豆高光效品种(种质)选育及高光效育种再探讨,大豆科学,2001,20(2):110-115
    72.林世青、许春辉、张其德,叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用,植物学通报,1992,9(1):1-16
    73.赵琦、唐崇钦、匡廷云,玉米(Zea mays L)杂交种(中单14)及其亲本部分光合特性的研究,作物学报,1996,22(5):560-564
    74.张其德、朱新广、王强等,冬小麦杂种F1及其亲本光合特性的研究初报,作物学报,2001,27(5):653-657
    75.赵明、李少昆,我国玉米自交系株型和光合性状的演变特点,华北农学报,1998,13(增):1-4
    76.李少昆、赵明,玉米自交系株型及其光合特性的研究,中国农业大学学报,1994,4(5):77-81
    77.李少昆、赵明,玉米杂交组合光合特性的研究,华北农学报,1998,13(增):5-8
    78.周春菊、张嵩午、王长发,杂种小麦901某些光合生理特性的研究,西北农业大学学报,1998,26(5):1-4
    79.肖凯,杂种小麦叶片光合特性、根系生理活性及籽粒产量潜力的研究,南京农业大学博士学位论文,1995
    80.董学会、何钟佩、关彩虹,根系导入生长素和玉米素对玉米光合产物输出及分配的影响,中国农业大学学报,2001,(3)
    81.何萍、金继运,氮素营养对不同衰老类型玉米碳氮化合物累积的影响(收录入《青年学者论土壤与植物营养科学》),中国农业科技出版社,2000:
    
    
    82.何萍、金继运,春玉米叶片衰老的可能机理探讨,植物学报,1998,41(11):1221-1225
    83.何萍、金继运、林葆,不同氮磷钾用量下春玉米生物产量及其组分动态与养分吸收模式研究,植物营养与肥料学报,1998,4(2):123-130
    84.何萍、金继运、林葆,钾肥用量对春玉米叶片衰老的影响及其机理研究,华北农学报增刊,1998,13:57-63
    85.何萍、金继运、林葆,氮肥用量对春玉米叶片衰老的影响及其机理研究,中国农业科学,1998,31(3):66-71
    86.何萍、金继运、林葆,氮钾营养对春玉米叶片衰老过程中激素变化与活性氧代谢的影响,植物营养与肥料学报,1999,5(4):289-296
    87.金继运、何萍,氮钾营养对春玉米后期碳氰代谢互作与粒重形成的影响,中国农业科学,1999,32(4):55-62
    88. He Ping, Jin Jiyun and Lin Bao, Effect of N application rates on leaf senescence and its mechanism in spring maize,Chinese Agricultural Sciences, 1999, 89-95
    89. Jin Jiyun and He Ping, Grain weight formation in relation to the postanthesis interaction between carbon and nitrogen as influenced by N and K nutrition, Chinese Agricultural Sciences, 2000:105-113
    90.
    91. Bekavac G, Path analysis of stay-green trait in maize, Cereal Research Communications, 1998,26(2): 161-167
    92. Chaapman, S.c., and h.j. Barreto, "Using a chlorophyll meter to estimate specific leaf nitrogen of tropical maize during vegetative growth.", Agron. J.,1997,89:557-562
    93. Craft-brandner SJ, below FE, Wittenbach VA, Differential senescence of maize hybrids following ear removal(whole plant),Plant physiol,1984a,74:360-367
    94. Craft-brandner SJ, below FE, Wittenbach VA, Differential senescence of maize hybrids following ear (selected leaf), Plant physiol, 1984b,74:368-373
    95. Craft-brandner SJ, below FE, Wittenbach VA"Effect of ear removal on CO_2 exchange and activtiies of ribulose
    96. bisphate earboxytase and phosphoenlpyruvate carboxylase of maize hybrids and inbred lines" Plant physiol,1987b,84:261-265
    97. Tollenaar M, Daynard TB Leaf senescence in short-seeson maize hybrids, Can. J. Plant Sci., 1978,58:869-874
    98. Thomas H, Smart CM, Crops that stay green Annals of applied biotogy, 1993,123(1):193-219
    99. Irena Rajcan, Matthijs Tollenaar,"Source:sink ratio and leaf senescence in maize:Ⅰ.Dry matter accumulation and partitioning during grain filling" Field Crops Research 1999
    100. Richard S. Walulu, Darrell T., Inheritance of the Stay Green Trait in Sorghum, Crop Sci. 1994,34:970-972
    101. W. Xu,D.T. Rceanow and H.T. Nguyen, Stay green trait in grain sorghum: relationship between visual rating and leaf chlorophyll concentration, Plant Breeding, 2000,119:365-367
    102. "G.L. HAMMER, K. HILL and G.N.SCHRODTER, Leaf Area Production and Senescence of Diverse Grain Sorghum Hybrids, Field Crops Research, 1987,17:305-317
    103. Andrew K. Borrell, Graeme L. Hammer,"Does Maintaining Green Leaf Area in Sorghum Improve Yield under Drought? Ⅱ.Dry Matter Production and Yield, Crop Sci., 2000,40:1037-1048
    104. Steven J.Crafts-Brandner, Frederick E., Differential Senescence of Maize Hybrids following Ear Removal(whole plant), Plant physiol, 1984,74:360-367
    105. Steven J.Crafts-Brandner, Frederick E., Differential Senescence of Maize Hybrids following Ear Removal(Ⅱ.SELECTED LEAF), Plant physiol, 1994,74:368-373
    106. Andrew K.Borrell, Graeme L.Hammer CROP PHYSIOLOGY &METABOLISM, Does Maintaining Green Leaf Area in Sorghum Improve Yield under Drought? Ⅰ.Leaf Growth and Senescence, Crop Sci., 2000,40:1026-1037
    
    
    107. 61. Ma and LM. Dwyer Nitrogen uptake and use of two contrasting maize hybrids differing in leaf senescence, Rant and Soil, 1998,199:283-291
    108. T.R. CONNELL, F.E. BELOW.R.H.HAGEMAN 'Photosynthetic Components Associated with Differential Senescence of Maize Hybrids following Ear Removal', Field Crops Research, 1987,17:55-62
    109. T.R.Cdlbert.M.S. Kang.O.Myers and M.S.Zuber, 'General and Specific Combining Ability Estimates for Pith Cell Death in Stalk Internodes of Maze', Field Crops Research, 1987,17:155-161
    110. C.J.Birch, G.L Hammer and K.G.Rickert, Improved methods for predicting individual leaf area and leaf senescence in maize (Zea mays) Aust. J. Agric. Res.1998,49:249-62
    111. Ml. Gaskel and R.B. Pearce Growth Analysis of Maize Hybrids Differing irl Photosynthetic Capability Agron. J.1981,73:817-821
    112. Davide ceppi, Mario Sala, Eugenic Gentinetta, 'Genotype-Dependent Leaf Senescence in Maizel Inheritance and effects of pollination-prevention ".Plant Physiol, 1987,85:720-725
    113. R. R.Duncan, A. J.Bockholt.and F.R. Miter, Descriptive Comparison of Senescent and Nonsenescent Sorghum Genotypes, Agron. J., 1981,73:849-853
    114. Andrew K.Borrell, Graeme L.Hammer,Nitrogen Dynamics and the Physiological Basis of Stay-Green in Sorghum, Crop Science, 2000,40:1295-1307
    115. A.J.Cavalieri and O.S.Smith, Grain Filling and Reid Drying of a Set of Maize Hybrids Released From 1930 to 1982 , Crop Science, 1985,25:856-660
    116. Jay R. Sughroue and Amel R. Hallauer, Analysis of the Diallel Mating Design for Maize Inbred Lines, Crop Science,1997,37:400-405
    117. B.Cukadar-Olmedo, J.F. MILLER. J.J Hammond Combining Ability of the Stay Green Trait and Seed Moisture Content in Sunflower, Crop Science, 1997,37:378-382
    118. E.Gentinetta,D.CEPPI,C.Lepori,G.Perico, 'A Major Gene for Delayed Senescence in Maize .Pattern of Photosynthates Accumulation and Inheritance', Rant Breeding, 1986,97:193-203
    119. Donald A, Phillips, Robert O ect., Delay leaf senescence in Soybean, Crop Science, 1984,24:518-522
    120. Chiu-Ho Tsai, Adam Miller.Martin Spalding, Source Strength Regulates an Early Phase Transition of Tobacco Shoot Morphogenesis. Rant Physiol, 1997,115:907-914
    121. Astrid Winggler, Antje von Schaewen, Rechard .C, Regulation of Leaf Senescence by Cytokinin, Sugar.and Light, Rant Physiol, 1998,116:329-335
    122. Adam Miller,Chiu-Ho Tsai, Martin Spalding, Elevated CO2 Effects during Leaf Ontogeny.Plant Physiol.,1997. 115:1195-1200
    123. Susheng Gan and Richard M. Amasino, Making Sence of Senescence-Molecular Genetic Regulation and Manipulation of leaf senescence, Rant Physiol., 1997,113:313-319
    124. Robert O. Piece, P, F. Knowles. Inheritance of Delayed Leaf Senescence in Soybean.Crop Stience,1984,24:515-517
    125. Cai-Zhong Jiang, Steven R, Rodermel, Rechard M., 'Photosynthesis, Rubisco Activity and Amount, and Their Regulation by Transcription in senescing Soybean Leaves', Rant Physiol, 1993,101:105-112
    126. Eliezer E. Goldschmidt and Steven C. Huber, 'Regulation of Photosynthesis by End-Product Accumulation in Leaves of Plants Storing Starch, Sucrose and Hexose Sugars', Plant Physiol, 1992,99:1443-1448
    127. K.E.Koch Carbohydrate-Modulated Gene Expression in Rants Annu. Rev. Rant Physiol. Rant Mot. Biol.,1996,47:509-540
    128. LM.Dwyer and M. Tollenaar, Genetic Improvement in Photosynthetic Response of Hybrid Maize cultivars.1959 to 1989 Can. J. Rant Sci., 1989,69:81-91
    129. Guilin wang, Manjit S. Orlando Moreno, Genetic analyses of grain-filling rate and duration in maize, Field Crops
    
    Research, 1999,61:211-222
    130. R.B. Austin, Genetic variation in photosynthesis, J. agric. Sci. Camb., 1989,112:287-294
    131. G.L. Hammer, P.S.Carberry and .R.C. Muchow, "Modelling genotype and environmental control of leaf area dynamics in grain sorghum-l. Whole plant lever, Field Crops Research, 1993. 33:293-310
    132. G.L Hammer, P.S.Carberry and R.C. Muchow, 'Modelling genotype and environmental control of leaf area dynamics in grain sorghum-ll. Individual leaf level', Field Crops Research,1993,33:311-328
    133. G.L Hammer, P.S.Carberry and R.C. Muchow, 'Modelling genotype and environmental control of leaf area dynamics in grain sorghum-Ill. Senescence and prediction of green leaf area", Field Crops Research, 1993,33:329-351
    134. J. Bolaos, G.O. Edmeades, The importance of he anthesis-silking interval in breeding for drought tolerance in tropical maize, Field Crops Research, 1996,48:65-80
    135. P. J.Donahue ,E. L Stromberg. and S. L,Myers, Inheritance of Reaction to Gray Leaf Spot in a Diallel Cross of 14 Maize Inbreds, Crop Science, 1991,31:926-931
    136. Norbert Brugiere, Frederic Dubois etc., Immunolocalization of glutamine synthetase in senescing tobacco leaves suggests that ammonia assimilation is progressively shifted to the mesophll cytosol, Ranta, 2000,211:519-527
    137. Roger M. Gifford and LT. Evans, Photosynthesis, Carbon Partitioning, and Yield Annu.Rev.Plant Physiol.,1981,32:485-509
    138. Robert Turgeon, The Sink-Source Transition in Leaves, Annu. Rev. Plant Physiol. Plant Md. Bid. 1989,40:119-138
    139. J. Ying, E.A. Lee, M. Tollenaar, Response of maize leaf photosynthesis to low temperature during the grain-filling period, Field Crops Research, 2000,68:87-96
    140. C. Giauffret, J. Lothrop, D. Dorvillez etc., 'Genotype-Encironment Interactions in Maize Hybrids from Temperate or Highland Tropical Origin ".Crop Science, 2000,40:1004-1012
    141. R. Magari, M.S. Kang, and Y. Zhang, Genotype by Environment Interaction for Ear Moisture Loss Rate in Com, Crop Science, 1997,37:774-779
    142. Brent Buckner, Guri S. Johal and Janick Buckner, Cell death in maize. Physidogia Plantarum, 2000,108:231-239
    143. Rowan F. Sage and Robert W. Pearcy, The Nitrogen Use Efficiency of C3 and C4 plants l-ll, Plant Physiol., 1987,84:954-963
    144. Joao P. Maroco, Gerald E. Edwards, Maurice S.B. Ku, Photosynthetic acclimation od maize to growth under elevated levels of carbon dioxide, Planta, 1999,210:115-125
    145. S. Jampatong, L.L. Darrah, G.F. Krause etc.. Effect of One-and Two_eared Selection on Stalk Strenth and Other Character in Maize, Crop Science, 2000,40:605-611
    146. Juliann R. Czyzewicz and Fred E. Below, Genotypic Variation for Nitrogen Uptake by Maize Kernels Grown In Vitro, Crop Science, 1994,34:1003-1008
    147. H.J. Earl and M. Tollenaar, Using a chlorophyll fluorometry to comparephotosynthetic performance of commercial maize hybrids in the field, Field Crops Research, 1999,61:201-210
    148. Rowan F. Sage and Robert W. Pearcy, The Nitrogen Use Efficiency of C3 and C4 plants III, Plant Physiol.,1987,85:355-359
    149. S.P. Nissanka, MA. Dixon and M. Tollenaar, Canopy Gas Exchange Response to Moisture Stress in Old and New Maize Hybrid, Crop Science, 1997,37:172-181
    150. Congming Lu and JianhuaZhang, Changes in photosystem II function during senecence of wheat leaves, Physidogia Plantarum, 1998,104:239-247
    151. L.M. Dwyer, C.J. Andrew, D.W. Stewart etc.. Carbohydrate levels in field-grown leafy and normal maize genotypes. Crop Science, 1995,35:1020-1027
    
    
    152. Howard Thomas and John L Stoddart, Leaf senescence, Annu. Rev. Plant Physiol., 1980,31:83-111
    153. Vrcki L. Chandler and Herve Vaucheret, Gene activation and gene silencing, Plant Physiol,,2001,125:145-148
    154. Warwick Hillier and Gerald I Babcock, Photosynthetic Reaction Centers, Rant Physiol.. 2001,125:3347
    155. Alan M. Jones, Programmed cell death in development and defense, Plant Physiol., 2001,125:94-97
    156. Erland Liljeroth and Thomas Bryngelsson, DNA fragmentation in cereal roots indicative of programmed root cortical cell death, Physiologia Rantarum, 2001,111:365-372
    157. Ulrika Hamdahl and Cecilia Sundby, Does the chloroplast small neat shock protein protect photosystem II during heat stress in vitro, Physiologia Rantarum, 2001,111:273-275
    158. Philippe Matile, Howard Thomas Chlorophyll degradation, Annu. Rev. Rant Physiol. Rant Mol. Biol., 1999,50:67-95
    159. Krishna K. Niyogi, Photoprotection revisited-genetic and molecular approaches, Annu. Rev. Plant Physiol. Rant Mol. Bid, 1999,50:333-359
    160. P.K. Subudhi, D.T. Rosenow, H.T. Nguyen, Quantitative trait loci for the stay green trait in sorghum consistency across genetic backgrounds and environments, Theor. Appl. Genet., 2000,101:733-741
    161. D.N. Duvick and K.G. Cassman, Post-green Revolution Trends in yield potential of temperate Maize in the North Central U.S. Crop Science, 1999. 39:1622-1630
    162. V.O. Sadras, L. Echarte and F.H. Andrade, Profiles of leaf senescence during reproductive growth of sunflower and maize, Annals of Botany, 2000,85:187-195
    163. E. Galova, B. Bohmova and A.Sevcovicova, Analysis of some barley chlorophyll mutants and their response to temperature stress, Photosynthetic, 2000,38(1) :29-35
    164. Vicky Buchanan-Wolaston, Istation of cDNA done for genes that are expressed during leaf senescence in Brassica napus, Rant Physiol., 1994,105:839-846
    165. Borrell A.K., Douglas ACL, maintaining green leaf area in grain sorghum increases yield in a water limited environment. In : Foale MA, Henzell RG, Kneipp JF, eds. Proceedings of the third Australian sorghum conference. Melbourne: Australian Institute of Agricultural Science, Occasional Publication 1996,No. 93.
    166. Buchanan-Wollaston V., The molecular biology of teat senescence, Journal of Experimental Botany, 1997,48,181-199.
    167. Duncan RR, Bockholt AJ, Miller FR., Descriptive comparison of senescent and non-senescent sorghum genotypes. Agronomy Journal, 1981,73,849-853.
    168. Escalada RG, Plucknett DL, Ratoon cropping of sorghum.1. Origin, time of appearance, and fate of tillers, Agronomy Journal, 1975,67,473478.
    169. Gan S, Amasino RM., Inhibition of leaf senescence by autoregulated production of cytokinin, Science 1995, 270,1986-1988
    170. Gay AP, Thomas H., Leaf development in Lolium temulentum1. photosynthesis in relation to growth and senescence. New Phytologist, 1995,130,159-168
    171. Griffiths CM, Hosken SE, Oliver D, Chojecki J, Thomas H., Sequencing, expression pattem and RFLP mapping of a senescence-enhanced cDNA from Zea mays with high homology to oryzain and aleurain. Rant Molecular Biology, 1997,34:815-821
    172. Grbic V, Bleecker AB., Ethylene regulates the timing of leaf senescence in Arabidopsis. The Rant Journal ,1995,8: 95-102
    173. Guiamet JJ, Schwartz E, Pichersky E, Nooden LD., Characterization of cytoplasmic and nuclear mutations affecting chlorophyll and chlorophyll-binding proteins during senescence in soybean. Plant Physiology, 1991,96:227-231
    174. Hauck B, Gay AP, Maeduff J, Griffiths CM, Thomas H., Leaf senescence in a non-yellowing mutant of Festuca pratensis'. implications of the stay-green mutation for photosynthesis, growth and nitrogen nutrition. Rant, Cell and Environment 1997,20:1007-1018
    175. Hortensteiner S, Vicentini F, Matile P., Chlorophyll breakdown in senescent leaves: enzymic cleavage of
    
    phaeo-phorbide a in vitro.,New Phytologist ,1995,129:237-246
    176. Howarth CJ, Cavan GP, Sket KP, Layton RHW, Hash CT, Witcombe JR., Mapping QTLs (quantitative trait loci) for heat tolerance in pearl millet. In: Witcombe, JR, Duncan RR, eds. Use of molecular markers in sorghum and pearl millet breeding for developing countries. Proceedings of anODA Plant Sciences Research Programme Conference, Norwich, Overseas Development Administration, 1994
    177. John I, Drake R, Farrell A, Cooper W, Lee P, Morton P, Grierson D., Delayed leaf senescence in ethylene-deficient ACC-oxidase antisense tomato plants: molecular and physiological analysis. The Plant Journal ,1995,7:483-490
    178. Kelly TG, Parthasarathy Rao P, Walker TS., The relative value of cereal straw fodder in the semi-arid tropics of India: implications for cereal breeding programmes at ICRISAT, 1991 In: Dvorak K, ed.; Social science research for agricultural technology development, CABI
    179. King GA, O'Donoghue EM., Unravelling senescence: new opportunities for delaying the inevitable in harvested fruit and vegetables. Trends in Food Science and Technology 1995,6:385-389.
    180. Kilhibrandt W, Wang DN, Fujioshi Y, Atomic model of plant light-harvesting complex by electron crystallography. Nature 1994,367:614-621
    181. Mac T, Thomas H, Gay AP, Makino A, Hidema J., Leaf development in Lolium temulentum'. photosynthesis and photosynthetic proteins in leaves senescing under different irradiances. Plant and Cell Physiology, 1993 34:391-399
    182. McBee GG, Waskom RM, Miller FR, Creelman RA.. Effect of senescence and non-senescence on carbohydrates in sorghum during late kernel maturity states, Crop Science, 1983,23:372-377
    183. Nam HG., The molecular genetic analysis of leaf senescence. Current Opinion in Biotechnology,1997,8:200-207
    184. Potter CS, Randerson IT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA., Terrestrial ecosystem production a process model based on global satellite and surface data, Global Biogeochemical Cycles ,1993,7: 811-841
    185. Rosenow DT., Breeding for resistance to root and stalk rots in Texas, In: Mughogho LK, Rosenberg G, eds, Sorghum root and stalk rots, a critical review, Patancheru India: ICRISAT, 1984,209-217
    186. Rosenow DT, Clark LE., Drought tolerance in sorghum. In: Loden HD, Wilkinson D, eds. Proceedings of the 36thannual com and sorghum industry research conference, 1981,18-31
    187. Rosenow DT, Quisenberry JE, Wendt CW, Clark LE., Drought-tolerant sorghum and cotton germplasm. Agricultural Water Management, 1983,7:207-222
    188. Ross GJS., 1986, Maximum likelihood program, Version 3. 09. Oxford: Numerical Algorithm Group.Scheumann V, Schoch S, Rudiger W. 1999, Chlorophyll breduction during senescence of barley seedlings. Planta(in press)
    189. Smart CM., Gene expression during leaf senescence, New Phytologist, 1994,126:419-448
    190. Smart CM, Scofield SR, Bevan MW, Dyer TA., Delayed leaf senescence in tobacco plants transformed with tmr, a gene for cytokinin production in Agrobacterium, The Plant Cell, 1991,3:647-656
    191. Smart CM, Hosken SE, Thomas H, Greaves JA, Blair BG, Schuch W., The timing of maize leaf senescence and characterisation of senescence-related cDNAs, Physiologia Plantarum 1995,93:673-682
    192. Thomas H., Foliar senescence mutants and other genetic variants. In: Thomas H, Grierson D, eds, Developmental mutants in higher plants. Cambridge: Cambridge University Press, 1987,245-265
    193. Thomas H., Sid: a Mendelian locus controlling thylakoid membrane disassembly in senescing leaves of Festucapratensis, Theoretical and Applied Genetics, 1987,73:551-555
    194. Thomas H.,. Canopy survival. In: Baker N, Thomas H, eds. Crop photosynthesis: spatial and temporal determinants.Amsterdam:Elsevier, 1992,1141
    195. Thomas H., Chlorophyll: a symptom and a regulator of plastid development, New Phytologist 1997,136:163-181
    196. Thomas H, Morgan WG, Thomas AM, Ougham HJ., Expression of the stay-green character introgressed into Lolium temulentum Ceres from a senescence mutant of Festuca pratensis, Theoretical and Applied Genetics, 1999,99:92-99
    197. Thomas H, Scheilenberg M, Vicentini F, Matile P., Gregor Mendel's green and yellow pea seeds, Botanica Acta, 1996,
    
    109:3-4
    198. Thorogood D, Humphreys M, Turner L, Laroche S., QTL analysis of chlorophyll breakdown in Lolium perenne, Abstracts of Plant and Animal Genome VII, San Diego, 1999,280
    199. Tollenaar M., 1985. What is the current upper limit of com productivity? Proceedings of conference on physiology, bio-chemistry and chemistry associated with maximum yield of com. St Louis, Mo: foundation for Agronomic Research and Potash and Phosphate Institute.7,Buban T, Faust M.Flower bud initiation in apple trees:intemal contro I and differentiation.Hort.Rev., 1981,4:174-203
    200. Wan, C., W.W. Xu, R.E. Sosebee, S. Machado, and T. Archer, Hydraulic lift in drought-tolerant and-susceptible maize hybrids, Plant and Soil, 2000,219:117-126
    201. Xu, W.W., P. Subudhi O.R. Crasta, D.T. Rosenow, J.E. Mullet, and H.T. Nguyen, Molecular mapping of QTLs conferring stay green in grain sorghum (Sorghum bicolor L. Moench), Genome, 2000,43:461-469
    202. Xu, W.W., D.T. Rosenow, and H.T. Nguyen, Stay green trait in grain sorghum: Visual rating and objective measuring. Plant Breeding, 2000,119:365-367
    203. Crasta, O.R., W.W. Xu, D.T. Rosenow, J.E. Mullet, and H.T. Nguyen, Mapping of post-flowering drought resistance traits in grain sorghum: Association of QTLs influencing senescence and maturity. Molecular General Genetics, 1999, 262:579-588
    204. Nguyen, H.T, Xu, W.W., D.T. Rosenow, J.E. Mullet, and L Mclntyre, Use of biotechnology in sorghum drought resistance breeding. Proceedings of the International Conference on Genetic Improvement of Sorghum and Pear Millet, 1996,412-424
    205. Wang, B, W.W. Xu, J.Z. Wang, W. Wu, H.G. Zheng, Z.Y. Yang, J.D. Ray, H.T.Nguyen, Tagging and mapping the thermo-sensitive genie male sterile gene in rice (Oryza sativa L.) with molecular markers, Theoretical and Applied Genelics,1995,91:1111-1114
    206. Xu, W.W., D.A. Sleper, and S. Chao, 1995. Genome mapping of polyploid tall fescue (Festuca arundinacea Schreb:) with RFLP markers. Theoretical and Applied Genetics 91:947-955.
    207. .Amon.D.N., Copper enzymes in isolated chloroplast, polyphend oxidase in Beta vulgari,Plant Physiol., 1949,24:1-5
    208. .Thomas,W.R.,et al., Characterization of diurnal changes in activities of enzymes in-volved in sucrose biosynthesis.Plant Physiol.,1983,73:428-433
    209. Vemon A,Wittenbach, Ribulose Bisphosphate Carboxylase and Protealytic activity in wheat leaves from anthesis through senescence, 1979,Plant Physi-ol.,64:884-887
    210. Douglas,C.,et al, Enzymes of sucrose and hexose metabolism in developing kernels of two inbreds of maize.Plant Physiol., 1988,86:1013-1019
    211. O'neal, D., Joy, K.W., Glutamine synthetase of pea leaves-divalent cation effects, substrate specificity, and other properties, Plant Physiol. 1974,54:773-779