沥青混合料开裂破坏行为的细观尺度模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沥青路面以其众多的优点在我国高等级公路中得到了越来越广泛的应用。然而,随着公路运输量的日益增大和大型重载车辆的增多,沥青路面往往在使用早期就出现大量的开裂现象,严重损害路面的使用性能,增加路面维护成本和缩短路面的使用寿命。开裂对沥青路面结构的应用、设计和分析提出了严峻的挑战,提高沥青路面的抗开裂能力已成为我国高等级公路建设中一个急需解决的问题。沥青混合料是沥青路面的组成材料,为了揭示沥青路面的损伤破坏机理,为沥青路面结构设计提供可靠的理论和技术支持,研究沥青混合料在不同载荷和温度条件下的开裂行为显得非常必要。
     论文针对沥青混合料的随机和异质的材料特征,发展了一种随机骨料快速生成和投放算法来建立比拟真实的沥青混合料二维和三维细观结构模型,提出了将随机骨料模型与粘聚带模型相结合的细观异质断裂模型建模框架,并开展了一系列的实验室断裂测试,通过数值模拟与实验测试相结合的方法研究了沥青混合料在不同加载条件下的裂纹扩展机理,讨论了加载方式、材料组成和细观结构等因素对沥青混合料开裂行为的影响。主要创新性研究工作包括:
     (1)开展了沥青混合料单边切口梁试件的三点弯曲开裂实验,通过改变预切口位置构造了Ⅰ型和混合型加载条件,研究了不同加载条件下的裂纹开裂特征。实验结果表明,在Ⅰ型载荷作用下裂纹呈现出竖直向上扩展的趋势,而在混合型载荷作用下裂纹呈现出向梁中心扩展的趋势。
     (2)设计并制作了沥青混合料直接剪切实验装置,基于长方体试件开展了纯Ⅱ型载荷条件下的开裂试验,验证了装置的可靠性,研究了温度对混合料开裂特征和抗开裂能力的影响。实验结果表明,温度会显著影响沥青混合料力学性能,包括初始刚度、剪切强度和载荷峰值过后的软化行为。
     (3)提出和发展了一种骨料快速生成和随机投放算法来创建沥青混合料的细观结构模型。将沥青混合料看作有粗骨料和沥青砂组成的两相复合材料,研究了骨料快速生成、投放、振荡和内接技术,形成了考虑骨料含量、级配和分布等细观组成因素的高效的沥青混合料二维和三维随机骨料模型创建方法。
     (4)提出了一种宏细观相结合的多尺度建模框架。对结构中需要重点关心的区域采用骨料快速生成和投放算法建立异质的细观力学模型,其他区域采用均匀化的宏观模型,来实现计算效率和计算结果可靠性之间的平衡。建立了沥青混合料单边切口梁的多尺度模型对三点弯曲实验进行了数值模拟,验证了多尺度模型的可行性和有效性,并进一步研究了预裂纹位置和骨料分布对开裂方向的影响。
     (5)提出了随机骨料模型与粘聚带模型相结合的细观异质断裂模型创建方法。编制了在随机骨料有限元网格模型中生成粘聚界面单元的程序,将粘聚界面单元作为潜在裂纹插入到骨料-沥青砂界面、沥青砂单元之间,来模拟裂纹的扩展过程。采用二维异质随机骨料断裂模型对三点弯曲实验进行了数值模拟,模拟结果与实验结果的对比验证了模型的可靠性。进一步采用二维细观异质断裂模型研究了无预制裂纹条件下沥青混合料在单轴拉伸和直接剪切实验中从微裂纹萌生、起裂和汇聚,宏观裂纹发生、发展,直至试件完全破坏的全过程,分析了沥青混合料的细观起裂特征和开裂机制,评估了骨料级配、含量、分布等因素对开裂行为的影响。
     (6)将二维断裂模型扩展到三维,开展了三维异质断裂模型的单轴拉伸模拟,讨论了三维条件下的计算规模和计算效率,评估了沥青混合料内部细观结构因素对沥青混合料开裂行为的影响。模拟结果表明三维断裂模型能够预测更加真实的沥青混合料开裂特征,但计算规模更大、计算效率较低。细观结构内部粗骨料分布、数量和沥青砂的断裂参数都是影响沥青混合料开裂性能的重要因素。
Asphalt mixture is widely used in high-grade highway and airport pavement construction due to its high strength, lower noise, easy construction and maintenance and smooth and comfortable for driving. With rapid increase of traffic volume and heavy vehicle amount in recent years, asphalt pavements often fail before reaching its design life due to cracking. As one of the most common distresses, cracking directly reduces the road service capacity and deteriorates the road performance. Crack phenomena pose a severe challenge to application and design of asphalt pavement structures. Understanding the fundamental mechanisms behind crack initiation and propagation is an important issue in development of accurate, mechanistic design procedures based upon pavement performance and life-cycle costs.
     In the paper, random aggregate generation and packing algorithm is developed to create two-and three-dimensional heterogeneous models of asphalt mixture and a heterogeneous fracture modeling approach by combining the mesostructural modeling technique and the bilinear cohesive zone model is proposed to predict fracture evolution behavior in asphalt mixture. Then, an integrated frame by coupling experiments and heterogeneous fracture simulation is presented to study the crack behavior in asphalt mixture under different load modes. The main creative achievements are shown as follows.
     (1) The three-point bending tests are performed based on the single-edged notch beams, and mode I and the mixed mode load conditions are designed by offsetting the notch location. The experimental results show that a crack propagates approximately along the initial crack direction under mode I load condition, but tends to propagate towards the top midspan point of beam under mixed mode load condition.
     (2) Using the self-manufactured direct shear test setup, a series of direct shear test are performed on the cuboid specimens to evaluate the influence of temperature on shear cracking behavior of asphalt mixture. It is revealed from the test results that the temperature significantly influences the mechanical properties of asphalt mixture including initial stiffness, shear strength and post-peak softening behavior.
     (3) The random aggregate generation and packing algorithm is developed to create a two-or three-dimensional heterogeneous model of asphalt mixture. Asphalt mixture is treated as a composite consisting of randomly distributed coarse aggregates and asphalt mastic, and some mesoscale factors including aggregate content, gradation, shape and distribution are considered as variable design parameters. The techniques of aggregate generation, packing, perturbation and conversion involved in the modeling algorithm are studied.
     (4) A multiscale modeling frame combining macroscale and mesoscale is proposed to achieve the balance between the computation efficiency and the accuracy. In this frame, the mesostructural models are created in some concerned local regions and the homogeneous models are done in the other regions. As examples, a series of multiscale models are created to investigate the cracking behavior of pre-cracked asphalt mixture under three-point bend loading. It is proved that the mutiscale modeling frame is feasible and reasonable by comparing the numerical simulation results with the experimental results. Then the effects of crack location and aggregate distribution on cracking behaviors are evaluated.
     (5) A mesoscale heterogeneous fracture modeling approach is proposed by combining the mesostructural model and the cohesive zone model to predict complex cracking behavior in asphalt mixture. The mesostructural model is firstly discretized by finite elements, then, the cohesive elements are inserted into the boundaries of initial elements to be as potential microcrack sources by a self-compiled computer program. The two-dimensional heterogeneous fracture models are created to study the cracking behaviors under three point bending and the comparisons between the numerical simulation results and experimental results prove that the heterogeneous fracture model is feasible and reliable. Then the heterogeneous fracture models are used to study the microcrack evolution characteristics and mechanisms under uniaxial tension and direct shear, respectively. Additionally, the effects of some mesoscale factors such as aggregate gradation, distribution and content on cracking behaviors are evaluated.
     (6) The heterogeneous fracture simulation is extended from a two dimensional case to a three dimensional one and the complex three dimensional crack propagation in asphalt mixture is simulated. The simulation results show that the three dimensional fracture model predicts more realistic crack path, but its computational efficiency is lower. The aggregate distribution, aggregate amount and the cohesive fracture parameters are important factors influencing the crack performance of asphalt mixture.
引文
[1]黄晓明,朱湘编著.沥青路面设计.北京:人民交通出版社,2002.
    [2]沈金安.沥青及沥青混合料路用性能.北京:人民交通出版社,2003.
    [3]沙庆林.高速公路沥青路面早期破坏现象及预防.北京:人民交通出版社,2005.
    [4]Asi IM. Evaluating skid resistance of different asphalt concrete mixes. Building and Environment,2007,42:325-329.
    [5]Shen DH, Kuo MF, Du JC. Properties of gap-aggregate asphalt mixture and permanent deformation. Construction and Building Materials,2005,19:147-153.
    [6]Ishai I, Craus J. Effects of some aggregate and filler characteristics on behavior and durability of asphalt paving mixtures. Journal of the Transportation Research Board, 1996; 1530:75-85.
    [7]Choubane B, Wu CL, Tia M. Coase aggregate effects on elastic moduli of concrete. Journal of the Transportation Research Board,1996,1547:29-34.
    [8]Kuo CY, Rollings RS, Lynch LN. Morphological study of coase aggregates using image analysis. Journal of Material in Civil Engineering,1998,10:135-142.
    [9]Abdullah WS, Obaideat MT, Abu-Sada M. Influence of aggregate type and gradation on voids of asphalt concrete pavement. Journal of Material in Civil Engineering,1998, 10:76-85.
    [10]Krutz NC, Sebaaly PE. The effect of aggregate gradation on permanent deformation of asphaltic concrete. Proc Assoc Asphalt Paving Technol,1993,39:450-473.
    [11]Brown ER, Mallick RB. Evaluation of stone-on-stone contact in stone-matrix asphalt. Journal of the Transportation Research Board,1995,1492:208-219.
    [12]You Z, Adhikari S, Dai Q. Air void effect on an idealised asphalt mixture using two-dimensional and three-dimensional discrete element modelling approach. International Journal of Pavement Engineering,2010,11(5):381-391.
    [13]Romero P, Masad E. Relationship between the representative volume element and mechanical properties of asphalt concrete. Journal of Material in Civil Engineering, 2001,13(1):77-84.
    [14]Wagoner MP, Buttlar WG, et al. Development of a single-edge notched beam test for asphalt concrete mixtures. Journal of Testing and Evaluation,2005,33(6):452-460.
    [15]Zhang D, Huang X, Zhao Y. Evaluation of the fracture resistance of asphalt mixtures based on the bilinear cohesive zone model. Journal of Testing and Evaluation,2011, 39(6):1-5.
    [16]Kim H, Wagoner MP, Buttlar WG. Micromechanical fracture modeling of asphalt concrete using a single-edge notched beam test. Materials and Structures,2009; 42: 677-89.
    [17]刘敬辉,王端宜等.采用J积分对沥青混合料抗裂性能进行评价.固体力学学报,2010,31(1):16-22.
    [18]Ameri M, Mansourian A, Pirmohammad S, Aliha MRM, Ayatollahi MR. Mixed mode fracture resistance of asphalt concrete mixtures. Engineering Fracture Mechanics, 2012,93:153-67.
    [19]Li X, Marasteanu M. The fracture process zone in asphalt mixture at low temperature. Engineering Fracture Mechanics,2010,77(7):1175-1190.
    [20]Li X, Marasteanu M, Kvasnak A, Bausano J, Williams RC, Worel B. Factors study in low-temperature fracture resistance of asphalt concrete. Journal of Material in Civil Engineering,2010,22(2):145-152.
    [21]Li X, Marasteanu M. Using semi circular bending test to evaluate low temperature fracture resistace for asphalt concrete. Experimental Mechanics,2010,77(7): 1175-1190.
    [22]Wagoner MP, Buttlar WG, et al. Disk-shaped compact tension test for asphalt concrete fracture. Proceedings of the Society for Experimental Mechanics,2005,52:270-277.
    [23]Wagoner MP, Buttlar WG, et al. Ivestigation of the fracture resistance of hot-mix asphalt concrete using a dis-shaped compact tension test. Journal of the Transportation Research Board,2005,1929:193-192.
    [24]Kim H, Buttlar WG. Discrete fracture modeling of asphalt concrete. International Journal of Solids and Structures,2009,46:2593-2604.
    [25]Kim H, Wagoner MP, Buttlar WG. Numerical fracture analysis on the specimen size dependency of asphalt concrete using a cohesive softening model. Construction and Building Materials,2009,23(5):2112-2120.
    [26]陈拴发.开级配大粒径沥青碎石组成设计参数与方法研究.长安大学博士学位论文,2011.
    [27]张舒畅.长大纵坡沥青路面病害防治技术研究.长安大学博士学位论文,2011.
    [28]Herrin M, Goetz WH. Effect of aggregate shape on stability of bituminous mixes. Vol. 33, Highway Research Board, Washington, D.C.,1954,293-308.
    [29]Maupin GW. Effect of particle shape and surface texture on the fatigue behavior of asphalt concrete. Hwy. Res. Board No.HRBSP109, Highway Research Board, Washington D.C.,1970.
    [30]Brown ER, Mcrae JL, Crawley AB. Effect of aggregates on performance of bituminous concrete. STP 1016, ASTM Philadeiphia, Pa.,1989,34-63.
    [31]Barksdale RD, Pollard CO, Soegel T, Moeller S. Evaluation of the effects of aggregates on rutting and fatigue of asphalt. Tech. Rep. No. FHWA-GA-92-8812, Georgia Deparment of Transportation, Atlanta, Ga,1992.
    [32]Kim, YR, Yim N, Khosia NP. Effect of aggregate type and gradation on faigue and permanent deformation of asphalt concrete. STP 1147, ASTM, Philadelphia, Pa,1999, 310-328.
    [33]Wittman FH. Structure and mechanical properties of concrete.东北大学建筑学报(日),1983,22(3):103-111.
    [34]Zaitsec JV, Wittman FH. Crack propagation in a two-phase material such as concrete.in fracture, Waterloo, Canada,1977,1197-1203.
    [35]Zaitsev YV. Crack propagation in a composite material. Fracture mechanics of concrete, Amsterdam-Printed in The Netherlands,1983,51-299.
    [36]Bazant ZP, Tabbara MR, Kazeni MT, et al. Random particle models for fracture of aggregate or fibercomposites. Journal of Engineering Mechanics,1990,116(8): 686-1705.
    [37]Kuo C, Rollings RS, Lynch LN. Morphological study of coarse aggregates using image analysis. Journal of Materials in Civil Engineering,1998,10(3):135-142.
    [38]Wang LB, Wang X. Louay Mohammad and et al. Application of mixture theory in the evaluation of mechanical properties of asphalt concrete. Journal of Materials in Civil Engineering,2004,16:167-174.
    [39]Bandyopadhyaya R, Das A, Basu S. Numerical simulation of mechanical behaviour of asphalt mix. Construction and Building Materials,2008,22(6):1051-1058.
    [40]Dai Q. Two-and three-dimensional micromechanical viscoelastic finite element modeling of stone-based materials with X-ray computed tomography images. Construction and Building Materials,2010,25(2):1102-1114.
    [41]Chang GK, Meegoda JN. Micromechanical simulation of hot mixture asphalt. Journal of Engineering Mechanics,1997,123(5):495-503.
    [42]You ZP, Buttlar WG. Discrete element modeling to predict the modulus of asphalt concrete mixtures. Journal of Materials in Civil Engineering,2004,16(2):140-146.
    [43]Liu Y, Dai Q, You Z. Viscoelastic model for discrete element simulation of asphalt mixtures. Journal of Engineering Mechanics,2009,135(4):324-333.
    [44]Dai Q, You Z. Prediction of creep stiffness of asphalt mixture with micromechanical finite-element and discrete-element models. Journal of Engineering Mechanics,2007, 133(2):163-173.
    [45]Dai Q. Prediction of dynamic modulus and phase angle of stone-based composites using a micromechanical finite-element approach. Journal of Materials Civil Engineering,2010,22(6):618-627.
    [46]Dai Q, You Z. A microstructure-based approach for simulating viscoelastic behaviors of asphalt mixtures.2010 GeoShanghai International Conference-Paving Materials and Pavement Analysis, Shanghai, June 3-5,2010. China:American Society of Civil Engineers,2010, pp.150-161.
    [47]Kim H, Wagoner MP, Buttlar WG. Micromechanical fracture modeling of asphalt concrete using a single-edge notched beam test. Materials and Structures,2009,42(5): 677-689.
    [48]Kim H, Buttlar WG. Multi-scale fracture modeling of asphalt composite structures. Composites Science and Technology,2009,69(15-16):2716-2723.
    [49]You Z, Liu Y, Dai Q. Three-dimensional microstructural-based discrete element viscoelastic modeling of creep compliance tests for asphalt mixtuers. Journal of Materials in Civil Engineering-ASCE,2011,23(1):79-87.
    [50]You ZP, Adhikari S, Dai QL. Three-dimensional discrete element models for asphalt mixtures. Journal of Engineering Mechanics,2008,134(12):1053-1063.
    [51]Binglin L, Torquato S. N-point probability functions for a lattice model of heterogeneous media Physical review B,1990,42(7):4453-4459
    [52]Torquato S. Random heterogeneous media:microstructure and improved bounds on effective properties. Applied Mechanics Review,1991,44(2):37-75
    [53]Zhang J, Katsube N. A hybrid finite element method for heterogeneous materials with randomly dispersed elastic inclusions. Finite Elements in Analysis and Design,1995, 19:45-55.
    [54]Ince R, Arslan A, Karihaloo BL. Lattice modelling of size effect in concrete strength. Engineering Fracture Mechanics,2003,70:2307-2320.
    [55]Spagnoli A. A micromechanical lattice model to describe the fracture behaviour of engineered cementitious composites. Computational Materials Science,2009,46: 7-14.
    [56]Schlangen E, Garboczi EJ. New method for simulating fracture using an elastically uniform random geometry lattice. International Journal of Engineering Science,1996, 34(10):1131-1144.
    [57]Schlangen E, Garboczi EJ. Fracture simulations of concrete using lattice models: Computational aspects. Engineering Fracture Mechanics,1997,57:319-332.
    [58]杨新华,杨圣枫,陈传尧.利用格形模型预测沥青混合料的等效弹性性质.公路交通科技,2009,26(3):7-10,21.
    [59]Yang ZJ, Su XT, Chen JF, Liu GH. Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials. International Journal of Solids and Structures,2009,46:3222-3234.
    [60]Su XT, Yang ZJ, Liu GH. Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials:A 3D study. International Journal of Solids and Structures,2010,47:2336-2345.
    [61]Fu G, Dekelbab W.3-D random packing of polydisperse particles and concrete aggregate grading. Powder Technology,2003,133:147-155.
    [62]Kristiansen KL, Wouterse A, Philipse A. Simulation of random packingof binary sphere mixtures by mechanical contraction. Physica A,2005,358:249-262.
    [63]Al-Raoush R, Alsaleh M. Simulation of random packing of polydisperse particles, Powder Technology,2007,176:47-55.
    [64]刘光廷,高政国.三维凸形混凝土骨料随机投放算法.清华大学学报(自然科学版),2003,43(8):1120-1123.
    [65]李运成,马怀发,陈厚群,陈晓.混凝土随机凸多面体骨料模型生成及细观有限元剖分.水利学报,2006,37(5):588-592.
    [66]覃伟平,杨新华,陈传尧.一种快速的三维凸型混凝土骨料随机投放算法.水电能源科学,2006,24(3):39-42.
    [67]Du CB, Sun LG. Numerical simulation of aggregate shapes of two-dimensional concrete and its application. Journal of Aerospace Engineering,2007,20:172-178.
    [68]杨新华,徐瑞,陈传尧.三维随机多面体骨料生成和投放技术.华中科技大学学报(自然科学版),2009,37(8):99-102.
    [69]Jenq Y, Perng J. Analysis of crack propagation in asphalt concrete using cohesive crack model. Journal of the Transportation Research Board,1991,1317:90-99.
    [70]Paulino GH, Song SH, Buttlar WG. Cohesive zone modeling of fracture in asphalt concrete. In:Proceeding of fifth RILEM international conference on pavement cracking, Limoges, France,2004.
    [71]Birgisson B, Montepara A, Romeo E, Roncella R, Napier JAL, Tebaldi G. Determination and prediction of crack patterns in hot mix asphalt (HMA) mixtures. Engineering Fracture Mechanics,2008,75:664-673.
    [72]Bazant ZP, Planas J. Fracture and size effect in concrete and other quasibrittle materials. CRC Press, New York, USA,1998.
    [73]Barenblatt GI. The formation of equilibrium cracks during brittle fracture:general ideas and hypothesis, axially symmetric cracks. Journal of Applied Mathematics and Mechanics (PMM) 1959,23:622-636.
    [74]Barenblatt GI. Mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics,1962,7:55-129.
    [75]Dugdale D. Yielding of steel sheets containing slits. Journal of Mechanics and Physical Solids,1960,8:100-104.
    [76]Needleman, A.. A continuum model for void nucleation by inclusion debonding. Transactions of the ASME. Journal of Applied Mechanics,1987,54(3):525-531.
    [77]Camacho GT, Ortiz M. Computational modeling of impact damage in brittle materials. International Journal of Solids and Structures,1996,33:2899-2938.
    [78]Xu XP, Needleman A. Numerical simulations of fast crack growth in brittle solids. Journal of the Mechanics and Physics of Solids,1994,42(9):1397-1434.
    [79]Geubelle PH, Baylor JS. Impact-induced delamination of composites:a 2D simulation. Composites:Part B,1998,29B:589-602.
    [80]Espinosa HD, Zavattieri PD. A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part Ⅰ:Theory and numerical implementation. Mechanics of Materials,2003,35:333-364.
    [81]Soares JB, Colares de Freitas FA, Allen DH. Crack modeling of asphaltic mixtures considering heterogeneity of the material. Transportation Research Board, Washington DC,2003.
    [82]Tvergaard V. Effect of fiber debonding in a whisker-reinforced metal. Material Science and Engineering,1990,125:203-213.
    [83]Paulino GH, Song SH, Buttlar WG. Cohesive zone modeling of fracture in asphalt concrete. Proceedings of the fifth RILEM international conference on cracking in pavements:mitigation, risk assessment and prevention, Limoges, France,2004, pp.63-70.
    [84]Kyoungsoo P, Paulino GH, Roesler JR. A unified potential-based cohesive model of mixed-mode fracture. Journal of the Mechanics and Physics of Solids,2009,57(6): 891-908.
    [85]Song, SH, GH Paulino, Buttlar WG. Simulation of crack propagation in asphalt concrete using an intrinsic cohesive zone model. Journal of Engineering Mechanics, 2006,132(11):1215-1223.
    [86]Song, SH, Paulino GH, Buttlar WG. Cohesive zone simulation of mode I and mixed-mode crack propagation in asphalt concrete. In Geo-Frontiers 2005, January 24-26,2005. Austin, TX, United states:American Society of Civil Engineers.
    [87]Lopez CM, Carol I, Aguado A, Meso-structural study of concrete fracture using interface elements. Ⅰ:Numerical model and tensile behavior. Materials and Structures, 2008,41(3):583-599.
    [88]Lopez CM, Carol I, Aguado A. Meso-structural study of concrete fracture using interface elements. Ⅱ:Compression, biaxial and Brazilian test. Materials and Structures,2008,41(3):601-620.
    [89]Caballero A, Lopez CM, Carol I.3D meso-structural analysis of concrete specimens under uniaxial tension. Computer Methods in Applied Mechanics and Engineering, 2008,41(3):583-599.
    [90]JTG F40-2004.公路沥青路面施工技术规范.北京:人民交通出版社,2004.
    [91]JTJ 052-2000.公路工程沥青及沥青混合料实验规程.北京:人民交通出版社,2000.
    [92]JTG F42-2005.公路工程集料实验规程.北京:人民交通出版社,2005.
    [93]Zhu H, Nodes J. Contact based analysis of asphalt pavement with the effect of aggregate angularity. Mechanics of Materials,2000,32:193-202.
    [94]Bandyopadhyaya R, Das A, et al. Numerical simulation of mechanical behavior of asphalt mix. Construction and Building Materials,2008,22(6):1051-1058.
    [95]Li YQ, Metcalf JB. Two-step approach to prediction of asphalt concrete modulus from two-phase micromechanical models. Journal of Materials in Civil Engineering,2005, 17(4):407-415.
    [96]Ameri M, Mansourian A, Heidary Khavas M, Ayatollahi MR. Cracked asphalt pavement under traffic loading-A 3D finite element analysis. Engineering Fracture Mechanics,2011,78:1818-1826.
    [97]Rocco CG, Elices M. Effect of aggregate shape on the mechanical properties of a simple concrete. Engineering Fracture Mechanics,2009,76:286-298.
    [98]Zhang Z, Roque R, Birgisson B, Sangpetngam B. Identification and verification of a suitable crack growth law. Asphalt Paving Technology,2001,70:206-241.
    [99]Huang BS, Li GQ, Mohammad LN. Analytical modeling and experimental study of tensile strength of asphalt concrete composite at low temperatures. Composites Part B-Engineering,2003,34:705-714.
    [100]Kim H, Buttlar WG. Finite element cohesive fracture modeling of airport pavements at low temperatures. Cold Regions Science and Technology,2009, 57(2-3):123-130.
    [101]Landis EN, Nagy EN, Keane DT. Microstructure and fracture in three dimensions. Engineering Fracture Mechanics,2003,70:911-925.
    [102]Narasaiah N, Ray KK. Initiation and growth of micro-cracks under cyclic loading. Materials and Science in Engineering:A,2008,474:48-59.
    [103]Payne J, Welsh G, Jr Christ RJ, Nardiello J, Papazian JM. Observations of fatigue crack initiation in 7075-T651. International Journal of Fatigue,2010,32:247-55.
    [104]Chen ZZ, Tokaji K. Effects of particle size on fatigue crack initiation and small crack growth in SiC particulate-reinforced aluminium alloy composites. Mater Lett 2004; 58,2314-21.
    [105]Ugur I, Demirdag S, Yavuz H. Effect of rock properties on the Los Angeles abrasion and impact test characteristics of the aggregates. Materials Characterization, 2010,61:90-96.
    [106]Grassl P, Jirasek M,2010. Meso-scale approach to modelling the fracture process zone of concrete subjected to uniaxial tension. International Journal of Solids and Structures,47(7-8):957-968.
    [107]Chang Q, Chen DL, Ru HQ, Yue XY, Yu L, Zhang CP. Three-dimensional fractal analysis of fracture surfaces in titanium-iron particulate reinforced hydroxyapatite composites:Relationship between fracture toughness and fractal dimension. Journal of Materials Science,2011,46(18),6118-6123.
    [108]Chang Q, Chen DL, Ru HQ, Yue XY, Yu L, Zhang CP. Toughening mechanisms in iron-containing hydroxyapatite/titanium composites. Biomaterials,2010,31(7): 1493-1501.