副猪嗜血杆菌hhdA基因缺失株的构建及胞外丝氨酸蛋白酶免疫原性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
副猪嗜血杆菌(Haemophilus parasuis,HPS)是猪上呼吸道的常在菌。其致病菌在一定条件下可引起以多发性浆膜炎、关节炎和脑膜炎为主要特征的革拉泽氏病(Glasser’s Disease)。近年来,该病在保育猪群中的发生逐年上升,已成为危害养猪业的重要传染病之一,受到人们的日益重视。虽然近几年加大了该病原的研究力度,筛选出大量的毒力相关基因,但目前为止尚不十分清楚HPS的致病机理。
     本研究利用重叠PCR(overlapping PCR)的方法构建了HPS hhdA基因的外源打靶基因Hup-Kan-Hdown。将其连接至自杀性质粒载体pDS132,获得了可在宿主菌E.coli SM10λpir中稳定遗传的外源打靶载体pDS-HPhhdA-Kan。将该打靶载体用电转法导入HPS中,经卡那霉素抗性筛选和蔗糖负筛选,得到HPS hhdA基因缺失株(HPS hhdA)。生化试验表明,该突变株的生化特性及NAD生长依赖性未见改变。生长曲线的测定表明该突变株的生长慢于标准株。豚鼠感染试验表明毒力变化不明显。说明hhdA基因不影响HPS的生长、繁殖,与其致病力无明显相关性。本试验建立的HPS遗传操作突变系统为实验室日后验证HPS各种基因功能奠定基础。
     本研究对HPS的一种胞外丝氨酸蛋白酶(extracellular serine protease, esp)进行了序列分析并将该蛋白进行原核表达。HPS esp一级结构分析表明,前23个氨基可能为信号肽序列。C端转运单位氨基酸序列的系统进化树表明,该蛋白与流感嗜血杆菌中IgA蛋白酶的亲缘关系较近。承载结构域抗原表位的分析表明,50~57、95~108、120~130、185~196、230~241和421~425等6个氨基酸序列表位抗原的可能性较大。将克隆的esp基因连接至表达载体pET30a,构建了表达质粒pET-esp。将测序鉴定正确的重组表达质粒利用IPTG进行诱导表达。经大量诱导条件优化试验,得到了IPTG终浓度为0.6 mmol/L,32℃振荡培养6 h的最优表达条件。SDS-PAGE分析显示表达产物的分子量约为82 kDa。以该蛋白为抗原,加入等体积的206佐剂免疫豚鼠,3次免疫后以浓度为5×10~9 CFU/mL的菌液进行攻击试验,每只豚鼠注射1 mL。结果表明,esp可以部分保护HPS的感染(6/12),有望成为HPS病免疫诊断和疫苗研制的候选抗原。
Haemophilus parasuis (HPS) is a commensal organism of the upper respiratory tract of healthy pigs. Under appropriate conditions, this bacteria cause Gl?sser’s disease, characterized by fibrinous polyserositis, arthritis and meningitis. Gl?sser’s disease has recently emerged as one of the typical bacterial diseases in swine industry in the worldwide, which has increasingly attented by people. Although significant studies on HPS have been reported as well as several virulence factors have been screened, the pathogenesis is yet to understand.
     In this study, the overlapping PCR method was used to construct the Hup-Kan-Hdown gene, an exogenous gene targeting gene of hhdA in HPS. When the recombinant gene was inserted into pDS132, the targeting plasmid, pDS-HPhhdA-Kan, was constructed, which was stable duplicated in E. coli harboringλpir gene. Electroporation of pDS-HPhhdA-Kan into HPS, through the screening with kanamycin resistance and 5% sucrose, HPS hhdA gene deletion strain (HPS△hhdA) was selected that could grow on plates with kanamycin resistance but not on plates containing 5% sucrose. Biochemical tests showed that the biochemical characteristics of the mutant strain did not change as well as the NAD-dependent growth. The growth curve showed that mutant strains growed little slower than standard strains. The virulence of the mutant strains did also not change significantly preformed by the guinea pig infection experiment. All those results showed that hhdA gene does not affect the growth of HPS and its reproduction. There was no significant correlation between virulence and hhdA gene. This established HPS mutation system opens the possibility for the functional analysis of genes involved in the infectious process of this animal pathogen.
     The HPS esp was then sequenced, analysis and expression. The sequence analysis showed that the first 23 aa was signal peptide. The longest conserved sequence, E(M/V)NNLNKRMG(E/D)LR(G/D), was compared with the C-terminal of the serine protease family. The validation of 3-D structure of the C terminal translocator domain was showed the monomericβ-barrel containing 12β-strands and anα-helix in the N-terminal. Many distinct antigenic epitopes in the passger domain of HPS esp were identified by computation : 50~57, 95~108, 120~130, 185~196, 230~241 and 421~425. When the esp gene was inserted into pET30a, the pET-esp was constructed. After induced with Isopropylβ-D-1-Thiogalactopyranoside (IPTG) and optimized the conditions of expression, the esp fusion protein was highly expressed at 0.6 mmol/L IPTG, 32℃, 6 h. SDS-PAGE showed the molecular weight of about 82 kDa. To evaluate the immunogenicity, were immunized with esp vaccine contained equal volume 206 adjuvant. Then guinea pigs were challenged with 5×10~9 CFU per guinea pigs of HPS and partial protection. This result indicates that esp is good candidate immunogens that could be used to improve HPS vaccines.
引文
1.蔡旭旺,陈焕春.副猪嗜血杆菌病的危害及其防治策略[J].养殖与饲料,2004,6:34-37.
    2.陈鑫.副猪嗜血杆菌体内诱导抗原的研究及真核表达文库的构建[D].武汉:华中农业大学,2009.
    3.高鹏程,储岳峰,赵萍,等.副猪嗜血杆菌培养条件的筛选及对豚鼠的致病性试验[J].动物医学进展,2008,29(10):10-13.
    4.贺淹才.简明基因工程原理[M].北京:科学出版社,2005:389.
    5.贺英.胸膜肺炎放线杆菌ApxⅢ基因的克隆表达及毒力因子免疫原性的测定[D].北京:中国农业科学院,2007.
    6.李敏,杨谦.一种高效构建同源重组DNA片段的方法-融合PCR[J].中国生物工程杂志,2007,27(8):53-58.
    7.李新枝,蔡佩玲,牟林春.基因功能研究的方法[J].四川解剖学杂志,2007,15(1):57-59.
    8.马艳平,刘永生,张杰.副猪嗜血杆菌生物被膜形成与功能的研究进展[J].江苏农业科学,2009,3:244-246.
    9.马艳萍.副猪嗜血杆菌生物被膜形成相关基因luxS和pilA的克隆和功能鉴定[D].北京:中国农业科学院.2010.
    10.母安雄,应小飞,陶益,等.副猪嗜血杆菌的研究进展[J].中国畜牧兽医,2005,32(11):48-50.
    11.牛登元.纳米金载体增强PRRSV GP5蛋白免疫原性的研究[D].甘肃:甘肃农业大学,2007.
    12.宋帅,李春玲,杨冬霞.副猪嗜血杆菌hhdB基因的鉴定和分析[J].华北农学报,2010,25:17-21.
    13.万世平,王建,,葛菲菲,等.副猪嗜血杆菌毒力因子的研究进展[J].畜牧与兽医,2010,42(10): 101-104.
    14.王凤华,李光远.T- DNA插入突变及其研究进展[J].河南农业科学,2007,6:12-14.
    15.王力华,付士红,唐青,等.三重融合PCR法构建感染性辛德毕斯嵌合病毒cDNA克隆[J].病毒学报,2006,22(2):107-113.
    16.吴乃虎,张方,黄美娟.基因工程术语[M].北京:科学出版社,2006:182-183.
    17.吴乃虎.基因工程原理第二版(上册).北京:科学出版社,2001:176-177.
    18.徐赤宇,温海,王溪涛,等.新生隐球菌的胞外蛋白水解酶及丝氨酸蛋白酶活性检测[J].第二军医大学学报,2006,27(2):125-128.
    19. F.奥斯伯,R.布伦特,R.E.金斯顿,等.精编分子生物学实验指南[M].颜子颖,王海林,译.北京:科学出版社,2001:358-360.
    20.杨汉春.动物免疫学.北京:中国农业大学出版社,2003,45.
    21.周建华,丛国正,高闪电,等.FMDV OA/ 58病毒株VP1蛋白结构构建与B细胞抗原表位的预测[J].华北农学报,2007,22(4):176-179.
    22.朱春红,孙晓庆,何素芬,等.基于Red同源重组和高效自杀性载体系统构建肠炎沙门氏菌突变株方法的比较[J].中国预防兽医学报,2009,31(2):81-84.
    23. Amano H, Shibata M, Kajio N. Pathologic observations of pigs intranasally inoculated with serotype 1, 4 and 5 of Haemophilus parasuis using immunoperoxidase method [J]. J Vet Med Sci, 1994, 56(4): 639-644.
    24. Amano O, Svensmark B, Mittal KR, et al. Effects on endotoxin pathogenicity in pigs with acute septicemia of Haemophilus parasuis infection [J]. J Vet Med Sci, 1997, 59: 451-455.
    25. Angen O, Svensmark B, Mittal KR. Serological characterization of Danish Haemophilus parasuis isolates [J]. Vet Microbiol, 2004, 103: 255-258.
    26. Aragon V, Cerdà-Cuéllar M, Fraile L, et al. Correlation between clinico-pathological outcome and typing of Haemophilus parasuis field strains [J]. Vet Microbiol. 2010, 142(3-4): 387-393.
    27. Arnab S, Saubashya S, Louis ST, et al. Homology modelling of the Frankia nitrogenase iron protein [J]. Symbiosis, 2010, 50: 37-44.
    28. Arnold K, Bordoli L, Kopp J, et al. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modeling [J]. Bioinformatics, 2006, 22: 195-201.
    29. Bae T, Bannger AK, Wallace A, et al. Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing [J]. Proc Natl Acad Sci USA, 2004, 101(33): 12312-12317.
    30. Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers [J]. Proc Int Conf Intell Syst Mol Biol, 1994, 2: 28-36.
    31. Bendtsen JD, Nielsen H, von Heijne G, et al. Improved prediction of signal peptides: SignalP 3.0 [J]. J Mol Biol, 2004, 340(4): 783-795.
    32. Benkert P, Biasini M, Schwede T. Toward the estimation of the absolute quality of individual protein structure models [J]. Bioinformatics, 2010, 27(3): 343-350.
    33. Biberstein EL, White DC. A proposal for the establishment of two new Haemophilus species [J]. J Med Microbiol, 1969, 2(1): 75-78.
    34. Bigas A, Garrido ME, Badiola I, et al. Development of a genetic manipulation system for Haemophilus parasuis [J]. Vet Microbiol, 2005, 105: 223-228.
    35. Bigas A, Garrido ME, Badiola I, et al. Non-viability of Haemophilus parasuis fur-defective mutants [J]. Vet microbiol, 2006,118: 107-116.
    36. Blackall PJ, Trott DJ, Rapp-Gabrielson V, et al. Analysis of Haemophilus parasuis by multilocus enzyme electrophoresis [J]. Vet Microbiol, 1997, 56: 125-134.
    37. Bouchet B, Vanier G, Jacques M, et al. Interactions of Haemophilus parasuis and its LOS with porcine brain microvascular endothelial cells [J]. Vet Res, 2008, 39(5): 42.
    38. Brockmeyer J, SpeltenS, Kuczius T, et al. Structure and function relationship of the autotransport and proteolytic activity of EspP from Shiga toxin-producing Escherichia coli [J]. PloS One, 2009, 4(7): e6100.
    39. Cai X, Chen H, Blackall PJ, et al. Serological characterization of Haemophilus parasuis isolates from China [J].Vet Microbiol, 2005,111(3-4): 231-236.
    40. Chandra J, Kuhn DM, Pranab K, et al. Biofilm formation by thebfungal pathogen Candida albicans: Development, architecture, and drug resistance [J]. J Bacteriol, 2001, 183 (18): 5385 - 5394.
    41. Devon S, Janet I. Differential expression of Haemophilus parasuis genes in response to iron restriction and cerebrospinal fluid [J]. Can J Vet Res, 2007, 71: 181-188.
    42. Donnenberg MS, Kaper JB. Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector [J]. Infect Immun, 1991, 59(12): 4310-4317.
    43. Emanuelsson O, Brunak S, von Heijne G, et al. Locating proteins in the cell using TargetP, SignalP and related tools [J]. Nat Protoc, 2007, 2(4): 953-971.
    44. Henderson IR, Nataro JP. Virulence functions of autotransporter proteins [J]. Infect Immun, 2001, 69(3):1231-1243.
    45. Henderson IR, Navarro-Garcia F, Nataro JP. The great escape: structure and function of the autotransporter proteins [J]. Trends Microbiol, 1998, 6(9): 370-378.
    46. Hensed M, Shea JE, Gleeson C, et al. Simultaneous identification of bacterial virulence genes by negative selection[J]. Science, 1995, 269(5222): 400-403.
    47. Hill CE, Metcalf DS, MacInnes JI. A search for virulence genes of Haemophilus parasuis using differential display RT-PCR [J]. Vet Microbiol, 2003, 96: 189-202.
    48. Jacob-Dubuisson F, Fernandez R, Coutte L. Protein secretion through autotransporter and two-partner pathways [J]. Biochim Biophys Acta, 2004, 1694(1-3): 235-257.
    49. Jacque JM, Triques K, Stevenson M. Modulation of HIV-1 replication by RNAi [J]. Nature, 2002, 418(6896): 435-438.
    50. Jin H, Zhou R, Kang M, et al. Biofilm formation by field isolates and reference strains of Haemophilus parasuis [J]. Vet Microbiol, 2006, 118(1-2): 117-123.
    51. Jung DK, Ha Y, Kim SH, et al. Development of polymerase chain reaction and comparison with in situ hybrididization for the detection of Haemophilus parasuis in formalin-sixed, paraffin-Embedded tissues [J]. Vet Med Sci, 2004, 66(7): 841-845.
    52. Karplus PA, Schultz GE. Prediction of chain flexibility in proteins [J].Naturwissenschaften, 1985, 72: 212-213.
    53. Kielstein P, Wuthe H, Angen O, et al. Phenotypic and genetic characterization of NAD-dependent Pasteurellaceae from the respiratory tract of pigs and their possible pathogenetic importance [J]. Vet Microbiol, 2001, 81: 243-255.
    54. Kim J, Chung HK, Jung T, et al. Postweaning multisystemic wasting syndrome of pigs in Korea: prevalence, micropic lesions and coexisting microorganisms [J]. Vet Med Sci, 2002, 64(1): 57-62.
    55. Kimpton J, Emenrman M. Detection of replication-competent and pseudotyped humanimmunodeficiency virus with a sensitive cell line on the basis of activation of an integrated bgalactosidase gene [J]. J Virol, 1992, 66: 2232-2239.
    56. Lancashire JF, Terry TD, Blackall PJ, et al. Plasmid-Encoded Tet B Tetracycline Resistance in Haemophilus parasuis [J]. Antimicrob Agents Chemother, 2005, 49(5): 1927-1931.
    57. Lundeen T. Haemophilus parasuis may have multiple mortality [J]. Am Feedstuffs, 2003, 23(3): 11-19.
    58. Mahler M, Bluthner M, Pollard KM. Advances in B-cell epitope analysis of autoantigens in connective tissue disease [J]. Clin Immunol, 2003, l07(2): 65?79.
    59. Martín de la Fuente AJ, Rodríquez-Ferri EF, Frandoloso R, et al. Systemic antibody response in colostrum-deprived pigs experimentally infected with Haemophilus parasuis [J]. Res Vet Sci, 2009, 86(2): 248-253.
    60. Melnikow E, Dornan S, Sargent C, et al. Microarray analysis of Haemophilus parasuis gene expression under in vitro growth conditions mimicking the in vivo environment.[J]. Vet Microbiol. 2005, 110(3-4): 255-263.
    61. Morikoshi T, Kobayashi K, Kamino T, et al. Characterization of Haemophilus parasuis isoolated in Japan [J]. Jpn J Vet Sci, 1990, 52: 667-669.
    62. Nagy Z, Kolev E, Csonka E, et al. Perturbation of the integrity of the blood brain barrier by fibrinolytic enzymes [J]. Blood Coagul Fibrinolysis, 1998, 9: 471-478.
    63. Nedbalcova K, Satran P, Jaglic Z, et al. Haemophilus parasuis and Gl?sser’s disease in pigs: a review [J]. Vet Med, 2006, 51(5): 168-179.
    64. Newman CL, Stathopoulos C.Autotransporter and two-partner secretion: delivery of large-size virulence factors by gram-negative bacterial pathogens [J]. Crit Rev Microbiol, 2004, 30:275-286.
    65. Nielson R. Pathogenicity and immunity studies of Haemophilus parasuis serotypes [J]. Acta Vet Scand, 1993, 34: 193-198. 34(2): 193-198.
    66. Oliveira S, Pijoan C. Computer-based analysis of Haemophilus parasuis protein fingerprints [J]. Can J Vet Res, 2004, 68: 71-75.
    67. Oliveira S, Pijoan C. Computer-based analysis of Haemophilus parasuis protein fingerprints [J]. Can J Vet Res, 2004, 68: 161-167.
    68. Oliveira S, Pijoan C. Haemophilus parasuis: new trends on diagnosis, epidemiology and control [J]. Vet. Microbiol, 2004, 99: 1-12.
    69. Olvera A, Segalés J, Aragón V. Update on the diagnosis of Haemophilus parasuis Infection in pigs and novel genotyping methods [J]. Vet J, 2007,174(3): 522-529.
    70. Philippe N, Alcaraz JP, Coursange E, et al. Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria [J]. Plasmid, 2004, 51(3): 246-255.
    71. Rafiee M, Bara M, Stepheas CP, et al. Appplication of ERIC-PCR for the comparison of isolates of Haemophilus parasuis [J]. Aust Vet, 2000, 78: 846-849.
    72. Rapp-Gabrielson VJ, Gabrielson DA. Prevalence of Haemophilus parasuis serotypes amongisolates from swine [J]. Am J Vet Res, 1992, 53: 951-956.
    73. Rúbies X, Kielstein P, Costa L, et al. Prevalence of Haemophilus parasuis serovars isolated in Spain from 1993 to 1997 [J]. Vet Microbiol, 1999, 66(3): 245-248.
    74. Ruiz A, Oliveira S, Torremorell M, et al. Outer membrane profiles in strains of Haemophilus parasuis recovered from systemic and respiratory sites [J]. J Clin Microbial, 2001, 39: 1757-1762.
    75. Sack M, Baltes N, Identification of novel potential virulence-associated factors in Haemophilus parasuis [J]. Vet Microbiol, 2009, 136(3-4): 382-386.
    76. Schwede T, Kopp J, Guex N, et al. SWISS-MODEL: an automated protein homology-modeling server [J]. Nucleic Acids Res, 2003, 31: 3381-3385.
    77. Smart NL, Hurnik D, Macinnes JI. An investigation of enzootic Glasser's disease in a specific-pathogen-free grower-finisher facility using restriction endonuclease analysis [J]. Can Vet J, 1993, 34: 487-490.
    78. Smart NL, Miniats OP, Rosendal S, et al. Glasser's disease and prevalence of subclinical infection with Haemophilus parasuis in swine in southern Ontario [J]. Can Vet J, 1989, 30(4): 339-343.
    79. Szulc J, Wiznerowicz M, Sauvain MO, et al. A versatile tool for conditional gene expression and knockdown [J]. Nat Methods, 2006,3(2): 109-116.
    80. Tadjine M, Mittal KR, Bourdon S, et al. Production and characterization of murine monoclonal antibodies against Haemophilus parasuis and study of their protection role in mice [J]. Microbiol, 2004, 150: 3935-3945.
    81. Takamatsu D, Osaki M, Sekizaki T. Thermosensitive Suicide Vectors for Gene Replacement in Streptococcus suis [J]. Plasmid, 2001, 46(2): 140-148.
    82. Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 [J]. Mol Biol Evol, 2007, 24: 1596-1599.
    83. Vanier G, Szczotka A, Fried P, et al. Haemophilus parasuis invades porcine brain microvascular endothelial cells [J]. Microbiol, 2006, 152: 135-142.
    84. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins [J]. Nucleic Acids Research, 2007, 35, 407-410.
    85. Xie Q, Jin H, Luo R, et al. Transcriptional responses of Haemophilus parasuis to ironrestriction stress in vitro [J]. Biometals. 2009. 22(6): 907-916.
    86. Yen YT, Kostakioti M, Henderson IR. Common themes and variations in serine protease autotransporters [J]. Trends Microbiol, 2008, 16(8): 370-379.
    87. Yue M, Yang F, Yang J, et al. Complete Genome Sequence of Haemophilus parasuis SH0165 [J]. J Bacteriol, 2009, 191(4): 1359-1360.
    88. Zhang B, Tang C, Yang FL, et al. Molecular cloning, sequencing and expression of the outer membrane protein A gene from Haemophilus parasuis [J]. Vet Microbiol, 2009, 136 (5): 408-410.
    89. Zhou H, Yang B, Xu F, et al. Identification of putative virulence-associated genes of Haemophilus parasuis through suppression subtractive hybridization [J]. Vet Microbiol, 2010, 144(3-4):377-383.
    90. Zucker BA, Baghian A, Traux R. Detection of strain-specific antigenic epitopes on the lipooligosaccharide of Haemophilus parasuis by use of monoclonal and polyclonal antibodies [J]. Am J Vet Res, 1996, 57(1): 63-67.