小麦茎秆特征与倒伏的关系及调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究选用抗倒性不同的6个小麦品种,通过设置不同种植密度、氮肥施用量和喷施多效唑等栽培措施,于2008年~2010年系统研究了小麦茎秆形态特征、解剖结构特征和茎秆理化特性及其抗倒伏能力的变化,分析了不同抗倒伏能力小麦茎秆特征的品种差异,探讨了种植密度、氮肥和多效唑对小麦抗倒伏能力的影响及其生理生化机理。主要研究结果如下:
     1小麦抗倒伏性的品种差异
     1.1不同抗倒伏能力小麦品种茎秆形态特征
     与抗倒伏能力较差的小麦品种(藁城8901和烟农21)相比,抗倒伏能力强的小麦品种(济麦20和济麦22)的株高、重心高度、基部节间长度和基部(1+2)节间占总茎长的比例、内径厚度和茎秆干物质转移率均明显降低,而外径厚度、茎秆鲜、干质量增加。相关分析表明,小麦实际倒伏率与基部第2节间外径大小、壁厚和茎秆充实度呈显著负相关,与株高、重心高度和基部节间长度呈显著正相关。在小麦实际生产中,茎秆基部节间株高和重心高度较低、内径小、茎壁较厚、干物质转移率低和节间充实度高是小麦茎秆抗倒伏能力强的具体体现。
     1.2不同抗倒伏能力小麦品种茎秆解剖结构特征
     通过对抗倒伏能力不同的6个小麦品种茎秆基部第2节间的解剖结构研究显示,小麦茎秆抗倒伏能力强的品种(济麦20和济麦22),其茎秆壁厚,机械组织细胞层数多而厚,大维管束数目多且面积大;抗倒伏能力较弱的品种(藁城8901和烟农21),其基部茎秆机械组织细胞层数较少且薄,大维管束数目少且面积小。相关分析表明,基部第2节间机械组织层数和厚度、大维管束数目和面积与小麦实际倒伏率均呈显著或极显著负相关。小麦茎秆基部第2节间机械组织层数多、茎壁厚、大维管束数目多且面积大,这些特征可能是选育抗倒伏小麦品种的重要指标。
     1.3不同抗倒伏能力小麦品种茎秆理化特性
     茎秆的理化特性与其抗倒性密切相关。茎秆中可溶性总糖及钾、氮的含量和基部节间抗折力对茎秆基部节间的抗倒伏指数和实际倒伏率均有显著影响。小麦实际倒伏率与其倒伏指数、基部抗折力、可溶性总糖和钾含量显著负相关,与基部节间氮含量显著正相关。
     不同小麦品种的茎秆木质素含量也存在明显差异。茎秆抗折力大、倒伏指数小的品种(济麦20和济麦22),其茎秆木质素含量高,苯丙氨酸转氨酶(PAL)、肉桂醇脱氢酶(CAD)、酪氨酸解氨酶(TAL)和4-香豆酸:CoA连接酶(4CL)活性强。相关分析表明,茎秆木质素含量与实际倒伏率呈显著负相关(r = -0.83, P<0.05);与抗折力呈显著正相关(r =0.86, P<0.05);PAL、TAL和CAD活性与木质素含量呈显著正相关(r =0.78、0.77、0.85, P<0.05),4CL活性与木质素含量呈不显著正相关(r =0.39, P>0.05)。研究表明,较高的PAL和CAD活性是木质素含量高的酶学基础,茎秆木质素含量可作为小麦品种抗倒伏性评价的一个重要指标。
     2栽培措施对小麦抗倒伏性的调控
     2.1种植密度与小麦抗倒伏性的关系
     随种植密度的增加,小麦茎秆高度和重心高度升高,茎秆基部节间变细长,茎壁变薄,基部第(1+2)节间占总长的比例增大,基部节间比茎重降低,小麦倒伏现象严重。说明在小麦生产中,增加种植密度使株高增高、节间充实度降低是造成小麦倒伏的重要原因之一。
     随种植密度的增加,烟农21和藁城8901的基部第2节间机械组织层数减少、茎壁厚度降低,大维管束数目和面积也有不同程度的降低。采用合理的种植密度,建立合理的群体结构,促进茎秆机械组织发育,增加大维管束数目和面积,是实现壮秆,为高产抗倒群体的建立打下良好基础的前提。
     增加种植密度在一定程度上降低了基部茎秆中氮、钾元素含量,并降低基部节间茎秆中可溶性总糖和淀粉含量,进而影响基部茎秆的抗折力和抗倒伏指数。
     增加种植密度使基部第2节间中的木质素含量及其合成相关酶(PAL、TAL、4CL和CAD)活性明显降低,进而导致小麦茎秆抗倒伏能力下降。
     2.2氮肥和多效唑与小麦抗倒伏性的关系
     氮肥施用量显著影响小麦茎秆抗倒伏能力。与低施氮(225 kg·hm-2)处理相比,高施氮(300 kg·hm-2)处理的茎秆高度、基部节间长度和基部(1+2)节间占总茎长的比例均增加,而基部节间粗度、节间充实度降低。喷施多效唑后,小麦基部节间缩短,基部第(1+2)节间占总茎长的比例降低,基部茎增粗,茎壁增厚,茎秆高度降低,重心位置下移,基部茎秆单位长度内干物质重量提高,小麦的抗倒伏能力增强。表明起身期叶面喷洒多效唑,对于解决高产麦田生育后期倒伏问题具有重要意义。
     与低施氮(225 kg·hm-2)处理相比,高施氮(300 kg·hm-2)处理使茎秆基部第2节间机械组织细胞层数减少,厚度变薄,大维管束数目和面积也减小。喷施多效唑使小麦茎秆基部第2节间的维管束数目和面积增加,机械组织层数增多,厚度增厚,小麦抗倒伏能力增强。
     与低施氮(225 kg·hm-2)处理相比,高施氮(300 kg·hm-2)处理降低了茎秆基部节间中可溶性总糖、淀粉和钾含量,而氮含量增加,氮/钾比值增大,导致基部茎秆抗折力和抗倒伏指数下降,增加倒伏风险。喷施多效唑则增加了茎秆基部节间氮、钾含量,增加了淀粉和可溶性总糖含量,提高了基部茎秆抗折力和抗倒伏指数,减少倒伏面积。
     同品种条件下,与低施氮(225 kg·hm-2)处理相比,高施氮(300 kg·hm-2)处理降低了茎秆PAL、TAL、CAD和4CL的活性,茎秆木质素含量、抗折力和抗倒伏指数降低。而喷施多效唑显著提高茎秆PAL、TAL和CAD的活性,木质素含量、茎秆抗折力和抗倒伏指数提高,倒伏面积和倒伏程度降低。相关分析表明,茎秆抗倒伏指数与木质素含量呈显著正相关(R=0.61,P<0.05);木质素含量与PAL、TAL和CAD酶活性呈显著正相关,与4CL酶活性相关不显著。高施氮量处理降低了茎秆木质素合成相关酶的活性和木质素含量,茎秆抗倒伏能力降低。施用多效唑显著提高茎秆木质素合成相关酶的活性和木质素含量,进而增强了茎秆抗倒伏能力,这是施用多效唑增强小麦抗倒伏性的生理机制之一。
Six wheat varieties with different lodging resistances were grown at Tai’an Experimental Station of Shandong Agriculture University during the 2008~2010 growing seasons. The studies were focused on stem morphological characteristics, anatomical structure feature and physicochemical properties as well as the changes of stem lodging resistance, and the result elucidated the relationship between lodging and the character of culm. This research analyzed the variety differences of stem characteristics with different lodging resistance, discussed the physiological and biochemical mechanism of planting density, nitrogen and paclobutrazol on lodging resistance of wheat. The main results were as follows:
     1 Difference of variety in the lodging resistance of wheat
     The field experiments were carried out at Tai’an Experimental Station of Shandong Agricultural University in two growing seasons from October 2008 to June 2009 and from October 2009 to June 2010. Six wheat cultivars (Triticum aestivum L.), JM 20 and JM 22 (high lodging resistance of wheat), and Gaocheng 8901 and Yannong21 (middle lodging resistance of wheat), and Youzimai and Pingyuan 50 (low lodging resistance of wheat) were employed in this study.
     1.1 Stem morphological characteristics with different lodging resistance of wheat
     Compared with middle lodging resistance of wheat varieties (Gaocheng 8901 and Yannong 21), the plant height, ratio of gravity center height to plant height, basal internodes length and percentage of basal internode(1+2) length in the total stem length, inner diameter and dry matter transfer rate high lodging resistance of wheat varieties (Jimai 20 and Jimai 22) significantly reduced, while outer diameter, stem fresh and dry weight incresased. Correlation analysis showed that there was siginificantly negative correlation between the actal lodging percentage and the diameter thickness of basal internode and filling degree, while there was a significantly positive correlation between plant height, ratio of gravity height and length of basal. In wheat production, shorter basal internodes, lower plant height, smaller inner diameter, thicker stem diameter, higher filling degree of stem, lower the dry matter tranfer rate were significant characteristics of high lodging resistance of wheat.
     1.2 Anatomical structure features with different lodging resistance of wheat
     By analyzing the anatomical structure of the 2nd basal internode of the six lodging resistance of different varieties, the result showed that wheat varieties with high lodging resistance (Jimai 20 and Jimai22) had wall thickness and more mechanical tissue cell layer, the large vascular bundles tended longer, wider and had more numbers. Varieties with low lodging resistance (Youzi wheat and Pinyuan 50), the mechanical tissue cell layers was less and thinner, the large vascular bundle tended shorter, narrower and lesser numbers. Correlation analysis showed that the layer and thickness of the mechanical tissue of the 2nd basal internodes and the large vascular bundle number and area had significant or very significant negative correlation with the lodging rate of wheat. The results indicated that for good quality culm, the mechanical tissue had more cell layers; the large vascular bundles tended longer, winder and had more numbers; the wall of culm was thicker.
     1.3 Physical and chemical characteristic with different lodging resistance of wheat
     The physical and chemical characteristics of culm were closely related with its lodging resistance. The content of soluble sugar and potassium, nitrogen content, snapping resistance of the basal internodes had the greater effect on the lodging resistance of basal internodes and actual lodging percentage. The actual lodging percentage of wheat were significant negative correlation with the lodging index, snapping resistance of the basal internodes, the content of soluble sugar and potassium, and nitrogen content was significant positive correlation.
     The lignin content and activities of phenylalanine ammonia-lyase (PAL), tyrosine ammonia-lyase (TAL), cinnamyl alcohol dehydrogenase (CAD), and 4-coumarate:CoA ligase (4CL) were tested in the second internode of six cultivars with different lodging resistance. The snapping resistance and culm lodging index were determined at anthesis, milking, and maturity stages. The lignin content varied significantly among cultivars. Jimai 22 and Jimai 20, which showed high resistance to culm snapping and loging, had higher lignin content and the activities of PAL, TAL, CAD, and 4CL than other cultivars. The lignin content was negatively correlated with the actual lodging ratio (r =-0.83, P<0.05), and positively correlated with the snapping resistance of culm (r =0.86, P<0.05). The activities of PAL, TAL, and CAD were positively correlated with lignin content with correlation coefficients of 0.78 (P<0.05), 0.77 (P<0.05) and 0.85 (P<0.05), respectively. Based on these results, we conclude that high activities of PAL and CAD are the enzymatic basis of increased lignin content, and the lignin content in culm can be used as an important indicator to evaluate lodging resistance of wheat.
     2 Regulation of cultivation measures on the lodging resistance of wheat
     2.1 Relationship between planting density and lodging resistance of wheat
     With the increase of planting density, plant height and ratio of gravity center height to plant height were incresed, basal internodes tended slender and thinner, percentage of basal internode(1+2) length were improved, weight percentage of basal internodes was significantly reduced, and lead to serious lodging of wheat. The plant height was heightened and the filling degree of internode was decreased with the increase of planting density, and this was a main cause lodging of wheat.
     With the increase of planting density, the mechanical tissue layer of the 2nd internodes of Yannong 21 and Gaocheng 8901 reduced, stem wall thickness decreased, the large vascular bundle number and area had different degrees of reduction. Adopting rational planting density to establish a rational structure, to promote development of the mechanical tissue of stem as well as the area and amount of the large vascular bundle were premise of realizing sound seedling and lay a good foundation to build a population structure of lodging resistance.
     The nitrogen and potassium element content, the souble sugar and starch content of basal internodes, the snapping resistance and lodging resistance index were redued with the increase of the planting desity. The culm lodging resistance index was positively correlated with the plant density.
     The lignin content of the second basal internode and PAL, TAL, 4CL and CAD activities were significantly reduced with the increase of the planting density, which led to the lowring of wheat stem.
     2.2 Relationship between nitrogen and paclobutrazol and lodging resistance of wheat
     Nitrogenous significantly influenced the lodging resistance of wheat. Compared with low N (225 kg·hm-2) rate, the plant height and percentage of basal internode(1+2) length of total internode length of the plant high N (300 kg·hm-2) rate were increased, but the thickness and filling degree of basal internodes were decreased. After spraying paclobutrazol, the basal internodes of wheat shortened and percentage of basal internode(1+2) length of the plant decreased, outside diameter and wall thickness of culm increased, ratio of gravity center height to plant height were lowers, ratio weight to lenghth of stem were increased, wheat lodging resistance were enhanced. The result showed that spraying paclobutrazol had great effect on solving the lodging problems during growth later stage of high-yielding wheat.
     Compared with low N(225 kg·hm-2) rate, the high N(300 kg·hm-2) rate made mechanical tissue cell layers decreased and becomed thinner, the amount and area of big vascular bundles and area also decreased. Spraying paclobutrazol caused the amount and area of the second internodes increased and the mechanical tissue cell layers increased and becomed thicker. And the lodging resistance was enhanced.
     Compared with low nitrogen N(225 kg·hm-2) rate, the high N(300 kg·hm-2) rate made soluble sugar, starch and potassium content lower and nitrogen content increased, nitrogen potassium ratio increased, lead to the decrease of snapping resistance and lodging resistance index and increased the risk of lodging. Spraying paclobutrazol increased contents of nitrogen and potassium of basal internodes, increased starch and soluble sugar content, and improved the snapping resistance and lodging resistance index and decreased lodging area.
     Compared with the low N(225 kg·hm-2) rate, the high N(300 kg·hm-2) rate reduced the PAL, TAL, CAD and 4CL activities and lignin content, reduced snapping resistance and CLRI under the same cultivar condition. The application of PP333 improved the PAL, TAL and CAD activities, increased lignin content, snapping resistance and CLRI, thus reduced lodging area and lodging degree. Correlation analysis showed that the lignin content of basal stem had a significant and positive correlation with PAL, CAL and CAD activity and CLRI, respectively, yet had no significant correlation with 4CL activity. The high N(300 kg·hm-2) rate reduced the PAL, TAL,CAD enzyme activities and lodging resistance. Spaying PP333 improved the PAL, TAL, CAD enzyme activities and lignin content, and thus enhanced the lodging resistance.
引文
安呈峰,王延训,毕建杰,等.高产小麦生育后期影响茎秆生长的生理因素与抗倒性的关系.山东农业科学, 2008, 7: 1-4, 8.
    北条良夫,星川清亲著,郑赔尧等译.作物的形态与机能.北京:农业出版社, 1983: 411-425.
    陈培琳.关于水稻、小麦倒伏现象中的力学问题观察.湘潭师范学院(自然科学报), 1988, 2: 41-44.
    邓贺明,胡亚敏,冯家春,等.小麦倒伏对产量因素的影响及补救方法探讨.安徽农业科学, 2003, 31(3): 424-425.
    都付菊,李学宝.植物纤维素生物合成及其相关酶类.细胞生物学杂志, 2004, 26: 490-494.
    杜怡斌.小麦个体发育.北京:农业出版社, 1983.
    段传人,王伯初,王凭青.水稻茎秆的结构及其性能的相关性.重庆大学学报, 2003, 28(11): 38-40
    丰光,刘志芳,李妍妍,等.玉米茎秆耐穿刺强度的倒伏遗传研究.作物学报, 2009, 35(11): 2133-2138.
    高如嵩,孙鹏举,李文瑞.高产大麦品种抗倒伏性的研究.陕西农业科学, 1990(1): 5-9.
    高志强,苗果园,张国红,等.北移冬小麦生长发育及产量构成因素分析.中国农业科学, 2003, 36(1): 31-36.
    龚有锐.小麦的倒伏和防止措施.湖北农业科学, 1982(90): 4-7.
    关玉萍,沈枫.水稻抗倒伏能力与茎秆物理性状的关系及对产量的影响.吉林农业科学, 2004, 29(4): 6-11.
    管延安,李建和,任莲菊,李根英.禾谷类作物倒伏性的研究.山东农业科学,1998, 5: 51-54.
    郭翠花,高志强,苗果园.不同产量水平下小麦倒伏与茎秆力学特性的关系.农业工程学报, 2010, 26(3): 151-155.
    郭会军,肖世和.小麦茎秆强度及其相关性状的QTL分析.中国农业科学院硕士研究生学位论文, 2002.
    郭维俊,王芬娥,黄高宝等.小麦茎秆力学性能与化学组分试验.农业机械学报, 2009, 40: 110-114.
    郭玉华,朱四光,张龙步,等.不同栽培条件对水稻茎秆材料学特性的影响.沈阳农业大学学报, 2003, 34: 1- 4.
    郭玉华,朱四光,张龙步.不同栽培条件对水稻茎秆生化成分的影响.沈阳农业大学学报, 2003, 34: 89-91.
    郭玉明,袁红梅,阴妍,等.茎秆作物抗倒伏生物力学评价研究机关联分析.农业工程学报, 2007, 23(7): 14-18.
    韩清瑞,方成梁.冬小麦倒伏与植株形态及养分平衡的关系.北京农业科, 1992, 10(l): 10-14.
    韩清瑞.小麦基部节间的形态结构与倒伏的关系.北京农业科学, 1990(3): 10-13.
    何培祥.精播高产冬小麦茎秆性状的观测.莱阳农学院学报, 1986(2): 35-42.
    胡婷,付志一,焦群英.小麦茎秆抗弯性能研究.农业工程学报, 2006, 22(10): 31-35.
    黄芬.小麦株型性状与倒伏的相关与通经分析.旱农研究, 1986(4): 9-12.
    黄金堂.二棱大麦茎秆性状与抗倒性关系的研究.麦类作物学报, 2004, 24(3): 49-52.
    黄玉鸾.小麦倒伏的形态生理因素及防倒技术.江苏农业科学, 1988(10): 5-8.
    季兰,杨仁崔.水稻茎伸长生长与植物激素.植物学通报, 2002, 19 : 109-115.
    姜东.高产冬小麦开花后光合产物代谢规律及与粒重关系的研究.山东农业大学博士论文, 1998.
    金善宝.中国小麦学.中国农业出版社,北京,1996,1-17;58-184;515-526.
    金善宝主编.中国小麦生态.北京:中国科学出版社, 1991: 468-478.
    井长勤,周忠,张永.氮肥运筹对小麦倒伏影响的研究.徐州师范大学学报, 2003, 21(4): 46-49.
    居春霞,彭永新.小麦茎秆维管束发育与穗部性状关系的研究.江苏农学院学报, 1994, 15(2): 27-32.
    李春秀,齐力旺,王建华,等.植物纤维素合成酶基因和纤维素的生物合成.生物技术通报, 2005, 4: 5-11.
    李得孝,康宏,员海燕.作物抗倒伏性能研究方法.陕西农业科学, 2001(7): 20-22.
    李红波,郭玉明,陈维毅.冬小麦茎秆的力学性质研究.太原理工大学学报, 2006, 37(1): 31-34.
    李红波.小麦茎杆力学特征的实验研究.太原理工大学硕士学位论文,2005
    李金才,尹钧,魏凤珍.播种密度对冬小麦茎秆形态特征和抗倒指数的影响.作物学报, 2005, 31: 662-666.
    李潞滨,刘蕾,何聪芬,董银卯,彭镇华.木质素生物合成关键酶基因的研究进展.分子植物育种. 2007, 5: 45-51.
    李晴祺主编.冬小麦种质创新与评价利用.济南:山东科技出版社, 1998: 203-219.
    李文雄.春小麦倒伏问题研究初报.东北农学院学报, 1961(1): 19-31.
    李扬汉.禾本科作物的形态与解剖.上海科技出版社, 1979: 203-294.
    梁莉,郭玉明.不同生长期小麦茎秆力学性质与形态特性的相关性.农业工程学报, 2008, 24(8): 131-134.
    林俊泽.与倒伏性状有关的性状分析.韩国作物学会志, 1992, 37(1): 78-85(孙宗修译).
    林葵,黄祥辉,王隆华,李人圭,颜季琼.甜瓜子叶不定芽分化过程中PAL活性和木质素含量变化研究.华东师范大学学报, 1996, 2: 92-97.
    蔺占兵,马庆虎,徐洋.木质素的生物合成及其分子调控,自然科学进展, 2003, 13: 455-460.
    刘后森,魏俊智.小麦茎的组织结构力学性能与倒伏的力学问题.八一农学学报, 1992, 15(2): 91-96.
    刘庆庭,区颖刚,卿上乐,等.农作物茎秆的力学特性研究进展.农业机械学报, 2007, 38(7): 172-176.
    刘唐兴,官春云,雷冬阳,等.作物抗倒伏的评价研究方法研究进展.中国农学通报, 2007, 23(5): 203-206.
    刘天华,龚继续,冯启明.川西平原小麦倒伏原因的初步研究.西南农业学报, 1995(3): 12-14.
    刘晓燕,金继运,何萍,等.氯化钾对玉米木质素代谢的影响及其与茎腐病抗性的关系.中国农业科学, 2007, 40(12): 2780-2787.
    刘兴堂.高产田小麦倒伏原因及其防止措施.新疆农垦科技, 1989(4): l-2. 陆显义.小麦倒伏问题的初步研究.贵州农业科学, 1983(2): 17-22.
    吕双庆,李生秀.多效唑对旱地小麦一些生理、生育特性及产量的影响.植物营养与肥料学报, 2005,11(1): 92-98.
    罗茂春,田翠婷,李晓娟,等.水稻茎秆形态结构特征和化学成分与抗倒伏关系综述.西北植物学报, 2007, 27(11): 2346-2353.
    罗自生. GA3处理对采后竹笋木质化及内源激素水平的影响,园艺学报, 2005, 32: 454-457.
    马均,马文波,田彦华,等.重穗型水稻植株抗倒伏能力的研究.作物学报, 2004, 30(2): 143-148.
    马跃芳,金晓平,龚辉,等.大麦倒伏原因的初步研究.作物研究, 1990, 4(4):22-25.
    穆平,李自超,李春平,等.水旱条件下水稻茎秆主要抗倒伏性状的QTL分析. 遗传学报, 2004, 31(7): 717-723.
    彭世章,张正良,庞桂斌.控制灌溉条件下寒区水稻抗倒伏力学评价及成因分析. 农业工程学报, 2009, 25(1): 6-10.
    裘昭峰,方陈,陈洪俭.小麦节间的维管束组织及其与单穗粒数的关系.作物学报, 1987, 13: 102,116.
    桑云,赵亮,张坤普,等.小麦DH群体穗下节间直径、茎壁厚及茎壁面积的QTL定位.作物学报, 2010, 36(1): 61-67.
    石扬娟,黄艳玲,申广勒,等.氮肥用量和栽插密度对水稻茎秆力学特性的影响研究.中国农学通报, 2007, 23(12): 58-62.
    石扬娟.不同栽培条件对中籼稻茎秆抗倒伏性状的影响.中国农学通报, 2010, 26(15): 172-178.
    苏庚.株高遗传与小麦品种抗倒伏性的选育.包头农业科技, 1985(1): 80-85.
    苏工兵,刘俭英,王树才,等.苎麻茎秆木质部力学性能试验.农业机械学报, 2007, 38(5): 62-65.
    孙凡.作物茎秆抗倒伏的力学研究.西南农业大学学报, 1994, 16(2): 183-186.
    孙旭初.水稻茎秆抗倒伏的力学研究.中国农业科学, 1987, 20(4): 32-37.
    田保明,杨光圣.农作物倒伏及其评价方法.中国农学通报, 2005, 21(7): 111-114.
    王法宏,等.冬小麦不同产量潜力品种茎秆和旗叶表皮组织结构的比较研究.作物学报, 1995, 21: 244-246.
    王芬娥,黄高宝,郭维俊,等.小麦茎秆力学性能与微观结构研究.农业机械学报, 2009, 40(5): 92-95.
    王晖.麦类农作物的力学分析.黑龙江八一农垦大学学报,1995, 8(2): 69-73
    王纪华,赵春江,王北洪,等.拔节后期施用植物生长物质对小麦倒伏及穗花发育的影响. 2000, 18(2): 7-11.
    王健,朱锦懋,林青青等.小麦茎秆结构和细胞壁化学成分对抗压强度的影响. 科学通报,2006, 51: 679-685.
    王健.抗倒伏小麦茎杆结构、化学特征及快速筛选方法研究.福建师范大学硕士学位论文, 2006.
    王立新,郭强,苏青.玉米抗倒性与茎秆显微结构的关系.植物学通报, 1990, 7: 34-36.
    王群瑛,胡昌浩.玉米茎秆抗倒特性的解剖研究.作物学报, 1991, 17: 70~75.
    王善本.水稻倒伏的研究第2节折弯位置茎的形态特征,日本作物学会纪事, 1991, 60(4):566-573(徐正进译).
    王莹,杜建林.大麦根倒伏抗性评价及其倒伏系数的通径分析.作物学报, 2001, 27(6): 941-945.
    王勇,李朝恒,李安飞,等.小麦品种茎秆质量的初步研究.麦类作物, 1997, 17(3): 28-31.
    王勇,李晴祺.小麦品种茎秆的质量及解剖学研究.作物学报, 1998, 24: 452-458.
    王勇,李晴祺.小麦品种抗倒性评价方法的研究.华北农学报, 1995, 10(3): 84-88.
    王勇,李斯深,李安飞,等.小麦种质抗倒性的评价和抗倒性状的相关于通径分析.西北植物学报, 2000, 20(1): 79-85.
    魏凤珍,李金才,王成雨,等.氮肥运筹模式对小麦茎秆抗倒性能的影响.作物学报, 2008, 34: 1080-1085.
    吴锦程,陈群.外源水杨酸对冷藏枇杷果实木质化及相关酶活性的影响.农业工程学报, 2006,22: 175-179.
    肖世和,张秀英,闫长生,等.小麦茎秆强度的鉴定方法研究.中国农业科学, 2002, 35: 7-11.
    徐磊,王大伟.小麦基部节间茎秆密度与抗倒性关系研究.麦类作物学报, 2009, 29: 673-679.
    杨长明,杨林章,颜廷梅,等.不同养分和水分管理模式对水稻抗倒伏能力的影响.应用生态学报, 2004, 15(4): 646-650.
    杨惠杰,杨仁崔,李义珍,等.水稻茎秆性状与抗倒伏能力的关系.福建农业学报, 2000, 15(2): 1-7.
    杨世民,谢力,郑顺林,等.氮肥水平和栽插密度对杂交稻茎秆理化特性与抗倒伏性的影响.作物学报, 2009, 35(1): 93-103.
    杨学举,彭俊英,李宗智,等.小麦株高与早衰及倒伏的关系研究.北京农业科学, 1990, 8(1): 17-18.
    杨珍平,贾志红,周乃建,等.晋中高产小麦群体结构的研究与效益分析.山西农业大学学报, 2001, 21(2): 108-112.
    杨忠义,范春晖,郭平毅.氮肥与多效唑对冬小麦叶片生理功能的调控.植物营养与肥料学报, 2008, 14(5): 947-950.
    姚金保,张平平,任丽娟,等.小麦抗倒指数遗传及其与茎秆特性的相关分析. 作物学报, 2011, 37(3): 452-458.
    姚瑞亮,朱文群.小麦形态性状与倒伏的相关分析.广西农业大学学报, 1998, 17: 16-18, 23.
    余蓓珍,柴小清,王景林.多效唑对小麦的生物效应.首都师范大学学报(自然科学版), 1996, 17(4): 79-84.
    余松烈.中国小麦栽培理论与实践.上海科学技术出版社,上海, 2006: 1-20.
    余泽高,李志新,严波.小麦茎秆机械强度与若干性状的相关性研究.湖北农业科学, 2003, 4: 11-14.
    袁红梅,郭玉明,李红波.小麦茎秆弯折力学性能的试验研究.山西农业大学学报, 2005, 25(2): 173-176.
    袁剑平,刘华山,彭文博,等.多效唑对小麦形态和某些生理特性影响的研究. 河南农业大学学报, 1993, 27(1): 16-20.
    袁志华,冯宝萍,赵安庆等.作物茎杆抗倒伏的力学分析及综合评价探讨.农业工程学报, 2002, 18: 30-31.
    袁志华,李云东,陈合顺.麦类作物的力学模型及振动分析.河南科学, 2002, 20(2): 11-13.
    袁志华,郑桂梅,苏宗伟.典型风荷载对小麦茎秆倒伏的影响. 2005, 23(1): 54-55.
    曾金国,何立人,李正玮.大麦倒伏机理及大麦、小麦抗倒伏性能的比较.河南职技师院学报, 1990, 18(3-4): 163-170.
    张坤普,赵亮,海燕,等.小麦白粉病成株抗性和抗倒伏性及穗下节长度的QTL定位.作物学报, 2008, 34(8): 1350-1357. 张明聪,刘元英,罗盛国,等.养分综合管理对寒地水稻抗倒伏性能的影响.中国农业科学, 2010, 43(21): 4536-4542.
    张树榛,葛亚新.小麦理想株型研究.北京农业大学学报, 1990, 16(2): 15-132.
    张喜娟,李红娇,李伟娟,等.北方直立穗型粳稻抗倒性的研究.中国农业科学, 2009, 42(7): 2305-2313.
    张志才.作物倒伏成因分析及抗倒对策研究进展.耕作与栽培, 2006(4): 1-2.
    张忠旭,陈温福等.水稻抗倒伏能力与茎秆物理性状的关系及其对产量的影响. 沈阳农业大学学报, 1999, 30(2): 81-85
    赵安庆,袁志华.玉米茎秆抗倒伏的力学机制研究.生物数学学报, 2003, 18(3): 311-313.
    中科院植生所.小麦倒伏问题初步分析.植物生理学通一讯, 1960(3): 5-16
    朱新开,王祥菊,郭凯泉,等.小麦倒伏的茎秆特征及对产量与品质的影响.麦类作物学报, 2006, 26(1): 87-92.
    Ali A A. Effect of nitrogen nutrition and ethephon on lodging and yield of wheat(Triticum aestivum L.). Menofiya J. Agric. Res., 1993, 18: 2225-2234.
    Arora A, Mohan J. Expression of dwarfing genes under nitrogen and moisture stressin wheat (Triticum spp.): dry matter partitioning, root growth and leaf nitrogen. J. Agron. Crop Sci., 2001, 186: 111-118.
    Atalla, R. H., Cellulose biosynthesis in Arabidopsis, Science, 1998, 282: 593-594.
    Avner Carmi, Yohav Aharoni, Menahem Edelstein, et al. Effects of irrigation and plant density on yield, composition and in vitro digestibility of a new forage sorghum variety, Tal, at two maturity stages. Animal Feed Science and Technology, 2006, 131: 120-132.
    Baker C J, Berry P M, Spink J H, et al. A method for the assessment of the risk of wheat lodging. Journal of Theoretical Biology, 1998, 194: 587-603.
    Berry P M, Griffin J M, Sylvester-Bradley R, et al. Controlling plant form through husbandry to minimize lodging in wheat. Field Crops Res., 2000, 67: 59-81.
    Berry P M, Spink J H, Gay A P. Comparison of root and stem lodging risks among winter wheat cultivars. J. Agric. Sci Camb, 2003, 141: 191-202.
    Berry P M, Spink J H, Griffin J M, et al. Research to understand, predict and control factors affecting lodging in wheat. Home-Grown Cereals Authority Research Project, HGCA, London, 1998.
    Berry P M, Spink J H, Sterling M, et al. Methods for ripidly measuring the lodging resistance of wheat cultivars. J. Agron. Crop Sci., 2003, 189: 390-401.
    Berry P M, Spink J, Serling M, et al. Methods for rapidly the lodging resistance of wheat cultivars. J. Agronomy and Crop Science, 2003, 189: 390-401.
    Berry P M, Sterling M, Baker C J, et al. A calibrated model of wheat lodging compared with field measurements. Agricultural and Forest Meteorology, 2003, 119: 167-180.
    Berry P M, Sterling M, Mooney S J. Development of a model of lodging for barley. Journal Agronomy and Crop Science, 2006, 192: 151-158.
    Berry P M, Sterling M, Spink J H, Baker C J, et al. Understanding and reducing lodging in cereals. Adv. Agron., 2004, 84: 217-271.
    Berry P M, Sylvester-Bradley R, Berry S. Ideotype design for lodging-resistant wheat. Euphytica, 2007, 154: 165-179.
    Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annual Review of Plant Biology, 2003, 54: 519-546.
    Breet C T, Waldron K W. Physiology and biochemistry of plant cell walls. London: Chapman & Hall, 1996, 42-43.
    Carpita, N., Vergara, C.. A recipe for cellulose. Science, 1998, 279: 672-673.
    Chang T T. Varietal differences in lodging resistance. Int. Rice Comm. Newsl., 1964,13(4): 1-11.
    Cleugh H A, Miller J M. Direct mechanical effects of wind on srops. Agroforestry Systems, 1998, 41: 85-112.
    Coe E H, Polacco M. Gene list and working maps. Maize Genetics Cooperation Newsletter, 1995, 69: 157-191.
    Crook M J, Ennos A R. Stem and root characteristics associated with lodging resistance in four winter wheat cultivars. J. Agric. Sci. Cambridge, 1994, 123: 167-174.
    Crook M J, Ennos A R. The effect of nitrogen and growth regulators on stem and root characteristics associated with lodging in two wheat cultivars. J Exper Bot, 1995, 46: 931~938.
    Duan C R, Wang B C, Wang P Q, et al. Relationship between the minute structure and the lodging resistance of rice stems. Colloids and Surfaces B: Bionterfaces, 2004, 35: 155-158.
    Easson D L, White E M, Pickles S J. The effects of weather, seed rate and cultivar on lodging and yield in winter wheat. Journal of Agricultural Science, 1993, 121: 145-156.
    Ei Debaby A E, Ibrahim K E, Saad A M M, et al. Wheat lodging and growth characters as affected by some agricultural practices. Ann. Agric. Sci., 1994, 32: 1325-1337.
    Fischer R A, Stapper M. Lodging effects on high yielding crops of irrigated semi-dwarf wheat. Field Crops Res., 1987, 17: 245-258.
    G.E.L. Borm, W. van den Berg. Effects of the application rate and time of the growth regulator trinexapac-ethyl in seed crops of Lolium perenne L. in relation to spring nitrogen rate. Field Crops Research, 2008, 105: 182-192.
    Grafius J E. Observation on the lodging resistance formula. Agronomy Journal, 1958, 50(5): 263-264.
    Hai L, Guo H J, Xiao S H, et al. Quantitative trait loci(QTL) of stem strength and related traits in a doubled-haploid population of wheat(Triticum aestivum L.). Euphytica, 2005, 141: 1-9.
    Hay R K M. An introduction to the physiology of crop yield. Longman Scientific and Technical Press, 1989.
    Hebblethwaite P D, Burbridge A, Wright D. Lodging studies in Lolium perenne grown for seed. 1. Seed yield and seed yield components. J. Agric. Sci., Camb. 1978, 90: 261-267.
    Ishimaru K, Togawa E, Oakawa T, et al. New target for rice lodging resistance and itseffects in a typhoon. Planta, 2008, 227: 601-609.
    Islam M S, Peng S B, Visperas R M, et al. Lodging-related morphological traits of hybrid rice in a tropical irrigated ecosystem. Field Crops Research, 2007, 101: 240-248.
    Ismail A A. Study of some characters relate to lodging resistance and yield under different nitrogen levels in bread wheat. Agriculture Science, 2001(2): 23-47.
    Jackson L F, Wenning R W. Use of wheat cultivar blends to improve grain yield and quality and reduce disease and lodging. Field Crops Research, 1997, 52: 261-269. Jones L, Ennos A R, Turner S R. Cloning and characterization of irregular
    xylem4(irx4):A severely lignin-deficient mutant of Arabidopsis. The Plant Journal, 2001, 26: 205-216.
    kaack K, Schwarz K U. Morphological and mechanical properties of Miscanthus in relation to harvesting, lodging, and growth conditions. Industrial Crops and Products, 2001, 14: 145-154.
    Kaack K, Schwarz KU, Brander PE. Varion in morphology, anatomy and chemistry of stem of miscanthus genotypes differing in mechanical properties. Ind Crops Prod, 2003, 17(6): 131-142.
    Kashiwagi T, Hirotsu N, Ujiie K, et al. Lodging resistance locus prl5 improves physical strength of the lower plant part under different conditions of fertilization in rice (Oryza sativa L.). Field Crops Research, 2010, 115: 107-115.
    Kashiwagi T, Ishimaru K. Identification and functional analysis of a locus for improvement of lodging resistance in rice. Plant Physiology, 2004, 134: 676-683.
    Kashiwagi T, Madoka Y, Hirotsu N, et al. Locus prl5 improves lodging resistance of rice by delaying senescence and increasing carbohydrate reaccumulation. Plant Physiology and Biochemistry, 2006, 44: 152-157.
    Kelbert A J, Spaner D, Briggs K G, et al. The association of culm anatomy with lodging susceptibility in modern spring wheat genotypes. Euphytica, 2004, 136: 211-221.
    Keller C, Karutz M, Schmid J E, et al. Quantitative trait loci for lodging resistance in a segregating wheat×spelt population. Theoretical and Applied Genetics, 1999, 98: 1171-1182.
    Keller M, Karutz C, Schmid J E, et al. Screening for lodging resistance in spring wheat breeding programs. Plant Breeding. in press. 2004.
    Kheiralla K A, Mehdi E E, Dawood R A. Evaluation of some wheat cultivars for traits related to lodging resistance under different levels of nitrogen. Assiut. J. Agric. Sci., 1993, 24: 257-271.
    Kirk T K, Obst J R. Lignin determination. Methods Enzymol., 1988, 161: 87-101.
    Knapp J S, Harms C L, Volence J J. Growth regulator effects on wheat culm non-structural and structural carbohydrates and lignin. Crop Sci., 1987, 27:1201-1205.
    Kokubo A, Kuraishi S, Sakurai N. Culm strength of Barley: Correlation among maximum bending stress, cell wall dimensions, and cellulose content. Plant Physiol., 1989, 91: 876-882.
    Kokubo A, Sakurai N, Kuraishi S, Takeda K. Culm brittleness of barley mutants is caused by smaller number of cellulose molecules in cell wall. Plant Physiology, 1991, 97: 509-514.
    Lampayan R M, Bouman B A M, et al. Yield of aerobic rice in rainfed lowlands of the Philippines as affected by nitrogen management and row spacing. Field crop Research, 2010(116): 165-174.
    Langseth W, Stabbetorp H. The effect of lodging and time of harvest on deoxynivalenol contamination in barley and oats. J. Phytopathol, 1996, 144: 241-245.
    Li X, Li S, Lin J. Effect of GA3 spraying on lignin and auxin contents and the correlated enzyme activities in bayberry during flower-bud induction. Plant Science, 2003 164: 549-556.
    Li Y H, Qian Q, Zhou Y H, et al. Brittle Culm1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants. The Plant Cell, 2003, 15: 2020-2031
    Loussaert D, Ellis D R. Fall Applications of MCPA to improve tiller synchrony and reduce lodging in winter wheat. J. Plant Growth Regul., 1993, 12: 47-50.
    Loyce C, Meynard J M, Boucheard C, et al. Interaction between cultivar and crop management effects on winter wheat diseases, lodging, and yield. Crop Protection, 2008, 27: 1131-1142.
    Luthra O P, Paroda R S, Srivastava R B. Combining ability of characters related to lodging in wheat. Indian J. Agric. Sci., 1981, 51: 367-371.
    Ma Q H, Tian B. Biochemical characterization of a cinnamoyl-CoA reductase from wheat. Biological Chemistry, 2005, 386: 553-560.
    Ma Q H, Xu Y. Characterization of a caffeic acid 3-O-methyltransferase from wheat and its function in lignin biosynthesis. Biochimie, 2008, 90: 515-524.
    Ma Q H. Characterization of a cinnamoyl-CoA reductase that is associated with stem development in wheat. Journal of Experimental Botany, 2007, 58: 2011-2021.
    Ma Q H. The expression of caffeic acid 3-O-methyltransferase in two wheatgenotypes differing in lodging resistance. Journal of Experimental Botany, 2009, 60: 2763–2771.
    Ma Q.H. Functional analysis of a cinnamyl alcohol dehydrogenase involved in lignin biosynthesis in wheat. Journal of Experimental Botany, 2010, 61: 2735–2744.
    Miller F L, Anderson K L. The relation of lodging stem physical property and fertilization in winter wheat. Crop Science, 1963(6): 468-471.
    Min D H. Studies on the lodging resistance with its subtraits of different height wheat varieties and correlation between plant height and yield. J. Triticeae Crops, 2001, 21(4): 76-79.
    Mohammad T, Anwar Shah S, Hasan S. effect of different combinations of N and P on some agronomic characters of wheat mutants. Pakistan J. Sci. Ind. Res., 1987, 30: 841-845.
    Morrison T A, Kessler J R. Activity of two lignin biosynthesis enzymes during development of a maize internode. Journal of the Science of Food and Agriculture, 1994, 65: 133-139.
    Mukherjee K K, Kohli S P, Sethi K L. Lodging resistance in wheat. Indian J. Agron., 1967, 12: 56-61.
    Mulder E G. Effect of mineral nutrition on lodging of cereals. Plant Soil, 1954, 5: 246-306.
    Murthy B N, Rao M V. Evolving suitable index for lodging resistance in barley. The Indian journal of genetics and Plant Breeding, 1980, 40: 253-261
    Nakajima T, Yoshida M, Tomiumura K. Effect of lodging on the level of mycotoxins in wheat, barley, and rice infected with the Fusarium graminearum species complex. J. Gen. Plant Pathol, 2008, 74: 289-295.
    Neenan M. An analysis of the problem of lodging with particular reference to wheat and barley. J. Agric. Sci., 1975, 85: 495-507.
    Norden A J, Frey K J. Factors associated with lodging resistance in oats. Agron. J., 1970, 51: 335-338.
    Ookawa T, Ishihara K V. Difference of cell wall components affecting the ding stress of the culm in relating to lodging resistance in paddy rice. Japanese Journal of crop science, 1993, 62: 378-384.
    Peng, L., Fractionation of carbohydrates in Arabidopsis root cell walls shows that three radial swelling loci are specifically involved in cellulose production, Planta, 2000, 211: 406 - 412.
    Peng, L., Yasushi K., Pat H. et al., Sitosterol-β-1,4-glucoside as primer for cellulose synthesis in plants, Science, 2002, 295: 147-150.
    Pinthus M J. Lodging in wheat, barely, and oats: the phenomenon, its cause, and preventive measure. Advance in Agronomy, 1973, 25: 209-263.
    Pu D F, Zhou J R, LI B F, et al. Evaluation method of root lodging resistance in wheat. Acta Agri Breali-Occidentalis Sinaica, 2000, 9: 58-61.
    Qaudhy W, Morris R, Mumm R F, et al. Chromosomal location of genes for traits associated with lodging in winter wheat. Crop Science, 1988, 28: 631-635.
    Rajala A, Peltonen-Sainio P. Plant growth regulator effects on spring cereal root and shoot growth. Agronomy Journal, 2001, 93: 936-943
    Salem A H, Rabie H A, Nigam S A, et al. Mean performance, heritability, genetic advance from selection and correlations for lodging measurement in wheat (Triticum aestivum L.). Zagazig J. Agric. Res., 1992b, 19: 1611-1623.
    Salem A H, Rabie H A, Nigam S A, et al. Studies on morphological characters associated with agazig J. Agric. Res., 1992a, 19: 1589-1609.
    Shimono H, Okada M, Yamakawa Y, et al. lodging in rice can be alleviated by atmospheric CO2 enrichment. Agriculture, Ecosystems and Environment, 2007, 118: 223-230.
    Snape J W. Identification and characterization of quantitative trait loci related to lodging resistance and associated traits in bread wheat. Plant Breeding, 2005, 124: 234-241.
    Sparkers D L, Berry P, King M. Effects of shade on root characters associated with lodging in wheat(Triticum aestivum). Ann Appl Biol., 2008, 152: 389-395.
    Sparkes D L, King M. Disentangling the effects of PAR and R:FR on lodging associated characters of wheat(Triticum aestivum L.). Annals of Applied Biology, 2008, 152: 1-9.
    Sterling A, Baker C J, Berry P M, et al. An experimental investigation of the lodging of wheat. Agricultural and Forest Meteorology, 2003, 119(34): 149-165.
    Steve M. Read, Tony Bacic., Prime time for cellulose, Science, 2002, 295: 59-60.
    Strivastava L M. Histochemical studies on lignin. Tappi, 1966, 49: 173-183.
    Swati M S, Swati U, Ahmad K. The response of wheat genotypes towards fertilizer based on lodging, grain yield and other relevant characters. Sarhad J. Agric., 1987, 3: 365-373.
    Taylor N G, Scheible W R, Cutler S, et al. The irregular xylem 3 locus of Arabidiopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell, 1999, 11: 769-779.
    Tony Arioli, Liangcai Peng, Andreas S. et al. Molecular Analysis of CelluloseBiosynthesis in Arabidopsis, Science, 1998, 279, 717-720.
    Tripathi S C, Sayre K D, Kaul J N, et al. Lodging behavior and yield potential of spring wheat (Triticum aestivum L.): effects of ethephon and genotypes. Field Crops Research, 2004, 87: 207-220.
    Tripathi S C, Sayre K D. Growth and morphology of wheat culms and their association with lodging: effects of genotypes, N levels and ethephon. Field Crops Research, 2003, 84: 271-290
    Updegraff D M. Semimicro determination of cellulose in biological materials. Analytical Biochemistry, 1969, 32: 420-424.
    Verma V, Worland A J, Sayers E J, et al. Identification and characterization of quantitative trait loci related to lodging resistance and associated traits in bread wheat. Plant Breeding, 2005, 124: 234-241.
    Wang J, Zhu J M, Lin Q Q, et al. Effects of stem structure and cell wall components on bending strength in wheat. Chinese Science Bulletin, 2006, 51(7): 815-823.
    Welton F A. Lodging in oats and wheat. Botanical Gazatte, 1928, 85: 121.
    White E M. Effects of management and development on stem characteristics related to lodging in winter barley. Eur. J. Agron., 1995, 4: 327: 334.
    White E M. Response of winter barley cultivars to nitrogen and a plant growth regulator in relation to lodging. J. Agric. Sci., 1991, 116: 191-200.
    Wiersma D W, Oplinger E S, Guy S O. Environment and cultivar effects on winter wheat response to ethephon plant growth regulator. Agronomy Journal, 1986, 78: 761-764.
    Wilcox J R, Tuneo Sediyama. Interrelationships among height, lodging and yield in diterminate and indeterminate soybeans. Euphytica, 1981, 30: 323-326.
    Xing Y Z, Tan Y F, Hua J P, et al. Characterization of the main effects, epistastic effects and their environmental interactions of QTLs on the genetic basis of yield trait in rice. Theor Appl Genet., 2002, 105: 248-257.
    Yuan Z H, Li Y J. Relationship between bending property and density of wheat stem. Agricultural Science and Technology, 2009, 10(5): 100-101.
    Zahour A, Rasmusson D C, Gallagher L W. Effect of semi-dwarf stature, head number, kernel number on grain yield in barley in morocco. Crop science, 1987, 27: 161-165.
    Zhong R Q, Morrison H, Forsskahl I. Sequential treatment of mechanical and chemi-mechanical pulps with light and heat: A Raman spectroscopic study. Holzforschung, 1995, 49: 300-312.
    Zuber U, Winzeler h, Messmer M M, et al. Morphological trait associated withlodging resistance of spring wheat. J. Agronomy and crop Science, 1999, 182: 17-24.