超高压微射流技术对花生蛋白改性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分别研究了不同浓度和温度的花生分离蛋白溶液经过超高压微射流不同次数、压力均质后的功能性质变化情况,以及结构变化机理。结果表明:
     1.花生浓缩蛋白可通过碱提酸沉法批量生产花生分离蛋白,得出花生浓缩蛋白生产为花生分离蛋白的较优工艺条件;生产出来的花生分离蛋白用于后期的实验。
     2.均质次数超高压微射流均质次数对花生分离蛋白溶液的溶解性、乳化和乳化稳定性、起泡性和起泡稳定性没有大的影响,但经过超高压微射流均质二次和三次后,花生分离蛋白溶液的黏度略为变小,并且更趋向于牛顿流体的流变特性。
     3.均质压力花生分离蛋白溶液的溶解性、起泡性和起泡稳定性、凝胶强度随着超高压微射流均质压力的增大而增大,但达到一定压力后会有所下降:花生分离蛋白溶液的乳化性和乳化稳定性经过超高压微射流均质后略为增大,但总的来说变化不大;花生分离蛋白溶液经过超高压微射流均质后黏度变小,在某些压力下的花生分离蛋白溶液的流变特性呈现出接近于牛顿流体的性质,形成的膜的抗机械性能也变小了。
     4.花生分离蛋白溶液的浓度超高压微射流均质对低浓度的花生分离蛋白溶解性的提高更为显著;可以增大低浓度的花生分离蛋白溶液的乳化性和乳化稳定性,但对高浓度的花生分离蛋白溶液乳化性和乳化稳定性起负面作用;可以增大低浓度的花生分离蛋白溶液的起泡性和起泡稳定性,但当浓度增大后,花生分离蛋白溶液的起泡性增大的幅度有所减小;对低浓度的花生分离蛋白溶液的黏度影响不大,而高浓度的花生分离蛋白溶液的黏度较大,经过超高压微射流均质后,有变小的趋势,溶液的流型趋近于假塑性流体流变特性。
     5.花生分离蛋白溶液的温度超高压微射流均质对特定温度范围内的花生分离蛋白溶液的溶解度、黏度和流变特性影响不大;对花生分离蛋白溶液的乳化性和乳化稳定性、起泡性和起泡稳定性的影响也不大,但是达到最高值时的压力不一样。
     6.超高压微射流均质对花生分离蛋白功能基团的影响花生分离蛋白溶液经过超高压微射流均质后,蛋白颗粒的尺寸减小并分散得更均匀:巯基含量随着压力的增大有减小的趋势;表面疏水性和具紫外吸收的基团含量随着压力的增大有增大的趋势:且花生分离蛋白经过超高压微射流均质后,蛋白质的热稳定性得以提高了。
     7.为了更深入研究超高压微射流均质对花生分离蛋白的改性机理,本论文将花生球蛋白从经过超高压微射流均质后的花生分离蛋白溶液中提取出来,研究其二级结构以探索其改性的机理。傅立叶红外光谱测定的结果表明,花生球蛋白的α-螺旋吸收峰波长经过超高压微射流均质后有蓝移的趋势:β-折叠吸收峰波长经过超高压微射流均质后有红移的趋势;圆二色谱分析结果显示,经过超高压微射流均质后,花生球蛋白的α-螺旋结构和β-转角的含量明显减少,β-折叠和无规卷曲的含量明显增多了。
     8.为了推广超高压微射流技术在食品工业中的应用,本论文测评了经过超高压微射流均质后的花生蛋白的安全性,结果表明,经过超高压微射流均质后的花生蛋白样品不影响小鼠的正常生长,对小鼠的活动情况、进食量、外表特征均无不良影响,体重增长量与对照组无明显差异,病理检查显示无明显病理变化。因此经过超高压微射流均质后的花生蛋白没有毒副作用,是安全的。同时也说明超高压微射流技术对花生分离蛋白改性是一种安全的物理改性技术,可以在食品工业中大力推广。
This article treated different concentrate and temperature peanut protein solution at different microfludization(HPM) pressure and different times, then studied the effect of microfludization on functional properties of peanut protein and mechanism of modification. The results indicates:
     1. We produced peanut protein isolate(PPI) from peanut protein concentrate in laboratory, then got the best technology parameter, and the produced PPI was used in the later stage study.
     2. Homogen times HPM treated circles did not affect the solubility, emulsibility and emulsive stability, foaming and foaming stability significantly, but the viscosity of PPI solution decreased slightly and tend to show the rheology characteristics of Newton fluids when treated with HPM twice and three times.
     3. Homogen pressure The solubility, foaming and foaming stability, the gelatinous strength of PPI solution increased linearly with HPM pressure in definite extent, but decreased when exceed the definite pressure; the emulsibility and emulsive stability of PPI solution increased slightly when treated with HPM, but did not change a lot all in all; the viscosity of PPI solution decreased when treated with HPM, some samples showed the rheology characteristics of Newton fluids; the thecal mechanical function of PPI treated with HPM decreased, too.
     4. Concentration HPM can improved the solubility, emulsibility and emulsive stability of PPI soluteon at low concentrateions, but the emulsibility and emulsive stability decreased at high concentrateions; and the foaming and foaming stability of PPI soluteion increased at low concentrateions, but the increasement was small when at high concentrations; HPM did not affect the viscosity of PPI soluteion at low concentrations, but the viscosity of PPI soluteion at high concentrations decreased when treated with HPM, and tended to showed the rheology characteristics of pseudoplastic fluids.
     5. Temperature There is no visible differences among PPI solution treated with HPM at different temperatures. The solubility, viscosity and rheology characteristics did not changed significantly at different temperatures; and temperature did not affect the emulsibility and emulsive stability, foaming and foaming stability notablly, but the pressure arrived maximal value changed.
     6. HPM effect on functional groups of peanut protein, the size and density of PPI treated with HPM decreased; the content of hydrosulfide group decreased with the HPM pressure increasing; the hydrophobicity and ultraviolet absorption residues increased linearly with the pressure; and the heat stability of HPM treated PPI increased.
     7. To study the HPM modification mechanism further, this article extracted arachin from the PPI solution treated with HPM, then analyzed the advanced structure of modified arachin to get the modification mechanism. The FT-IR spectrum results indicated, the content ofβ-plate sheet structure of arachin is far more than theα-helical structure, the absorption wavelength ofα-helical structure in amides III area all blue shift, andβ-plate sheet structure red shift. The analyze result of CD spectrum indicates, theα-helical structure andβ-corner of arachin treated with HPM decreased obviously, theβ-plate sheet structure and random coil structure creased obviously.
     8. To extend the application of mocrofluidization in food Industry, this article measured the safety of PPI treated with HPM, the results indicated, PPI treated with HPM did not affect the normal growth, activity information, food intake and outward appearance characteristic of mice, and the body increasement is similar to the control samples, no pathologyical change was found. So PPI treated with HPM is safe and has no side effect, this technology can extend to the food Industry.
引文
[1] 曾卫国.花生蛋白溶解性和乳化性的研究.农产品加工学刊,2005,1:16~18
    [2] 樊思信.花生蛋白及其在食品工业中应用.粮食与油脂,1999,4:27
    [3] 莫文敏,曾庆孝.蛋白质改性研究进展.食品科学,2000,21(6):6~10
    [4] 文泽富.花生乳饮料的研究.食品工业,1996(6):38
    [5] P. Vincent Monteiro, V. Prakash. Effect of Proteases on Arachin, Conarachin Ⅰ, and Conarachin Ⅱ from Peanut (Arachis hypogaea L.).Department of Protein Technology, 1994, Vol. 42: 268~273
    [6] 胡晓军,姜延程.花生分离蛋白质基础研究.郑州粮食学院学报,1998,19:13~18
    [7] 袁道强,梁丽琴,王振锋等.改性植物蛋白的研究及应用.食品研究与开发,2005,26(6):13-15
    [8] K. Govindaraju, H. Srinivas.Studies on the effects of enzymatic hydrolysis on functional and physico-chemical properties of arachin. Food science and Technology,2006, Vol.39 (1) :54~62
    [9] 杨晓泉,张水华,黎茵等.花生2S蛋白的提取分离及部分性质研究.华南理工大学学报,1998,26(4):1~5
    [10] 王蕾.花生种子伴花生球蛋白160.5kD多肽的cDNA克隆.硕士学位论文,2001:14~15.
    [11] 杜军,张绍英.戴元忠等.动力作用作为冷杀菌方法的可行性初探.中国乳品工业,2002,30(6):25~27
    [12] 周瑞宝,周兵.大豆7S和11S球蛋白的结构和功能性质.中国粮油学报,1998,13(06):39~42
    [13] Utsumi S ,Matsumura Y, Mori T. Structure2 function relationships of soy proteins[A]. Damodaran S , Paraf A. Food Proteins and Their Application. New York :Marcel Dekker, 1997.257-291.
    [14] Yamauchi F, Sato M,Sato W, et al. Isolation and identification of a new type of β—conglycinin in soybean globulins.Agric.Biol. Chem., 1981,45:2863~2868
    [15] Maruyama N ,Katsube T, Wada Y, et al. The roles of the N linked glycans and extension regions of soybean β—conglycinin in folding, assembly and structural features. Eur. J .Biochem. ,1998,258:854~862
    [16] 周素梅.蛋白质在焙烤制品中功能性作用.粮食与油脂,1999,1:25~26
    [17] 王璋,许时婴,汤坚.食品化学.北京:中国轻工业出版社,1997
    [18] 姚玉静,杨晓泉,邱礼平等.食品蛋白质化学改性研究进展.粮食与油脂,2006,13(7):21~24
    [19] 吴高峻.大豆分离蛋白的功能特性.中国食品添加剂,1998,2:37~41
    [20] 华欲飞,顾玉兴.功能性大豆浓缩蛋白的性能及应用研究.中国油脂,1997,22(1):22~24
    [21] 黄友如,华欲飞,裘爱泳.大豆分离蛋白功能性质及其影响因素.粮食与油脂,2003,5:13~15
    [22] Navin Kumar D. Kella.Heat-induced reversible gelation of arachin: kinetics, thermodynamics and protein species involved in the process. International Journal of Biological Macromolecules, 1989, Vol.11 (2): 105~112
    [23] 江志炜,沈蓓英,潘秋琴.蛋白质加工技术.化学工业出版社,2002
    [24] 周雪松.花生蛋白改性研究.粮食加工,2005,3:42~45
    [25] 潘秋琴,沈蓓英,程霜.花生蛋白质的磷酸化改性.1997,22(1);25~27
    [26] C. W. Cater and W. E. F. Naismith .Further studies on the denaturation of arachin with urea and guanidinium chloride. Archives of Biochemistry and Biophysics, 1958,Vol.77(1): 98~107
    [27] Navin Kumar D. Kella. Effect of amides and ureas on the reversible gelation of arachin. International Journal of Biological Macromolecules, 1987,Vol.9(4):238~244
    [28] 刘志强,刘擘,曾云龙.酶法有限水解对花生蛋白功能特性的影响.食品科学,2004,25(1):69~72
    [29] 潘家祯,田肃岩.超细粉碎技术概述.化工设备与防腐蚀,2000.1:19~21
    [30] 刘成梅,刘伟,Roger Ruan等.瞬时高压作用对E.coli存活率的影响.食品科学,2005,(2):87~90
    [31] M.lordache ,P.Jelen, High pressure microfluidization treatment of heat denatured whey proteins for improved functionality.Innovative Food Science and Emerging Technologies ,2003, Vol.(4):367~376
    [32] 叶久东,李汴生,阮征等.食品超高压处理过程中传热模型和相转变的研究进展.食品研究与开发,2006,27(3);142~145
    [33] 代元忠,赵永强,马国涛等.超高压对撞技术装备在食品和生物工程中的应用.2004,22(3):30~37
    [34] 李汴生,曾庆孝,彭志英.高压处理后大豆分离蛋白溶解性和流变性的变化及其机理.高压物理学报,1999,13,(1):22~28
    [35] 张志森,唐书泽,汪勇.微射流高压均质过程动量及流场结构分析.包装与食品机械,2005,23(1):5~7
    [36] 涂宗财,陈剑兵.带肉胡萝卜汁的流变特性研究.食品科学,2006,27(3):52~55
    [37] 涂宗财,陈剑兵.带肉芹菜汁的流变特性研究.食品工业科技,2006(2):102~104
    [38] 刘成梅,刘伟等.Microflidizer对膳食纤维溶液物理性质的影响.食品科学,2004(2):72~75
    [39] 刘成梅,刘伟等.Microflidizer对膳食纤维的微粒粒度分布的影响.食品科学,2004(1):52~55
    [40] 涂宗财,任维等.超高压技术对大米淀粉物性影响初探.食品工业科技,2006,27(5):103~105
    [41] Michael H.Tunick,Diane L.Van Hekken,Peter H. Cooke. Effect of High Pressure Microfluidization on Microstructure of Mozzarella Cheese. LebensmitteI-Wissenschaft und-Technologie, 2000, Vol.33,(8):538~544
    [42] N.Lagoueyte,P. Paquin. Effects of microfluidization on the functional properties of xanthan gum. Food Hydrocolloids,1998, Vol. 12(3):365~371
    [43] Dalgleish, D. G., Tosh, S. M., & West, S. Beyond homogenization: The formation of very small emulsion droplets during the processing of milk by a microfluidizer. Netherlands Milk and Dairy Journal, 1996,Vol.50(2), 135~148
    [44] Diane L. Van Hekken et al. Rheology and melt characterization of low-fat and full fat Mozzarella cheese made from microfluidized milk.LWT - Food Science and Technology, 2007, Vol. 40(1):89~98
    [45] Mohammad R. Kasaai, Gerard Charlet, Paul Paquin et al. Fragmentation of chitosan by microfluidization process. Innovative Food Science and Emerging Technologies,2003, Vol,4: 403~413
    [46] Paul Paquin. Technological properties of high pressure homogenizers: the effect of fat globules, milk proteins, and polysaccharides. International Dairy Journal,1999, Vol,9(3): 329~335
    [47] Ramon Bamadas-Rodri'guez, Manuel Sabe's. Factors involved in the production of liposomes with a high-pressure homogenizer. International Journal of Pharmaceutics, 2001, Vol.213(1~2): 175~186
    [48] Seid Mahdi Jafari, Yinghe He and Bhesh Bhandari. Production of sub-micron emulsions by ultrasound and microfluidization techniques. Journal of Food Engineering,2007,Vol.82(4): 478~488
    [49] 刘大川,张维农,胡小泓.花生蛋白制备工艺和功能特性的研究.武汉工业学院学报,2001,4:1~4
    [50] 李明姝,姚开,贾冬英等.碱提酸沉法制取花生分离蛋白的优化条件.中国油脂,2004,29(11):21~23
    [51] 上官新晨,陈锦屏等.籽粒苋蛋白质功能特性的研究.中国粮油学报,2003,2(1):55~57
    [52] 王放,王显伦.食品营养保健原理及技术.北京:中国轻工业出版社,1997
    [53] Utsumi S, Kinsella J E. Structure-function relationships in food proteins: subunit interactions in heat-indueed gelation of 7S, 1IS, and soy isolate proteins.J.Agric.Food Chem.,1985, Vol.33(2): 297~303
    [54] 黄友如,华欲飞,裘爱泳.醇洗豆粕对大豆分离蛋白功能性质的影响(Ⅰ)-凝胶性能.中国油脂,2003,28(10):54~57
    [55] 邓杨悟,田少君.大豆分离蛋白的成膜性研究.郑州工程学院学报,2004,25(02):17~21
    [56] 董贝森.花生蛋白粉的制取及在食品工业中的应用.中国油料作物学报,1998,20(3):85~89
    [57] Garcra M C.Composition and characterization of soybean protein and related products. Critical reviews in food science and nutrition, 1997, Vol.37(4):361~391
    [58] 朱建华,杨晓泉,邹文中等.超声处理对大豆分离蛋白功能特性的影响.食品科学,2004,25(7):56~59
    [59] wolfw J. Soybean as a food source, CRC CriticaiRefiews in Food Technology,1971: 81~158.
    [60] 陈复生.食品超高压加工技术,化学工业出版社,2005
    [61] 涂宗财,汪菁琴,阮榕生等.超高压均质对大豆分离蛋白功能特性的影响.食品工业科技,2006,27(01):66~67
    [62] Coffmann, C. W., & Garcia, V. V. Functional properties and amino acid content of a protein isolate from mung bean flour. Journal of Food Technology, 1977,Vol. 12:473~484
    [63] Ellman, G. L.Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 1959,Vol.82(1):70~7
    [64] Takagi, S.,Akashi, M., & Yasumatsu, K. Determination of hydrostatic region in soybean globulin.Nippon Shokuhin Kogyo Gakkaishi, 1979,Vol.26:133 ~ 138
    [65] Hongkang Zhang, Lite Li, Eizo Tatsumi,et al. Influence of high pressure on conformational changes of soybean glycine.Innovation food science and Emerging Techologies,2003,Vol. 4:269~275
    [66] Monteiro, P. V., & Prakash, V.Effect of proteases on Arachin, conarachin Ⅰ and conarachin Ⅱ from peanut (Arachis hypogaea L.).Journal of Agricultural and Food Chemistry,1994,Vol.42: 268~273
    [67] Monteiro, P. V., & Prakash, V.Functional properties of homogeneous protein fractions from peanut (Arachis hypogaea L.). Journal of Agricultural and Food Chemistry, 1994,Vol.42:274~278
    [68] Neucere. N. J. Isolation of alpha arachin, the major peanut globulin. Analytical Biochemistry, 1969,Vol. 27:15~24
    [69] Prakash, V., & Rao, M. S. N. Physico-chemical properties of oilseed proteins, CRC. Critical Reviews in Biochemistry, 1986,20:265~364
    [70] 黄惠华,梁汉华,郭乾初,超声波对大豆胰蛋白酶抑制剂活性及二级结构的影响.食品科学,2004,25(3):29~33
    [71] 谢孟峡,刘媛.红外光谱酞胺Ⅲ带用于蛋白质二级结构的测定研究田.高等学校化学学报,2003,24(2):226~231
    [72] 阎隆飞.从花粉肌动蛋白到作物雄性不育,科学通报.1999,44(23):
    [73] 沈星灿,梁宏,何锡文等.圆二色光谱分析蛋白质构象的方法及研究进展.分析化学,2004,32(3):388~394