基于局部策略的光谱异常检测与石油产品定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光谱分析技术具有快速、无损、高效和低成本等优势,已广泛应用于农业、化工、制药、纺织等各个领域。本文利用近红外和拉曼光谱分析技术为石油产品的种类、成品汽油的产地和牌号建立了定性分类模型。在定性分析过程中,运用各种局部策略,较好地解决了异常光谱的检测修复、定性模型参数调整以及不同类样本重叠情况下分类算法的改良问题。具体研究内容包括:
     1.针对油品在线光谱中尖锐小峰(国外文献称之为spike)的干扰问题,提出了一种基于时域局部策略的spike检测及修复方法。该方法同时运用强度检测和滑动窗口的相关分析来确定在线拉曼光谱中是否存在spike,并采用微分谱图和局部线性拟合实现了光谱的较好修复。该算法已成功地应用于自主开发的在线拉曼光谱测量分析系统中,实际运行情况证明该算法简单有效。
     2.针对基于近红外光谱的汽油牌号分类问题,将流型思想引入光谱的特征提取过程,提出了一种基于流型的局部分类算法。在该算法中,首先利用等度规映射(isometric mapping,Isomap)的流型方法对光谱进行降维处理,而后采用最为常见的K近邻法实现汽油牌号的识别分类。汽油牌号的分类测试实验结果表明Isomap的降维比主成分分析(principal component analysis,PCA)更适合于体现不同牌号汽油样本近红外谱图的特征信息。
     3.为解决不同牌号汽油拉曼光谱重叠问题,提出了一种基于相关分析加权的LSSVM分类算法。它以LSSVM分类算法为基础,构建了局部策略方法以进一步提高分类的准确度。该局部策略选取邻近样本的标准同时包含了样本间的欧式距离和样本之间的相关程度。实验结果表明,与目前常用的分类算法相比,基于相关分析加权的LSSVM分类算法具有更好的分类准确度。
     4.针对不同种类油品的分类问题,根据不同油品拉曼谱图形状差异性较大的实际,提出了一种基于相关分析的简单分类算法。该算法与其他分类算法相比,原理简单,无需复杂数学运算和人为设置参数,便于实际应用。
     5.现有的最小二乘支持向量机(least squares support vector machine,LSSVM)参数调整大都采用搜索寻优策略,具有较大的盲目性,为此提出了一种基于邻域样本数的LSSVM参数调整方法。该算法以调整邻域样本的个数来调整LSSVM的预测性能,使得径向基核函数无量纲化并减小了调整范围,以特征值惩罚系数代替惩罚系数γ,只需对特征值惩罚系数作较宽范围内值的设定。实验结果表明:在同样的优化水平上,该方法概念更加清晰,调整策略更加简单,更便于编程实现。
In the methods of oil classification, spectral analysis gets more and more attention due to its rapid measurement, nondestruction to samples, high efficiency and low cost.This thesis aims to distinguish kinds of petroleum products and classify product gasoline by source and brand based on NIR spectroscopy and Raman spectroscopy. Local approach is used in spectral outlier detection and recovery, model parameter optimization and classification algorithm modification. The detailed research work is given as follows:
     1. An improved algorithm based on local approach to remove cosmic spikes in Raman Spectra for online monitoring is proposed. In this algorithm, a new scheme composed of intensity identification and local moving window correlation analysis is introduced for cosmic spike detection; intensity identification based on derivative spectra and local linear fitting approximation are used for the recovery of cosmic spikes. The algorithm is proved to be simple and effective, which has been applied in an online Raman instrument.
     2. A new classification method based on NIR spectroscopy for gasoline brand recognition is proposed. In this method, Isomap(a manifold learning algorithm) is used to reduce dimensionality of spectra, which is different with traditional dimensionality reduction by PCA, and K-nearest neighbor (KNN) algorithm is implemented after dimensionality reduction. Therefore, this method is called the Isomap-KNN algorithm. The classification experiment results show that the manifold learning algorithm can obtain more feature information of gasoline brand than PCA during dimensionality reduction.
     3. A novel local weighted LSSVM algorithm based on Raman spectroscopy is proposed to classify gasoline samples by source and brand. The weight is constructed based on correlation coefficient R and this algorithm can be denoted as R-weighted LSSVM. In this algorithm, both of Euclidean distance and correlation coefficient are considered to select neighboring samples. Local approach is realized by the RBF kernel and the weight. LDA based on PCA, LSSVM, local LSSVM and R-weighted LSSVM are compared in the classification experiment. Experimental results show that Raman spectroscopy is an effective means to classify gasoline brand and origin, and the R-weighted LSSVM algorithm gives the best classification result.
     4. A simple method based on correlation analysis for the classification of petroleum products is proposed. This method gives good classification results because of significant differences between Raman spectra of petroleum products. This method costs little calculation time and human interference. Moreover, it can be easily implemented in the practical application.
     5. A simple method used to optimise the parameters of LSSVM is proposed. This method optimises the LSSVM model by adjusting the number of neighboring samples instead of adjusting the RBF kernel parameter. The range of adjustment is also reduced. The traditional punishment coefficient y is replaced by characteristic punishment coefficient which can be easily set in a wide range. Experiment results show that this method has similar optimization performance with other complex optimization methods.
引文
Andrade J M, Sanchez M S, Sarabia L A. (1999). Applicability of high-absorbance MIR spectroscopy in industrial quality control of reformed gasolines. Chemometrics and Intelligent Laboratory Systems,46(1):41-55.
    Alatas B, Akin E, Karci A. (2008). MODENAR:Multi-objective differential evolution algorithm for mining numeric association rules. Applied Soft Computing,8(1): 646-656.
    Aleme H G, Corgozinho C N C, Barbeira P J S. (2010). Diesel oil discrimination by origin and type using physicochemical properties and multivariate analysis. Fuel, 89(11):3151-3156.
    Balabin R M, Lomakina E I. (2011). Support vector machine regression (SVR/LS-SVM)—an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data. Analyst,136(8):1703-1712.
    Balabin R M, Safieva R Z. (2008). Classification by source and type based on near infrared (NIR) spectroscopy data. Fuel,87(7):1096-1101.
    Balabin R M, Safieva R Z. (2008). Motor oil classification by base stock and viscosity based on near infrared (NIR) spectroscopy data. Fuel,87(12):2745-2752.
    Balabin R M, Safieva R Z. (2011). Biodiesel classification by base stock type (vegetable oil) using near infrared spectroscopy data. Analytica Chimica Acta, 689(2):190-197.
    Balabin RM, Safieva R Z, Lomakina E I. (2007). Comparison of linear and nonlinear calibration models based on near infrared (NIR) spectroscopy data for gasoline properties prediction. Chemometrics and Intelligent Laboratory Systems, 88(2):183-188.
    Balabin RM, Safieva RZ, Lomakina El. (2008). Wavelet neural network (WNN) approach for calibration model building based on gasoline near infrared (NIR) spectra. Chemometrics and Intelligent Laboratory Systems,93(1):58-62.
    Balabin R M, Safieva R Z, Lomakina E I. (2010). Gasoline classification using near infrared (NIR) spectroscopy data:Comparison of multivariate techniques. Analytica Chimica Acta,671 (1-2):27-35.
    Balabin R M, Safieva R Z, Lomakina E I. (2011). Near-infrared (NIR) spectroscopy for motor oil classification From discriminant analysis to support vector machines. Microchemical Journal,98(1):121-128.
    Balabin R M, Smirnov S V. (2011). Variable selection in near-infrared spectroscopy Benchmarking of feature selection methods on biodiesel data. Analytica Chimica Acta,692(1-2):63-72.
    Barnes R, Dhanoa M, Lister S J. (1989). Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Applied Spectroscopy, 43 (5):772-777.
    Blanco M, Pagbs J. (2002). Classification and quantitation of finishing oils by near infrared spectroscopy. Analyfica Chimica Acta,463(2):295-303.
    Blanco M, Maspoch S, Villarroya I, Peralta, X. (2001). Geographical origin classification of petroleum crudes from near-infrared spectra of bitumens. Applied Spectroscopy,55(7):834-839.
    Bao X, Dai L K. (2008). Spectral quantitative analysis based on local least square support vector machine regression, Chinese Journal of Analytical Chemistry, 36(1):75-78.
    Behrend C J, Tarnowski C P, Morris M D. (2002). Identification of outliers in hyperspectral Raman image Data by nearest neighbor comparison. Applied Spectroscopy,56(11):1458-1461.
    Belkin M, Niyogi P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation,15(6):1373-1396.
    Belousov A I, Verzakov S A, von Frese J. (2002). A flexible classification approach with optimal generalisation performance:support vector machines. Chemometrics and Intelligent Laboratory Systems,64(1):15-25.
    Bi W H, Tan A L, Zhao Y, Gao M J. (2009). Identification of oil spills by near-infrared spectroscopy (NIR) and support vector machine (SVM). In:Ye S-H, Zhang G-J, Ni J, editors.2009 International conference on optical instruments and technology:optoelectronic measurement technology and systems. November 20, 75111R-1-75111R-6.
    Bussian B M, Harale W. (1984). Robust smoothing applied to white noise and single outlier contaminated Raman spectra. Applied Spectroscopy,38(2):309-312.
    Candolfi A, Wu W, Massart D L, et al. (1998). Comparison of Classification Approaches Applied to NIR spectra of Clinical Study Lots. Journal of Pharmaceuticaland Biomedical Analysis,16:1329-1347.
    Cappel U B, Bell I M, Pickard L K.(2010). Removing cosmic ray features from Raman map data by arefined nearest neighbor comparison method as a precursor for chemometric analysis. Applied Spectroscopy,64(2):195-200.
    Chen K Y. (2007). Forecasting systems reliability based on support vector regression with genetic algorithms. Reliability Engineering & System Safety,92 (4): 423-432.
    Chen K Y, Wang C H. (2007). Support vector regression with genetic algorithms in forecasting tourism demand. Tourism Management,28(1):215-226.
    Chiang C W, Lee W P, Heh J S. (2010). A 2-Opt based differential evolution for global optimization. Applied Soft Computing,10(4):1200-1207.
    Choquette S J, Etz E S, Hurst W S, Blackburn D H, Leigh S D. (2007). Relative intensitycorrection of Raman spectrometers:NIST SRMs 2241 through 2243 for 785 nm,532 nm, and 488 nm/514.5 nm excitation. Applied Spectroscopy, 61(2):117-129.
    Choquette S J, Chesler S N, Duewer D L. (1996). Identification and quantitation of oxygenates in gasoline samples using Fourier transform near-infrared and Fourier transform Raman spectroscopy. Analytical Chemistry,68(20):3525-3533.
    Choquette S J, Etz E S, Hurst W S, etc. (2007). Requirements for relative intensity correction ofRaman spectra obtained by column-summing charge-coupled device data. Applied Spectroscopy,61 (2):117-129.
    Coelho L S, Sauer J G., Rudek, M. (2009). Differential evolution optimization combined with chaotic sequences for image contrast enhancement. Chaos, Solitons & Fractals,42(1):522-529.
    Coelho P M J, Pereira C F, Pimentel M F. (2011). Screening analysis to detect adulteration in diesel/biodiesel blends using near infrared spectrometry and multivariate classification. Talanta,85(4):2159-2165.
    Cooper J B. (1999). Chemometric analysis of Raman spectroscopic data for process control applications. Chemometrics and Intelligent Laboratory Systems,46(2): 231-247.
    Cooper J B, Wise K L, Groves J, Welch W T. (1995). Determination of octane numbers and reidvapor pressure of commercial petroleum fuels using FT-Raman spectroscopy and partial least-squares regression analysis. Analytical Chemistry, 67(22):4096-4100.
    Cooper J B, Wise K L, Welch W T, etc. (1997). Comparison of near-IR, Raman, and mid-1 R spectroscopies for the determination of BTEX in petroleum fuels. Applied Spectroscopy,51 (11):1613-1620.
    Cooper-J B, Wise K L, Welch W T, Bledsoe R R, Sumner M B. (1996). Determination of weight percent oxygen in commercial gasoline:a comparison between FTRaman, FT-IR, and dispersive near-IR spectroscopies. Applied Spectroscopy, 50(7):917-921.
    de Groot P J, Postma G J, Meissen W J, Buydens L M C, Deckert V, Zenobi R. (2001). Application of principal component analysis to detect outliers and spectral deviations in near-field surface-enhanced Raman spectra. Analytica Chimica Acta,446(1-2):71-83.
    dos Santos G S, Luvizotto L G J, Mariani V C,Coelho L D S. (2010). Least squares support vector machines with tuning based on chaotic differential evolution approach applied to the identification of a thermal process. Expert Systems with Applications,39(5):4805-4812.
    Dai L K, Yao X G. (2004). A least squares SVM algorithm for NIR gasoline octane number prediction. In:Intelligent control and automation,2004. WCICA 2004; June 15-19,3779-3782.
    Desa W N S M, Daeid N N, Ismail D, Savage K.(2010). Application of unsupervised chemometric analysis and self-organizing feature map (SOFM) for the classification of lighter fuels. Analytical Chemistry,82(15):6395-6400.
    Digne M, Marchand K, Bourges P. (2007). Monitoring hydrotreating catalysts synthesis and deactivationusing Raman spectrometry. Oil Gas Science and Technology-revue D Ifp Energies Nouvelles,62(1):91-99.
    Dijkstra E W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik,1(1):269-271.
    Doble P, Sandercock M, Du Pasquier E, Petocz P, Roux C, Dawson M. (2003). Classification of premium and regular gasoline by gas chromatography/mass spectrometry, principal component analysis and artificial neural networks. Forensic Science International,132(1):26-39.
    Egan W J, Morgan S L. (1998). Outlier detection in multivariate analytical chemical data. Analytical Chemistry,70(11):2372-2379.
    Ehrentreich F, Summchen L. (2001). Spike removal and denoising of Raman spectra by wavelet transform methods. Analytical Chemistry.73(17):4364-4373.
    Ewen S, Geoffrey D. (2005). Modern Raman Spectroscopy-A Practical Approach. John Wiley&Sons, New York.
    Fix E, Hodges J L. (1989). Discriminatory analysis-nonparametric discrimination-consistency properties. International Statistical Review,57(3):238-247.
    Flecher P E, Welch W T, Albin S, Cooper J B.(1997). Determination of octane numbers and Reid vapor pressure in commercial gasoline using dispersive fiber-optic Raman spectroscopy. Spectrochimica Acta Part A-Molecular and Biomolecular,53(2):199-206.
    Flumignan D L, Boralle N, de Oliveira J E. (2010). Screening Brazilian commercial gasoline quality by hydrogen nuclear magnetic resonance spectroscopic fingerprintings and pattern-recognition multivariate chemometric analysis. Talanta,82(1):99-105.
    Friedrichs F, Igel, C. (2005). Evolutionary tuning of multiple SVM parameters. Neurocomputing,64:107-117.
    Furukawa T, Watari M, Siesler HW, et al. (2003). Discrimination of various poly(propylene) copolymers and prediction of their ethylene content by near-infrared and Raman spectroscopy in combination with chemometric methods. Journal of Applied Polymer Science,87(4):616-625.
    Gerrard D L. (1994). Raman spectroscopy. Analytical Chemistry,66 (12):547-557.
    Guo X C, Yang J H, Wu C G, Wang C Y, Liang Y C. (2008). A novel LS-SVMs hyper-parameter selection based on particle swarm optimization. Neurocomputing,71(16-18):3211-3215.
    Helga G A, Camila N C, Corgozinho, Paulo J S B. (2010). Diesel oil discrimination by origin and type using physicochemical properties and multivariate analysis. Fuel,89(11):3151-3156.
    Hill W, Rogalla D. (1992). Spike-correction of weak signals from charge-coupled-devices and its application to Raman-spectroscopy. Analytical Chemistry,64(21):2575-2579.
    Hong W C. (2009). Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model. Energy Conversion and Management, 50(1):105-117.
    Kathryn Y N, Lindsey A T, Owen S F, et al. (2009). Rapid classification of Simulated street drug mixtures using Raman spectroscopy and Principal Component Analysis. Applied Spectroscopy,63(7):742-747.
    Katsumoto Y, Ozaki Y. (2003). Practical algorithm for reducing convex spike noises on spectrum. Applied Spectroscopy.57(3):317-322.
    Kelly J J, Barlow C H, Jinguji T M, Callis J B. (1989). Prediction of gasoline octane numbers from near-infrared spectral features in the range 660-1215 nm. Analytical Chemistry,61 (4):313-320.
    Khademi M H, Rahimpour M R, Jahanmiri A. (2010). Differential evolution (DE) strategy for optimization of hydrogen production, cyclohexane dehydrogenation and methanol synthesis in a hydrogen-permselective membrane thermally coupled reactor. International Journal of Hydrogen Energy,35(5):1936-1950.
    Kim M, Lee Y H, Han C G. (2000). Real-time classification of petroleum products using near-infrared spectra. Computers and Chemical Engineering,24(2-7): 513-517.
    Kim Y, Lee S, Chung H, Choi H, Cha K. (2009). Improving Raman spectroscopic differentiation of the geographical origin of rice by simultaneous illumination over a wide sample area. Journal of Raman Spectroscopy,40(2):191-196.
    -Ku M S, Hoeil C. (1999). Compositional analysis of naphtha by FT-Raman spectroscopy. Bulletin-Korean Chemical Society,20:159-162.
    Lieber C A, Mahadevan-Jansen A. (2003). Automated method for subtraction of fluorescence from biological Raman spectra. Applied Spectroscopy, 57(11):1363-1367.
    Lorena A C, de Carvalho A C P L F. (2008). Evolutionary tuning of SVM parameter values in multiclass problems. Neurocomputing,71(16-18):3326-3334.
    Luo Z, Wang P, Li Y, Zhang W, Tang W, Xiang M. (2008). Quantum-inspired evolutionary tuning of SVM parameters. Progress in Natural Science, 18(4):475-480.
    McCreery R L. (2000). Raman spectroscopy for chemical analysis. Hobokon:John Wiley & Sons Inc.
    Marteau P, Zanier-Szydlowski N, Aoufi A, Hotier G, Cansell F. (1995). Remote Raman-spectroscopy for process-control. Vibrational Spectroscopy, 9(1):101-109.
    Montes E M, Varela M E M, Ramon R C G. (2010). Differential evolution in constrained numerical optimization:An empirical study. Information Sciences,180(22):4223-4262.
    Niu D, Wang Y, Wu D D. (2010). Power load forecasting using support vectormachine and ant colony optimization. Expert Systems with Applications, 37(3):2531-2539.
    Oliveira F C C, Brand C R R, Ramalho H F, et al. (2007). Adulteration of diesel/biodiesel blends by vegetable oil as determined by Fourier transform (FT) near infrared spectrometry and FT-Raman spectroscopy. Analytica Chimica Acta, 587(2):194-199.
    Osticioli I, Mendes N F C, Nevin A, et al. (2009). Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy. Spectrochimica Acta Part A,73(3):525-531.
    Park C, Kim K, Choi J, et al. (2007). Classification of glucose concentration in diluted urine using the low-resolution Raman spectroscopy and kernel optimization methods. Physiological Measurement,28(5):583-593.
    Pereira R C C, Skrobot V L, Castro E V R, Fortes I C P, Pasa V M D. (2006). Determination of gasoline adulteration by principal components analysis-linear discriminant analysis applied to FTIR spectra. Energy &Fuels,20(3):1097-1102.
    Pierna J A F, Dardenne P. (2008). Soil parameter quantification by NIRS as a chemometricchallenge at'Chimiometrie 2006'. Chemometrics and Intelligent Laboratory Systems,91(1):94-98.
    Phillips G R, Harris J M. (1990). Polynomial filters for data sets with outlying or missing observations-application to charge-coupled-device-detected Raman-spectra contaminated by cosmic-rays. Analytical Chemistry,62(21): 2351-2357.
    Pontesa M J C, Pereirab C F, Pimentelc M F, Vasconcelosa F V C, Silva A G B. (2011). Screening analysis to detect adulteration in diesel/biodiesel blends using near infrared spectrometry and multivariate classification. Talanta, 85(4):2159-2165.
    Roggo Y, Duponchel L, Huvenne J P. (2003). Comparison of supervised pattern recognition methods with mcnemar's statistical test application to qualitative analysis of sugar beet by near-infrared spectroscopy. Analytica Chimica Acta 477(2):187-200.
    Roggo Y, Chalus P, Maurer L, Lema-Martinez C, Edmond A, Jent N J. (2007). A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. Journal of Pharmaceutical and Biomedical Analysis, 44(3):683-700.
    Roweis S T, Saul L K. Science, Nonlinear dimensionality reduction by locally linear embedding. Science,290(5500):2323-2326.
    Sanchez M S, Sarabia L A. (1995). Efficiency of multilayered feedforward neural networks on classification in relation to linear discriminant-analysis, quadratic discriminant-analysis and regularized discriminant-analysis. Chemometrics and Intelligent Laboratory Systems,2S(2):287-303.
    Santos Jr V O, Oliveira F C C, Lima D G, et al. (2005). A comparative study of diesel analysis by FTIR, FTNIR and FT-Raman spectroscopy using PLS and artificial neural network analysis. Analytica Chimica Acta,547 (2):188-196.
    Savitzky A, Golay M J E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical chemistry,36(8):1627-1639.
    Smith E, Dent G. (2005). Modern Raman spectroscopy-a practical approach. John Wiley & Sons, England.
    Skrobot V L, Castro E V R, Pereira R C C, Pasa V M D, Fortes C P F. (2007). Use of principal component analysis (PCA) and linear discriminant analysis (LDA) in gas chromatographic (GC) data in the investigation of gasoline adulteration. Energy Fuels,21 (6):3394-3400.
    Stone N, Kendall C, Shepherd N, et al. (2002). Near-infrared Raman spectroscopy for the classification of epithelial pre-cancers and cancers. Journal of Raman Spectroscopy,33(7):564-573.
    Suykens J A K, Van Gestel T, De Brabanter J, De Mooor B, Vandewalle J. (2002). Least squares support vector machines. World Scientific. Singapore.
    Suykens J A K, Vandewalle J. (1999). Least squares support vector machine classifiers. Neural Processing Letters;9(3):293-300.
    Takeuchi H, Hashimoto S, Harada I. (1993). Simple and efficient method to eliminate spike noise from spectra recorded on charge-coupled device detectors. Applied Spectroscopy,47(1):129-131.
    Tang X, Zhuang L, Jiang, C. (2009). Prediction of silicon content in hot metal using support vector regression based on chaos particle swarm optimization. Expert Systems withApplications,36(9):11853-11857.
    Teixeira L S G, Oliveira F S, dos Santos H C, Cordeiro P W L, Almeida S Q. (2008). Multivariate calibration in fourier transform infrared spectrometry as a tool to detect adulterations in Brazilian gasoline. Fuel,87(3):346-352.
    Tenenbaum J B, de Silva V, Langford J C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science,290(5500):2319-2323.
    Vapnik V N. (1993). Statistical learning theory. Journal of the Association for Computing Machinery,40:741-764.
    Vapnik V N. (1995). The nature of statistical learning theory. Springer- Verlag, New York.
    Veras G, Gomes A A, da-Silva A C. (2010). Classification of biodiesel using NIR spectrometryand multivariate techniques. Talanta,83(2):565-568.
    Virkler K, Lednev I K. (2009). Blood species identification for forensic purposes using Ramanspectroscopy combined with advanced statistical analysis. Analytical Chemistry,81(18):7773-7777.
    Williams P, Norris K, Norris K H. (2001). Near-infrared Technology:in the Agricultural and Food Industries. American Association of Cereal Chemists. USA.
    Wold H. (1975). Soft modeling by latent variables:the nonlinear iterative partial least squaresapproach. Perspectives in probability and statistics, papers in honour of MS Bartlett, Academic Press. London.1975,520-540.
    Wold S, Sjostrom M. (1977). SIMCA:a method for analyzing chemical data in terms of similarity and analogy, in:B.R. Kowalski (Ed.), Chemometrics Theory and Application, American Chemical Society Symposium Series 52, American Chemical Society, Washington, DC,1977,243-282.
    Wu C H, Tzeng G H, Lin R H. (2009). A novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression. Expert Systems with Applications,36(3):4725-4735.
    Xu Z F, Bunker C E, Harrington P D B. (2010). Classification of jet fuel properties by nearinfrared spectroscopy using fuzzy rule-building expert systems and support vector machines. Applied Spectroscopy,64(11):1251-1258.
    Yang Z, Gu X S, Liang X Y, Ling L C. (2010). Genetic algorithm-least squares support vector regression based predicting and optimizing model on carbon fiber composite integrated conductivity. Materials & Design,31(3):1042-1049.
    Ye Q, Xu Q, Yu Y, et al. (2009). Rapid and quantitative detection of ethanol proportion inethanol-gasoline mixtures by Raman spectroscopy. Optics Communications,282 (18):3785-3788.
    Zamora-Rojas E, Garrido-Varo A, Van den Berg F, Guerrero-Ginel J E, Perez-Marin D C.(2010). Evaluation of a new local modelling approach for large and heterogeneous NIRS data sets. Chemometrics and Intelligent Laboratory Systems, 101(2):87-94.
    Zhang D M, Ben-Amotz D. (2002). Removal of cosmic spikes from hyper-spectral images usinga hybrid upper-bound spectrum method. Applied Spectroscopy, 56(1):91-98.
    Zhang D M, Hanna J D, Ben-Amotz D. (2003). Single scan cosmic spike removal using the upper bound spectrum method. Applied Spectroscopy, 57(10):1303-1305.
    Zhang D M, Jallad K N, Ben-Amotz D. (2001). Stripping of cosmic spike spectral artifacts using a new upper-bound spectrum algorithm. Applied Spectroscopy, 55(11):1523-1531.
    Zhang X, Chen W, Dai C, Cai W. (2010). Dynamic multi-group self-adaptive differential evolution algorithm for reactive power optimization. International Journal of Electrical Power & Energy Systems,32(5):351-357.
    Zhang L, Henson M J. (2007). A practical algorithm to remove cosmic spikes in Raman imaging data for pharmaceutical applications. Applied Spectroscopy, 61(9):1015-1020.
    Zhao J. (2003). Image curvature correction and cosmic removal for high-throughput dispersive Raman spectroscopy. Applied Spectroscopy.57(11):1368-1375.
    包鑫,戴连奎.(2009).汽油多参数拉曼光谱分析仪中的稳健支持向量机方法.仪器仪表学报,30(9):1829-1835.
    褚小立,袁洪福,陆婉珍.(2004).近红外分析中光谱预处理及波长选择方法进展与应用.纪学进展,16(4):528.
    褚小立,袁洪福,王艳斌,陆婉珍.(2004).近红外稳健分析校正模型的建立(I)一一样品温度的影响.光谱学与光谱分析,24(6):666-671.
    淡图南,戴连奎.(2010).结合异常样本检测的汽油族组成拉曼光谱分析.光谱学与光谱分析30(4):979-983.
    胡军,胡继明.(2000).拉曼光谱在分析化学中的应用进展.分析纪学,28(6):764-771.
    姜黎,张军,陈哲,余谦,王京华.(2010).基于不同波段对成品汽油的模式识别分析.光谱实验室(3):1208-1212.
    雷猛,冯新泸.(2009).基于近红外光谱技术的内燃机油鉴别研究.分析测试学报,28(5):529-534.
    李淑玲.(1998).拉曼光谱仪及其应用进展.岩矿测试,17(4):312-316.
    林艺玲,戴连奎,阮华.(2010).基于低分辨率色散型拉曼光谱仪的汽油苯含量快速分析.光谱学与光谱分析(11):3002-3006.
    李增芳,陆江锋,虞佳佳,何勇.(2010).基于光谱技术和SIMCA方法的润滑油鉴别.山西农业大学学报:自然科学版,30(3):285-288.
    刘海旺,张光红.(1998).基于近红外光谱的汽油模糊聚类分析.石油炼制与化工,29(6):59-61.
    陆婉珍.(2006).近红外光谱技术进展.现代科学仪器,(5):5.
    陆婉珍.(2007).现代近红外光谱分析技术.北京.中国石化出版社.
    庞士平,郑晓玲,何鹰,陈发荣,黎先春,王小如.(2007).近红外光谱识别模拟海面溢油.海洋科学进展,25(1):91-94.
    覃旭松,戴连奎.(2004).小波变换在Raman汽油辛烷值测定仪中的应用.纪工自动纪及仪表,31(5):65-68.
    阮华,戴连奎.(2010).支持向量机分类与回归联合建模方法及其在拉曼光谱分析中的应用.仪器仪表学报,31(11):2440-2446.
    王丽,卓林,何鹰,赵英,李伟,王小如,FrankLee. (2004).近红外光谱技术鉴别海面溢油.光谱学与光谱分析,24(12):1537-1539.
    王豪,林振兴,邬蓓蕾.(2010).基于目标因子分析的成品油近红外光谱定性鉴别.计算机与应用化学,27(9):1187-1190.
    许广通,陆婉珍.(2001).近红外光谱在清洁汽油生产控制分析中的应用.石油炼制与化工,32(6);51-55.
    杨序纲,吴琪琳.(2008).拉曼光谱的分析与应用.北京.国防工业出版社.
    袁洪福,褚小立,陆婉珍,魏东.(2005).在线近红外光谱成套分析技术及其在石油化工中的应用.石油化工,(z1):51-54.
    袁洪福,陆婉珍.(1998).近红外光谱分析技术正在快速进入石油化工领域.石油炼制与化工,29(9);47-50.
    袁洪福,陆婉珍.(1998).现代光谱分析中常用的化学计量学方法.现代科学与仪器,(5):6-9.
    张其可,戴连奎.(2005).基于近红外光谱的汽油牌号快速识别.化工自动化及仪表,32(4):53-57.
    张晓曼,戴连奎.(2008).结合分类与局部PLS的近红外光谱定量分析.光谱学与光谱分析, 28(12):2847-2850.
    张军,姜黎,陈哲,余谦,梁静秋,王京华.(2010).基于近红外光谱技术成品汽油分类方法的研究.光谱学与光谱分析,30(10):2654-2657.
    中国国家技术监督局.(1995).GB/T 503-1995汽油辛烷值测定法(马达法).北京.中国标准出版社.
    中国国家技术监督局.(1995).GB/T5487-1995汽油辛烷值测定法(研究法).北京.中国标准出版社.
    周子立,蒋璐璐,谈黎虹,何勇,李晓丽,邵咏妮.(2009).基于光谱技术鉴别机油品种的新方法. 光学学报,(8):2203-2207.
    邹文龙,蔡志坚,吴建宏.(2010).拉曼光谱测量中的荧光抑制方法综述. 光学仪器(5):89-94.