氮肥对夏玉米籽粒库容建成和充实的影响机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过不同氮肥运筹在夏玉米生长前、中、后期形成不同的植株碳氮代谢水平,系统研究不同碳氮代谢水平下植株物质生产与运转、粒数形成、不同粒位籽粒库容建成和充实特点,并采用籽粒离体培养技术,研究离体条件下不同氮素供应时期对籽粒发育的影响及生理原因。从整株水平上对氮肥影响籽粒库容建成和充实的机理进行了探讨。主要研究结果如下:
     1 夏玉米果穗强、弱势粒发育差异较大。弱势粒占单穗重的比例很小,但对穗粒重提高的贡献较大。适当增加生育前期和中期供氮水平明显提高了粒数,促进强、弱势粒(尤其是弱势粒)发育,显著增加产量。前期氮素供应不足使弱势粒发育明显受影响,粒数和粒重下降,产量降低。前期供氮过多及生育后期增加供氮对粒数、粒重和产量效果不明显。
     2 雌穗小花分化数受氮肥影响不大,氮肥主要通过影响籽粒结实来影响粒数。生育前期和中期适量施氮可以提高粒数决定期植株生长速率,为粒数形成提供充足的碳氮供应,同时在灌浆期提高植株碳氮代谢水平和物质生产力,为籽粒发育提供更多的同化物。生育后期增加供氮对提高植株物质生产力作用不大,反而由于碳氮代谢竞争影响同化物向籽粒的供应。
     3 氮肥通过影响籽粒碳氮代谢水平和库活性来影响籽粒库容建成和充实。前期和中期适量施氮增加了同化物向籽粒的供应,提高了籽粒(尤其是弱势粒)碳氮代谢水平,胚乳细胞分裂受促进,单粒和单穗库容量都增加,与糖代谢相关的酶活性(蔗糖转化酶、蔗糖合成酶、ADPG焦磷酸化酶和淀粉合成酶等)增强,籽粒库活性提高,淀粉积累受促进,粒重增加,其中氮肥对弱势粒发育的作用大于强势粒,增施氮肥使强、弱势粒发育差距明显缩小,穗粒重提高。生育前期或中期氮供应不足使籽粒库容量减少,库活性下降,粒重降低。生育后期增加供氮对强、弱势粒库容建成和充实的作用不大。
     4 离体培养条件下,强、弱势粒发育存在差异,弱势粒对氮素缺乏更敏感。整个灌浆期氮素供应充足提高了籽粒库活性和碳氮代谢水平,促进了籽粒库容建成和库充实;整个滞浆期缺氮显著降低籽粒库活性和碳氮代谢水平,蔗糖分解和淀粉合成受阻;库容建成期缺氮影响了籽粒库容建成,但库充实期恢复供氮后,籽粒库活性和碳氮代谢水平有所提高;库充实期缺氮对籽粒库容大小没有影响,但对库充实影响明显。不同缺氮时期对粒重的影响程度与缺氮时间长短有关,表现为:整个灌浆期缺氮>库充实期缺氮>库容建成期缺氮。
     5 氮肥一方面通过影响植株物质生产力来改变同化物向籽粒的供应,间接作用于粒重形成;另一方面也通过调节与粒重形成相关酶的活性直接作用于籽粒发育。在90~180kgN/hm~2施氮范围内,基肥:雌穗小花肥=1:3的氮肥运筹方式可以显著促进弱势粒发育,增加粒重,获得高产。
Nitrogen supply affects the carbon-nitrogen metabolism during plant growth in summer maize (Zea mays L.). Dry matter production, kernel number determination and kernel development were investigated under different rates and times of nitrogen application. The influence of nitrogen availability on kernel growth in vitro was also studied. The mechanism of nitrogen affecting kernel development was discussed by comparing the results of in vitro culture and field trials.
    The growth of upper and middle kernels was quite different in summer maize. The upper kernels were very important to increase ear weight although they were only a small part of the ear. Increasing the nitrogen supply appropriately during early and middle growth stage of summer maize promoted kernels growth (especially for upper kernels), which led to high kernel number (KN), kernel weight (KW) and grain yield significantly. Nitrogen deficiency during early growth stage resulted in reduction of KN, KW and grain yield. Excess nitrogen supply.in early growth or silking stage had no obvious effects on KN, KW and grain yield.
    The increased KN by nitrogen was mainly due to the reduced kernel abortion while spikelet number was not influenced. Increasing the nitrogen supply during early and middle growth stage improved the assimilate and nitrogen level of plant, so as to enhance dry matter production and plant growth rate, which was helpful to kernel growth. Increasing the nitrogen supply in the silking stage had no effect on the dry matter production, but the assimilate supply for kernel growth was reduced due to the competition between carbon and nitrogen metabolism.
    Increasing the nitrogen supply during early and middle growth stage enhanced carbon-nitrogen metabolism and the assimilate supply for kernel, so as to promote the endosperm cell division and to enlarge the sink capacity of kernel and ear. Meanwhile, the activity of enzymes related sucrose metabolism (sucrose invertase, sucrose synthase, ADPG-ppase and starch synthase) and starch deposition were also increased, which led to high KW. Nitrogen had more obvious effect on the growth of upper kernels than that of middle kernels. Increasing nitrogen supply reduced the difference between upper and middle kernels growth, and improved the ear weight. Nitrogen deficiency in the early and middle growth stage reduced the sink capacity and activity, which resulted in lower KW. Increasing nitrogen supply in silking stage had little effect on the kernel development.
    The growth difference of upper and middle kernels was still obvious in vitro culture, and upper kernels were more sensitive to nitrogen stress. Sufficient nitrogen supply during grain filling period promoted kernel growth by improving carbon-nitrogen metabolism and sink activity of kernels. Nitrogen shortage during grain filling period decreased the sink metabolism and activity, which hindered the sucrose decomposition and starch synthesis, and finally resulted in small KW. Nitrogen stress during endosperm cell division or linear filling stage reduced the kernel sink capacity and influenced grain filling rate separately, and all of them was unfavorable to kernel weight increase. The impact of nitrogen stress at different stage on kernel growth was: stress during grain filling period > during linear filling period > during endosperm cell division.
    Nitrogen supply had both indirect and direct effects on the kernel development. On the one hand,
    
    
    nitrogen influenced the plant dry matter production so as to change the assimilate supply for kernel growth. On the other hand, nitrogen affected the activity of enzymes related to kernel growth. Within the range of 90~180kg N/hm2, kernel weight and grain yield could be improved significantly by the fertilizer application with the ratio of 1:3 for sowing stage and spikelet differentiation stage.
引文
1 艾应伟.毛达如,王兴仁,等.冬小麦-夏玉米轮作周期中N、P、K、Zn化肥合理施用的研究.土壤通报,1998,29(2):73~75
    2 曹承富,汪芝寿,孔令聪.氮肥运筹对夏玉米产量及籽粒灌浆的影响.安徽农业科学,1993,21(3):236~240
    3 陈建忠,等.黑龙港流域气象因子对夏玉米粒重的影响.中国农业气象,1999,20(3):19—23
    4 崔俊明,王海龙.玉米籽粒发育的生理特性研究.河南农业大学学报,1995,29(2):116—120
    5 董树亭,高荣歧.玉米花粒期群体光合性能与高产潜力研究.作物学报,1997,3
    6 董学会,何钟佩,关彩虹.根系导入生长素和玉米素对玉米光合产物输出及分配的影响.中国农业大学学报,2001,6 (3):21~25
    7 盖钧镒.试验统计方法.北京:中国农业出版社,2000,217~218
    8 高荣岐,董树亭,胡昌浩,王群瑛.高产夏玉米籽粒形态建成和营养物质积累与粒重的关系.玉米科学,1992,创刊号:52~58
    9 范仲学.冬小麦-夏玉米一年两熟水氮高效利用及其机理研究:[博士学位论文].北京:中国农业大学,2001,12
    10 高荣岐,董树亭,胡昌浩,等.夏玉米籽粒发育过程中淀粉积累与粒重的关系.山东农业大学学报,1993,24(1):42~48
    11 耿玉翠,范树仁.玉米氮肥适宜追施期研究.山西农业科学,1999,27(1):28~31
    12 龚学臣,牛瑞明,王立秋,等.冬麦春播灌浆特性的研究.麦类作物,1999,19(2):24~27
    13 顾慰连.生态条件对玉米“库”的建成和产量的影响.顾慰连论文选集,辽宁科学技术出版社,1992
    14 郭晓华.玉米花粒败育的一般成因及其与产量的关系.辽宁农业科学,1988,(3):12~17
    15 何萍,金继运,林葆.氮肥用量对春玉米叶片衰老的影响及其机理研究.中国农业科学,1998,31(3):66~71
    16 何照范.粮油籽粒品质及其分析技术.北京:农业出版社,1985,129~150
    17 胡寅华,郑卓琳.玉米籽粒类型及其与成粒的关系.河北农业大学学报,1991,14(3):11~15
    18 黄瑞冬.玉米籽粒数量变化规律的研究.辽宁农业科学,1987,(1):8~12
    19 黄绍敏,宝德俊,皇甫湘荣,等.小麦-玉米轮作制度下潮土硝态氮的分布及合理施用氮肥研究.土壤与环境,1999,8(4):271~273
    20 金继运,何萍.氮钾营养对春玉米后期碳氮代谢与粒重形成的影响.中国农业科学,1999,32(4):55-62
    21 李伯航,崔彦宏.夏玉米胚乳细胞建成与粒重关系.河北农业大学学报,1989,12(4):39-45
    22 李科江,张西科,刘文菊,等.不同栽培措施下冬小麦灌浆模拟研究.华北农学报,2001,16(2):70~74
    23 李立人.植物和微生物中ATP的提取及测定方法评述.植物生理学通讯,1986,22(4):5~11
    24 李荣田,罗秋香,秋太权,等.寒地水稻品种籽粒灌浆特性差异及其对结实率的影响.东北农业大学学报,2001,32(3):214~221
    25 李秀军等.玉米籽粒的生长发育模式与产量,吉林农业科学,1992,2:13~18
    26 梁建生,曹显祖,徐生,等.水稻籽粒库强与其淀粉积累之间关系的研究.作物学报,1994,20(6):685~691
    27 陆卫平,卢家栋,童长兴,等.玉米灌浆结实期产量源库关系的研究,江苏农学院学报,1996,17(4):23~26
    
    
    28 罗瑶年,刘玉敬,高学曾,等.玉米果穗顶部籽粒败育的形态解剖观察.中国农业科学.1988,21(2):51~44
    29 马毅杰,马立珊.化肥与生态环境.中国植物营养学会编,现代农业中的植物营养与施肥.北京:中国农业科技出版社,1995,1~7
    30 邱荣生.氮肥运筹对“二旱一水”玉米群体质量及产量的影响.玉米科学,1996,4(2):53~57
    31 沈秀瑛,戴俊英,胡安畅.玉米群体冠层特征与光截获量及产量关系的研究.作物学报,1993,19(3):246-252
    32 松岛省三.稻作的理论与技术.庞诚译.北京:农业出版社,1979,119~120
    33 孙月轩,等.氮肥运筹比例对夏玉米群体质量及产量的影响.耕作与栽培,1994,(3):29~31
    34 孙昭荣,刘秀奇,杨守春.不同氮素施用量对土壤下渗水及小麦产量和品质的影响.施肥与环境学术讨论会论文集,北京:中国农业科技出版社,1994,55~61
    35 王纪华.玉米籽粒败育机理及发育调控研究.中国农业大学博士学位论文,1995
    36 王纪华,王树安,赵冬梅,等.玉米穗轴维管束解剖结构及其含水率对籽粒发育的影响.玉米科学,1994,2(4):41~43
    37 王庆成等.密度对玉米库性能与产量潜力的影响,华北农学报:第六届全国玉米栽培学术会论文集,1998,13:34~40
    38 王忠,顾蕴洁,李卫芳,等.玉米胚乳的发育及其养分输入的途径.江苏农学院学报,1997,18(3):1-7
    39 王忠孝.关于玉米籽粒败育的研究.中国农业科学,1986,6:36~40
    40 王忠孝.玉米矿质营养与合理施肥.山东玉米,中国农业出版社,1999
    41 吴远彬.紧凑型玉米高产理论与技术.科学技术文献出版社,1999
    42 谢皓,贾振华,李华,等.夏玉米合理施用氮肥的研究.北京农业科学,1995,13(2):23~27
    43 扬建昌,彭少兵,顾世梁,等.水稻结实期籽粒和根系中玉米素和玉米素核苷含量的变化及其与籽粒充实的关系.作物学报,2001,27(1):35~42
    44 尹枝瑞.种植密度对玉米产量及生长发育的影响.吉林农业科学,1987,(1):12~17
    45 于风仪,张萍,周洪杰,等.玉米籽粒建成过程中功能叶 ~(14)C-同化物运转与分配特性研究.核农学报,1993,7(4):227~230
    46 詹其厚.氮肥不同用量对玉米产量的影响及肥效分析.安徽农业科学,1997,25(4):352~353,370
    47 张风路,王志敏,赵明.玉米籽粒败育过程中糖代谢酶类活性变化.华北农学报,1998,增刊:24~27
    48 张风路,崔彦宏,王志敏,等.玉米籽粒小穗柄维管束发育状况与籽粒败育关系研究.河北农业大学学报,1999,22(1):16~19
    49 张风路,崔彦宏,王志敏,等.玉米籽粒败育过程中的能量代谢研究.河北农业大学学报,2000,23(3):9~11
    50 张风路,王志敏,等.玉米果穗矿质元素分布与籽粒败育关系研究.河北农业大学学报,2001,22(1):8~10
    51 张起君.玉米高产开发原理与技术.山东科学技术出版社,1992
    52 张庆江,张文英.小麦夏玉米两熟制粮田氮的平衡运转动态及氮肥利用率.土壤通报,1997,24(4):164~166
    53 张祖建,朱庆森,等.水稻胚乳细胞计数方法研究.江苏农学院学报,1996,1792):7~12
    54 赵久然,陈国平.不同时期遮光对玉米籽粒生产能力的影响及籽粒败育过程观察.中国农业科学,1990,23(4):28~34
    55 赵可夫.玉米生理,山东科学技术出版社,1982
    56 赵明,李少昆.论作物产量研究的“三合结构”模式.北京农业大学学报,1995,21(4):359-363
    
    
    57 赵志全,高尔明,黄丕生,等.源库质量与作物超高产栽培及育种.河南农业大学学报,1999,33(3):226-230
    58 郑卓琳,胡寅华,李伯航.玉米雌穗小花类型、形态决定时期及其与成粒的关系.河北农业大学学报,1990,(4):34~39
    59 周晓芬,刘宗衡.氮钾肥对夏玉米的增产效应及经济施用量.土壤肥料,1997(3):20~22
    60 朱根海.叶片含氮量与光合作用.植物生理学通讯,1985,(2):9~12
    61 左余宝,李书田,谢晓红.等.夏玉米施用钾肥的增产效果及N、K、Zn配合施用技术.土壤肥料,1995(2):27~31
    62 Andrade F H, Vega C, Uhart S U. 1999. Kernel number determination in maize. Crop Sci. 39:453~459
    63 Artlip T S. 1995, Water deficit in developing endosperm of maize: cell division and nuclear DNA endoreduplication. Plant Cell and Environment, 18:1034~1040
    64 Below F E. 1996. Growth and productivity of maize under nitrogen stress. In: Edmeades G O, Banziger M, Michelson H R, Penavaidivia C B, eds. Developing drought and low N tolerant maize. Proceeding of a symposium. March, CIMMYT. 235~240
    65 Boyle M G, Boyer J S, Morgan P W. 1991. Stem infusion of liquid culture medium prevents reproductive failure of maize at low water potential. Crop Sci. 31:1246~1252
    66 Brandau P S, Below F E. 1992. Nitrogen supply and reproductive development of maize. P. 122. In: Agronomy Abatracts. ASA. Madison, WI
    67 Brangeon J, Reyss A, Prioul J L. 1997. In situ detection of ADPglucose pyrophosphorylase expression during maize endosperm development. Plant Physiol and Biochem, 35(11): 847~858
    68 Cao H, Shannon J C. 1997. Effect of gibberellin on growth, protein secretion, and starch accumulation in maize endosperm suspension cells. J Plant Growth Regul, 16:137~140
    69 Capitanio R, Getinentta E, Motto M. 1983. Grain weight and its components in maize inbred lines. Maydica.28:365-379
    70 Cazetta J O, Seebauer J R, Below F E. 1999. Sucrose and nitrogen supplies regulate growth of maize kernel. Ann of Botany. 84:747~754
    71 Cheikh N, Jones R J. 1994. Disruption of maize kernel growth and development by heat stress. Role of cytokinin/abscisic acid balabce. Plant Physiol, 106:45~51
    72 Cheikh N, Jones R J. 1995. Heat stress effects on sink activity of developing maize kernels grown in vitro. Physiologia Plantarum, 95:59~66
    73 Cirilo A G, Andrade F H. 1996. Sowing date and kernel weight in maize. Crop Sci, 36:325~331
    74 Commuri P D, Jones R.J. 2001. High temperatures during endosperm cell division in maize: a genotypic comparison under in vitro and field conditions. Crop Sci, 41 : 1122~1130
    75 Commuri P D, Jones R J. 1999. Ultrastructural characterization of maize (Zea Mays L.) Kernels exposed to high temperature during endosperm cell division. Plant Cell and Environment, 22:375~385
    76 Costa C, Dwyer L M, Dutilleul P, et al. 2001. Inter-relationships of applied nitrogen, spad, and yield of leafy and non-leafy maize genotypes. J. Plant N utr. 24(8):1173~1194
    77 Cully D E, Gengenbach B G. 1984. Endosperm protein synthesis and L-[35S]methionine incorporation in maize kernels cultured in vitro. Plant Physiol. 74:389~394
    
    
    78 Czyzewicz J R, Below F E. 1992. Growth of maize kernel in vitro as affected by nitrogen supply. P.124. In: Agronomy Abatracts. ASA. Madison, WI
    79 Doehlert D C, Kuo T M, Felker F C. 1988. Enzymes of sucrose and hexose metabolism in developing kernel of two inhreds of maize. Plant Physio. 86:1013~1019
    80 Dochlcrt D D, Kuo T.M. 1994. Gene expression in developing kernels of some endosperm mutants of Maize. Plant Cell Physiology. 35(3):411~418
    81 Dupuis I, Dumas C. 1990. Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize reproductive tissues. Plant Physio. 94(2): 665~670
    82 Faleiros R R S, Seebauer J R, Below F E. 1996. Nutritionally induced changes in endosperm of shrunken-1 and brittle-2 maize kernels grown in vitro. Crop Sci, 36:947~954
    83 Fischer K S, Palmer F E. 1984. Tropical maize. P. 213~248. In: Goldsworthy P R, Fisher N M, eds. The physiology of tropical field crops. Wiley, New York
    84 Gengenbach B G, Jones R J. 1994. In vitro culture of maize kernels. In: Freeling M., Walbot V, eds. The maize hand book. Springer-Verlag, New York, Inc. 705~722
    85 Graft G, Larkins B A. 1995. Endoreduplication in maize endosperm: involvement of M phase-promoting factor inhibition and induction of S phase-related kinases. Science, 269(5228): 1262~1264
    86 Greef J M, Ott H, Wulfes R, et al. 1999. Growth analysis of dry matter accumulation and N uptake of forage maize cultivars affected by N supply. J. Agric Sci. 132:31~43
    87 Hall A J, Ginze H D, LecomffJ H, et al. 1980. Influence of drought during pollen-shedding on flowering, growth and yield of maize. Z. Acker Pflanzenbau. 149:287~298
    88 Hanf J.M, Jones R J, Stumne A B. 1985. Dry matter accumulation and carbohydrate concentration patterns of field-grown and in vitro cultured maize kernels from the tip and middle ear position. Crop Sci. 26:568~572
    89 Hanft J M, Jones R J. 1986a. Kernel abortion in maize : □Carbohydrate concentration patterns and invertase activity of maize. Plant Physiol. 81:503~510
    90 Hanft J M, Jones R J. 1986b. Kernel abortion in maize : Ⅱ Distribution of ~(14) C among kernel carbohydrates. Plant Physiol. 81:511~515
    91 Hannah L C, Greene T W, Muntz K. 1998. Maize seed weight is dependent on the amount of endosperm ADP-glucose pyrophosphorylase. J Plant Physiol, 152(6): 649~652
    92 Herro M P, Johnson R R. 1980. High temperature stress and pollen viability of maize. Crop Sci. 20:796~800
    93 Isao O, Isao S, Kuni I. 1994. Morphologies of unfilled grains at the tip of sweet corn ear. J.Japan. Soc. Hort. Sci.63(2):353~361
    94 Jacobs B C, Pearson C J. 1991. Potential yield of maize determined rates of growth and development of ears. Field Crops Res. 27:281~298
    95 Jones R J, Gengenbach B G, Cardwell V B. 1981. Temperate effect on in vitro kernel development of maize. Crop Sci, 21:761~766
    96 Jones R J, Schreiber B M, Roessler J A. 1996. Kernel sink capacity in maize: genotypic and maternal regulation. Crop Sci, 36:301~306
    97 Jones R J, Roessler J, Ouattar S. 1985. Thermal environment during endosperm cell division in maize: effects on
    
    number of endosperm cells and starch granules. Crop Sci, 25:830~834
    98 Juliann R C, Below F E. 1994. Genotypic variation for nitrogen uptake by maize kernels grown in vitro. Crop Sci, 34:1003~1008
    99 Kazubiro Kobarasi Takeshihorie. 1994. The effect of plant nitrogen condition during reproductive stage on the differentiation of spikelets and rachis-branches in rice. JPN. J. Crop. Sci. 63(2):193~199
    100 Kiniry J R, Daynard T B. 1985. Shade-sensitive interval of kernel number of maize. Agron.J. 77:711~715
    101 Kiniry J R, Williams J R, Vanderlip R L, et al. 1997. Evaluation of two maize models for nine U. S. locations. Agron J. 89:421~426
    102 Kiniry J R, Wood L A, Spanel D A, et al. 1990. Seed Weight Response to Decreased Seed Number in Maize. Agron.J.82(1):98-102
    103 Kniep K P, Mason S C. 1991. Lysine and protein content of normal and opaque-2 maize grain as influenced by irrigation and nitrogen. Crop Sci, 31 :177~181
    104 Koch K E. 1996. Carbohydrate-modulated gene expression in plants. Ann Review of Plant Physiology and Plant Molecular Biology, 47:509~540
    105 Kowles R V, Phillips R L. 1988.Endosperm development in maize. Int.R.ev.Cyto. 112:97~136
    106 Kowles R V, Yerk G L, Phillips R L, et al. 1991. Maternal effect leads to DNA replication pattern in maize endosperm. Maize Genetics Cooperation News Letter. 65:117~118
    107 Lang A L, Pendlaton J W, Dungan G H. 1958. Influence of population and nitrogen levels on yield and protein and oil content of nine cron hybrids. Agron J. 48:63~67
    108 Lee T C. 1981. The relationship of nitrogen sinl and kernel sink strength on dry matter accumulation in Zea Mays L. Ph.D. Dissertation, Purdue Univ. Lafayette W., Ind. Univ. Microfilm no 8200692, Ann. Arbor, Mich
    109 Lemcoff J H, Loomis R S. 1994. Nitrogen and density influences on silk emergence, endosperm development, and grain yield in maize (Zea mays L.). Field Crops Res. 38:63~72
    110 Linn B Y. 1977. Ploidy variation in maize endosperm. Hered. 68:143-149
    111 Lur H S, Setter T L. 1993a. Endosperm development of maize defective kernel (dek) mutants. Auxin and cytokinin leves. Ann Bot, 72:1~6
    112 Lur H S, Setter T L. 1993b. Role of auxin in maize endosperm development, timing of nuclear DNA endoreduplication, zein expression and cytokinin. Plant Physiol, 103:273~280
    113 Mambelli S, Setter T L. 1993. Inhibition of maize endosperm cell division and endoreduplication by exogenously applied abscisic acid. Physiol Plant, 104:266~272
    114 Marschner H, Kirkby E A, Cakmak 1. 1996. Effect of mineral nutrition status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J. Exp. Bot. 47:1255~1263
    115 Miller M E, Chourcy P S. 1992. The maize invertasc-dificient miniature-1 seed mutation is associated with aberrant pedical and endosperm development. The Plant Cell. 4(3):297~305
    116 Motto M. 1983.Seed size components among maize inbred lines. Gene Agr.37:191
    117 Moutot F, Huet J C. Wuillene S, 1987. Biochemical aspect of photoassimilated carbon partitioning at late kenel filling in maize under climatic stress. Biochimie, 69(6~7):563~567
    118 Myers P N, Setter T L, Madison J T, et al. 1990. Abscisic acid inhibition of endosperm cell division in cultured
    
    maize kernels. Plant physiol, 94:1330~1336
    119 Myers P N, Setter T L, Madison J T, et al. 1992. Endosperm cell division in maize kernels cultured at three levels of water potential. Plant Physiol, 99(3):1051~1056
    120 Nakamura Y, Yuki K, Park S Y, et al. 1989. Carbohydrate metabolism in the developing eadosperm of rice grains. Plant Cell Physiol, 30(6):833~839
    121 Osaki M, Makoto L, Toshiaki T. 1995. Ontogenetic changes in the contents of ribulose-1,5-bisphosphate carboxylase/oxygenace, phosphoenolpyruvate carboxylase, and chlorophy Ⅱ in individual leaves of maize. Soil science & plant nutrition. 41 (2):285~293
    122 Otegui M E, Bonhomme R. 1998. Grain yield components in maize: □Ear growth and kernel set. Field Crops Res. 56:247~256
    123 Ouattar S, Jones K J, Crookston g K. 1987.Effect of water deficit during grain filling on the pattern of maize kernel growth and development. Crop Sci, 27:726~730
    124 Ou-Lee T M, Setter T L. 1985a. Effect of increased temperature in apical regions of maize ears on starch-synthesis enzymes and accumulation of sugar and starch. Plant Physiol. 79:852~855
    125 Ou-Lee T M, Setter T L. 1985b. Enzyme activities of starch and sucrose pathways and growth of apical and basal maize kernels. Plant Physiol. 79:348~351
    126 Paponov I A, Bondarenko Y V, Neumann G, et al. 2001. Effect of nitrogen supply on individual kernel weight and ~(14)C partition in kernels of maize during lag phase and grain filling. Plant nutrition: food security and sustainability of agro-ecosystems through basic and applied research. Fourteenth international plant nutrition colloquium. Hannover, Germany, Kluwer academic publishers, 122~123
    127 Patel G R, Deb D L. 1985. Evaluation of phosphrus supplying power of some rice soils of Gujarat. J. Nuclear Agri. Biol. 12(1):17~19
    128 Pearson C J, Jacobs B C. 1987. Yield components and nitrogen partitioning of maize in response to nitrogen before and after anthesis. Aust J Agric Res, 38:1001~1009
    129 Prioul J L, Reyss A, Schwebel D N. 1990. Relationships between carbohydrate metabolism in ear and adjacent leaf during grain filling in maize genotypes. Plant Physiol and Biochem, 28(4):485~493
    130 Purcino A A C, Silva M R, Andrade S R M. 2000. Grain filling in maize: the effect of nitrogen nutrition on the activities of nitrogen assimilating enzymes in the pedicel-placenta-chalaza region. Maydica, 45(2):95~103
    131 Reed A J, Schussler J R, Singletory G W, et al. 1984. Relationships between carbon and nitrogen metabolism. Kernel number and yield in corn (Zea Mays L.). Agron. Abs., 115
    132 Reed A J, Singletory G W, Schussler J R, et al. 1988. Shadding effects on dry matter and nitrogen partitioning, kernel number, and yield of maize. Crop Sci, 28(5):819~825
    133 Reddy V M, Daynard T B. 1983. Endosperm characteristics associated with rate of grain filling and kernel size in corn. Maydica, 28:339~355
    134 Schussler J R, Westgate M E. 1999. Maize kernel set at low water potential: Ⅱ Sensitivity to reduced assimilate supply at pollination. Crop Sci. 31:1196~1203
    135 Seka D, Cross H Z. 1995. Xenia and maternal effects on maize kernel development. Crop Sci, 35:80~85
    136 Setter T, Flannigan B A. 1989. Relationship between photosynthate supply and endosperm development in maize.
    
    Ann of Bot, 64:481~487
    137 Shannon J C. 1972. Movement of ~(14)C-labeled assimilates into kernel of Zea Mays L. Plant Physiol.49:198~202
    138 Singletary G W, Bolow F E. 1989. Growth and composition of maize kernels cultured in vitro with varying supplies of carbon and nitrogen. Plant Physiol. 89:341~346
    139 Singletary G W, Bolow F E. 1990. Nitrogen-induced changes in the growth and metabolism of developing maize kernel grown in vitro. Plant Physiol. 92:160~167
    140 Thiraporn R G, Geisler G, Stamp P. 1987. Effects of nitrogen fertilization on yield and yield components of tropical maize cultivars. J Agron Crop Sci. 159:9~14
    141 Tollenaar M, Daynard T B. 1978a. Kernel growth and development at two positions on the ear of maize(Zea Mays). Can.J.Plant Sci. 58:189~197
    142 Tollenaar M, Daynard T B. 1978b. Dry weight, soluble sugar content, and starch content of maize kernels during the early post-silking period.. Can.J.Plant Sci. 58: 199~206
    143 Tollenaar M, Dwyer L M, Stewart D W. 1992. Ear and kernel formation in maize hybrids representing three decades of grain yield improvement in Ontario. Crop Sci. 32:432~438
    144 Tsai-mei, Ou-lee, Setter T L. 1985a. Enzyme activities of starch and sucrose pathways and growth of apical and basal maize kernels. Plant Physiol. 79:848~851
    145 Tsai-mei, Ou-lee, Setter T L. 1985b. Effect of increased temperature in apical regions of maize ears on starch-synthesis enzymes and accumulation of sugars and starch. Plant Physiol. 79:852~855
    146 Tsai C L, Dweikat I, Tsai C Y. 1990. Effects of source supply and sink demand on the carbon and nitrogen ration in maize kernels. Maydica, 35(4):391~397
    147 Uhart S A, Andradc F H. 1995a. Nitrogen deficiency in maize: □Effects on crop growth, development, dry matter partitioning, and kernel set. Crop Sci. 35(5): 1376~1383
    148 Uhart S A, Andrade F H. 1995b. Nitrogen deficiency in maize: Ⅱ Carbon-nitrogen interaction effects on kernel number and grain yield. Crop Sci. 35(5): 1384~1389
    149 Walker D A, Regulatory mechanism in photosynthetic carbon mechanism. Current topic in celluar regulation. New York, 1976
    150 Westgate M E, Boyer J S. 1984. Carbohydrate reserves and reproductive development at low water potentials in maize. Crop Sci, 25:762~769
    151 Westgate M E, Grant D L T. 1989. Water deficits and reproduction in maize: response of the reproductive tissue to water deficits at anthesis and mid-grain fill. Plant Physiol, 91:862~867
    152 Wilhelm E P, Mullen R E, Keeling P L, et al. 1999. Heat stress during grain filling in maize: effects on kernel growth and metabolism. Crop Sci, 39:1733~1741
    153 Wilson J H,et al.1982.藤世云译,植株密度对果穗分化和生长的影响.玉米生理译文集,40~49
    154 Yang J, Zhang J, Wang Z, et al. 2001a. Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol, 127 (1): 315~323.
    155 Yang J, Zhang J, Wang Z, et al. 2001b. Activities of starch hydrolytic enzymes and sucrose phosphate synthase in the stems of rice subjected to water stress during grain filling. J Exp Bot, 364 (52): 2169~2179.
    156 Young T E, Gallie D R, Demason D A. 1997. Ethylene mediated programmed cell death during maize endosperm
    
    development of wild type and shrunken 2 genotypes. Plant Physiol, 115:737~751
    157 Yu L L, Lur H S. 2002. Conjugated and free polyamine levels in normal and aborting maize kernels. Crop Sci, 42:1217~1224
    158 Zhang W.L, et al. 1996. Nitrate pollution of groundwater in northern China. Agriculture Ecosystems and Environment, 59:223~231
    159 Zhou X M, Makenzie A F, Madramootoo C A, et al. 1999. Effects of stem-injected plant growth regulators, with or without sucrose, on grain production, biomass and photosynthetic activity of field-grown corn plants. J Agron & Crop Sci, 183:103~110
    160 Zinselmeier C, Habben J E, Westgate M E, et al. 2000. Carbohydrate metabolism in setting and aborting maize ovaries. P. 1~13. In: Weatgate M, Boote K (eds). Physiology and modeling kernel set in maize. CSSA Spec. Publ. 29. CASSA. Madison .WI
    161 Zinselmeier C, Westgate M E, Schussler J R, et al. 1995. Low water potential disrupts carbohydrate metabolism in maize ovaries. Plant Physiol, 107:385~391