不同密度下肥水优化对寒地水稻抗倒伏性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验采用田间小区方法,在25和30穴/m~2两种密度下,研究肥水优化对寒地水稻抗倒伏能力的影响。测试了基部茎秆形态、基部第二节间茎和鞘的显微结构、化学组成以及茎秆力学特性等指标。主要结果如下:
     低密度条件下,肥水优化管理使抽穗期茎粗、壁厚和横截实面积分别提高了6.0%、16.2% (P<0.01)和21.0% (P<0.01);抽穗后40天分别提高了8.7% (P<0.05)、19.4% (P<0.01)和26.9% (P<0.01);高密度条件下,肥水优化也显著提高了茎粗和茎壁厚度。相同肥水管理措施条件下,低密度处理的10-cm茎和鞘干重大于高密度处理,其他指标无显著差异。低密度条件下,肥水优化使水稻基部第二节间扁平率降低了5.6%;高密度条件下,扁平率降低了8.4%,均达到1%的显著水平。
     低密度条件下,肥水优化使水稻抽穗期基部第二节间茎可溶性糖和糖氮比分别增加了12.5% (P<0.05)和4.1%,抽穗后40天分别增加9.1% (P<0.05)和6.2%;同时含钾量也有增加趋势。高密度条件下,肥水优化也提高了可溶性糖含量,基部第二节间鞘的可溶性糖含量、糖氮比和含钾量均有不同程度增加。
     相同密度条件下,抽穗期,肥水优化使抽穗期茎基部第二节间大、小维管束平均增加2-3个,大、小维管束面积、机械组织和薄壁细胞厚度均显著增加;抽穗后40天,大维管束面积增加了36.2%-41.6% (P<0.01),小维管束面积和薄壁细胞厚度均显著增加;大维管束的横截面都比较圆,薄壁细胞内淀粉粒充实较多。这样的显微结构能明显增强茎秆的抗倒能力。在低密度条件下,肥水优化使茎秆抗折力提高了46.8% (P<0.01),倒伏指数降低了15.4% (P<0.05);在高密度条件下,抗折力提高了44.6% (P<0.01),倒伏指数降低了21.1% (P<0.05)。
     低密度条件下,肥水优化使每穗粒数增加4.4粒,结实率增加2.4% (P<0.01),产量提高8.5% (P<0.05),在高密度条件下,每穗粒数增加3.0粒,千粒重增加0.49g,结实率增加1.8% (P<0.01),产量增加9.8% (P<0.05)。
     相同密度条件下,通过控水灌溉,降低氮肥用量和前氮后移,增加钾肥用量等管理措施,提高了茎秆的含糖量,增加了灌浆期水稻基部第二节间茎粗、茎壁厚度和10-cm茎和鞘的干重,促进了水稻基部节间充实,显著提高了茎秆的抗折力,降低了水稻的倒伏指数,显著增加了水稻产量和抗倒伏能力。相同肥水管理条件下,随着密度的增加,产量增加不显著,提高密度的同时,优化肥水管理能显著增加水稻产量,同时还能提高水稻的抗倒伏能力。
A plot experiment was conducted to investigate the relationship between the water and fertilizer optimization under controlled irrigation (OPT-25, OPT -30) and lodging resistance of rice in cold area of northeastern China under different density (25 and 30 per square meter). We measured the morphological index, microstructure, chemical compositions and mechanical features of the second basal internodes. The main results are as follows:
     Under low density conditions, OPT respectively increased stem diameter, wall thickness and area of cross section by 6.0%、16.2% (P<0.01) and 21.0% (P<0.01) at heading; by 8.7% (P<0.05)、19.4% (P<0.01)and 26.9% (P<0.01) at 40 days after heading. Under high density conditions, stem diameter, wall thickness and area of cross section were also increased. Under the same water and fertilizer optimization conditions, the low density treatments significantly improved internodes and sheath weihgt per 10cm. Under low density conditions, OPT reduced the flattening of stem by 5.6%; Under high density conditions, OPT reduced the flattening of stem by 5.6% (P<0.01).
     Under low density conditions, OPT respectively increased the soluble sugar content and sugar rato to N of the second internode stem by 12.5% (P<0.05) and 4.1% at heading stage, by 9.1% (P<0.05) and 6.2%; at 40 days after heading, at the same time, the K content was also increased. Under high density conditions, the soluble sugar content, sugar rato to N and K content of the second internode of the basal sheath of OPT were aso improved.
     Under the same density, at heading the number of great and small vascular bundle the second internode of the basal stem of OPT was larger than FFP, the area of great and small vascular bundle and mechanical tissue thickness were all significantly improved; at 40 days after heading, the area of great and small vascular bundle was increased by 36.2%-41.6% (P<0.01), the area of small vascular bundle and the thickness of mechanical tissue were also significantly improved. The the great and small vascular bundle appeared of OPT approximate circles in microstructure photos, and the number starch grain in tine-walledcell was increased. The microstructure like this would improved the snapping resistance of rice. Under low density conditions, OPT improved the snapping resistance by 46.8% (P<0.01), and the index of lodging resistance was reduced by 15.4% (P<0.05); under high density conditions, OPT improved the snapping resistance by 44.6% (P<0.01), and the index of lodging resistance was reduced by 21.1% (P<0.05).
     Under low density conditions, the grains per panicle of OTP was increased 4.4, filled grain rate 2.4% (P<0.01), rice yield 8.5% (P<0.05); under high density conditions, the grains per panicle was increased 3.0, filled grain rate 1.8% (P<0.01), rice yield 9.8% (P<0.05).
     Under the same density, by controlling irrigation, reducing total N and N management, and improving total K, improved the sugar content of internodes, enhanced the stem diameter, wall thickness, internodes weight per 10cm of the first and second internodes, facilitated internodes filling degree, reduced the index of lodging resistance, increased the snapping resistance and yield. Under the same water and fertilizer optimization conditions, rice yield was not significant difference with the increase of density, by improving the density and optimizing the water and fertilizer, the rice yield was significantly improved, and the lodging resistance was also improved.
引文
昂盛福,王学会,谢世秀等. 2001.超级杂交稻直播增产效果及高产栽培技术[J].杂交水稻,16(3):38~39
    八木忠之. 1983.水稻茎秆强度与有关性状的品种差异[J].育种学杂志,33(4):411~422
    北条良夫,星川清亲,周殿玺. 1983.作物的形态与机能[M].北京:农业出版社,411~425
    陈丽楠. 2010.前氮后移对寒地水稻光合特性和氮效率的影响[D].东北农业大学博士论文,39~50
    陈斌,鲁嘉,丁华萍. 2000.海安县1998年水稻倒伏原因调查与分析[J].上海农业科技,4: 20~21
    陈锐,陈书强,杨丽敏. 2010.肥密措施对寒地不同类型水稻品种产量的影响[J].中国稻米,16(1):36~39
    陈温福,徐正进,张步龙. 1995.水稻超高产育种生理基础[M].沈阳:辽宁科学技术出版社,95~100
    丁艳锋,赵长华,王强盛. 2003.穗肥施用时期对水稻氮素利用及产量的影响[J].南京农业大学学报,(4):5~8
    段传人,王伯初,龙雪峰. 2000.水稻茎秆细观结构及其抗倒伏研究[A].力学2000年学术大会论文集[C].北京:中国力学学会
    邓文. 2009.施硅、钙、氮、有机肥与覆膜旱作对水稻抗倒性及产量的影响[D].湖南农业大学博士论文:49~52
    付勇智. 2009.不同灌溉方式下稻田水体中氮磷元素变化规律的试验研究[D].东北农业大学硕士论文:52~55
    高桥成人. 1981.日本山形1981年水稻倒伏原因及其对策[J].农村通讯,10:22~24
    关伟,钱小刚. 2008.超级杂交稻茎秆形态与抗倒伏相关性研究[J].耕作与栽培,2:10~12
    关玉萍,沈枫. 2004.水稻抗倒伏能力与茎秆物理性状的关系及对产量的影响[J].吉林农业科学,29(4):6~11
    韩瑞清,方成梁,罗永全. 1992.冬小麦倒伏与植株形态及养分平衡的关系[J].北京农业科学,10(1):10~14
    韩瑞清. 1990.冬小麦基部节间的形态结构与倒伏关系[J].北京农业科学,8(3):10~13
    何天祥,彭世逞. 2008.中国保障粮食安全战略[J].西昌学院学报,22(1):21~27
    华泽田,郝宪彬,沈枫等. 2003.东北地区超级杂交粳稻倒伏性状的研究[J].沈阳农业大学学报,34(3):161~164
    胡文河,吴春胜,邓劭华等. 1997.不同群体下水稻生长发育特性的研究[J].吉林农业大学学报,19(1):21~27
    黄磺. 1983.水稻大穗形成机制研究茎秆维管束数目与大穗形成的关系[J].湖南农业科学,9(2):l~5
    霍中洋,董明辉,张洪程等. 2003.不同粳稻品种倒伏指数及其相关农艺性状分析[J].西南农业大学学报,25(3):234~237
    荆爱霞. 2008.移栽行距、密度对水稻超高产形成的影响[D].扬州大学硕士论文,1~3 蒋彭炎. 1994.粮食问题与稻米生产[J].中国稻米,(1):41~43
    金军,徐大勇,胡曙云等. 2004.不同密度和穗肥对武香粳9号的主要米质性状和产量的影响[J].中国稻米,5:34~36
    荆彦辉,徐正进. 2003.水稻维管束性状的研究进展[J].沈阳农业大学学报,34(6): 467~471
    崛内久满,古贺义昭. 1989.水稻抗倒伏性与育种[J].农业技术,44(9):41~45
    李晴祺. 1998.冬小麦种质创新与评价利用[J].山东科技出版社,203~219
    李荣田,姜廷波,秋太权等. 1996.水稻倒伏对产量影响及倒伏和株高关系的研究[J].黑龙江农业科学,(1):13~1
    李文熙. 1991.水稻倒伏的原因及危害的对策[J].韩国作物学会,36(5):383~393
    李扬汉. 1979.禾本科作物的形态与解剖[M].上海:上海科学技术出版社,143~148
    梁康迁,王适仁,张清祀等. 2000.基因型x环境互作对水稻茎秆抗倒伏能力杂种优势的影响[J].福建农业大学学报,29(l):12~17
    梁永超,张永春,马同生. 1993.植物的硅素营养[J].土壤学进展,21(3):7~14
    林熊. 2010.硅对水稻茎秆强度的影响[D].四川农业大学硕士论文,18~34
    凌启鸿,蔡建中,苏祖芳. 1982.水稻茎秆维管束数与穗部性状关系及其应用的研究[J]. 江苏农学院学报,3(3):7~16
    凌启鸿,张洪程. 1994.稻作新理论[M].科学出版社:103~116
    刘立军,袁莉民,王志琴等. 2002.旱种水稻倒伏生理原因分析与对策的初步研究[J].中国水稻科学,16(3):225~230
    刘武. 2008.氮肥用量和移栽密度对早稻产量及某些生理性状的影响[D].湖南农必大学硕士学位论文,30~39
    刘元英. 2010.水稻前氮后移施肥技术简介.北大荒日报,2010. 1. 10(3)
    罗丽华. 2004.水稻茎杆抗倒伏性的QTL定位[D].河南农业大学硕士论文,25~30
    罗茂春,田翠婷,李晓娟等. 2007.水稻茎秆形态结构特征和化学成分与抗倒伏关系综. 西北植物学报,27(11):2346~2353
    马国辉,邓启云,万宜珍等. 2000.超级杂交稻抗倒生理与形态机能研究培矮64S/E32与汕优63植株钾、硅和纤维素含量差异[J].湖南农业大学学报,26(5):329~331
    马均,马文波,田彦华等. 2004.重穗型水稻植株抗倒伏能力的研究[J].作物学报,30(2):143~148
    闵东红,王辉,孟超氮等. 2001.不同株高小麦品种抗倒伏性与其亚性状及产量相关性研究[J].麦类作物学报,21(4):76~79
    穆平,李自超,李春平等. 2004.水、早条件下水稻茎秆主要抗倒伏性状的QTL分析[J].遗传学报,31(7):717~723
    潘瑞炽,董愚得. 1995.植物生理学[M].北京:高等教育出版社
    彭显龙. 2006.实地养分管理对寒地水稻氮素利用效率及产量和品质的影响[D].东北农业大学博士论文,70~85
    彭世彰,郝树荣,刘庆等. 2000.节水灌溉水稻高产优质成因分析[J].灌溉排水,19(3):3~7
    彭世彰,张正良,庞桂斌. 2009.控制灌溉条件下寒区水稻茎秆抗倒伏力学评价及成因分析[J].农业工程学报,25(1):6~10
    萨莫赫瓦洛夫. 1962.植物的营养及与生态中倒伏的关系[M].北京:科学出版社
    森谷. 1961.倒伏性品种生态检定法[J].育种学最近的进步,3:77~81
    石扬娟. 2008.施肥方式和栽插密度对水稻抗倒伏性状影响研究[D].安徽农业大学硕士论文,49~50
    松江勇次. 1991.移栽和倒伏时期对稻米食味理化特性的影响[J].日本作物学会事,60(4):490~496
    苏祖芳,周培南,许乃霞等. 2001.密肥条件对水稻氮素吸收和产量形成的影响[J].中国水稻科学,15(4):281~286
    孙东伟,于海英. 2008.黑龙江垦区水稻节水控制灌溉技术效果分析[J]. 39(9):104~107
    孙凡. 1994.作物茎秆抗倒伏的力学研究[J].西南农业大学学报. 16(2):183~186
    孙旭初. 1987 .水稻茎秆抗倒性的研究[J].中国农业科学,20(4):32~37
    唐建海,张仁杰,毛龙飞等. 1998.早稻抛栽的平衡施肥技术研究[J].土壤肥料,(2):7~9
    唐拴虎,陈建生,徐培智等. 2004.一次性全层施肥增强水稻抗倒伏性效应研究初报[J]. 广东农业科学,(1):32~34
    田保明,杨光圣,曹刚强等. 2006.农作物倒伏及其影响因素分析[J].中国农学通报,(4):163~167
    万宜珍,马国辉. 2003.超级杂交稻抗倒生理与形态机能的研究[J].湖南农业大学学报(自然科学版),29(2):92~94
    王群瑛,胡昌浩. 1991.玉米抗倒性与茎秆显微结构的关系[J].作物学报,17(1):70~75
    王善本. 1991水稻倒伏的研究第2节折弯位置茎的形态特征[z].日本作物学会纪事,60(4):566~573
    王淑玲,林波,陈丽红等. 2009.水稻穗部性状与穗颈和倒二节间维管束数量关系的研究[J].现代农业科学,16(1):15~19
    王书清. 1997.直播稻防倒伏新技术.农资科技,(5):6
    王向平. 2009.不同叶龄期追施N、K肥对水稻抗倒及干物质积累影响[D].安徽农业大学硕士论文,33~34
    王勇,李晴祺. 1995.小麦品种抗倒伏性评价方法的研究[J].华北农学报,10(3):84~88
    王旭伟,张尧锋,孙健等. 2002.硅肥对水稻的应用效果初探[J].浙江农业科学,2:76~77
    王振刚,何权. 2008.水稻控制灌溉技术综述[J].黑龙江水利科技,36(1):13~14
    吴标纲. 2009.水稻倒伏的原因及对策[J].河北农业科学,13(2):43~51
    吴耀民,卓亚男. 1999.水稻倒伏及栽培技术对策[J].垦殖与稻作,3:12~14
    肖立,罗俊英,陈泽. 2009.施氮量和栽插密度对杂交稻金优527抗倒伏能力的影响[J].安徽农学通报,15(9):153~155
    肖应辉,罗丽华,闫晓燕等. 2005.水稻品种倒伏指数QTL分析[J].作物学报,31(3):348~354
    薛业勤,王保国,郭永生. 2010.杂交中稻不同水分管理方式试验.安徽农学通报, 16(11):101~102
    星川清亲. 1980.解剖图说稻的生长[M].上海:上海科学技术出版社,147
    徐是雄,徐雪宾. 1984.稻的形态与解剖[M].北京:农业出版社,28~31
    徐正进,陈温福,张龙步等. 1991.水稻高产生理研究的现状与展望[J].沈阳农业大学学报,22(增刊):115~123
    徐正进,张树林,周淑清等. 2004.水稻穗型与抗倒伏性关系的初步分析[J].作物学报,10(5):561~563
    阎志利,张景奎. 1990.倒伏对水稻产量影响的分析研究[J].盐碱地利用,(3):7~9
    杨惠杰,杨仁崔,李义珍等. 2000.水稻茎秆性状与抗倒性的关系[J].福建农业学报,15(2):1~7
    杨丽敏,孙海正,赵海新等. 2010.节水灌溉对寒地水稻生长发育的影响[J].黑龙江农业科学,(9):102~106
    杨世民,谢力,郑顺林等. 2009.氮肥水平和栽插密度对杂交稻茎秆理化特性与抗倒伏性的影响[J].作物学报,35(1):93~103
    杨守仁,张龙步,王进民. 1984.水稻理想株形育种的理论和方法初论[J].中国农业科学,(3):6~13
    杨守仁. 1990.水稻高产栽培及高产育种论丛[M].北京:农业出版社,71~73
    杨长明,杨林章;颜廷梅等. 2004.不同养分和水分管理模式对水稻抗倒伏能力的影响[J]. 应用生态学报,4:646~650
    尤宁益,陈东水,胡听南等. 2006.适当增加基本苗提高水稻产量水平[J].上海农业科技,6:53~54
    俞双恩,彭世彰,王士恒等. 1997.控制灌溉条件下水稻的群体特征[J].灌溉排水,16(2):20~24
    游晴如,马宏敏,杨东等. 2007.水稻倒伏性研究进展[J].安徽农学通报,13(6):84~86
    翟晶. 2009.水肥互作对水稻生长、产量及品种的影响[D].华中农业大学硕士论文,20~26
    张丰转,金正勋,马国辉等. 2010.水稻抗倒性与茎秆形态性状和化学成分含量间相关分析[J].作物杂志,4:15~19
    张丰转,金正勋,马国辉等. 2010.灌浆成熟期粳稻抗倒伏性和茎鞘化学成分含量的动态变化[J].中国水稻科学,24(3):264~270
    张纪林,康立新,季永华等. 1996. (强)热带风暴条件下农田林网对防止水稻倒伏及减产的效应[J].应用生态学报,7(1):15~18
    张明聪. 2010.养分管理对寒地水稻抗倒伏性能和产量的影响[D].东北农业大学硕士论文,20~43
    张明聪,刘元英,罗盛国,彭显龙等. 2010.养分管理对寒地水稻抗倒伏能力的影响[J].中国农业科学,43(21):4536~4542
    张明柱. 1994.非充分灌溉条件下水稻生长发育及生理机制研究[J].灌溉排水,13(4):6~10
    张喜娟. 2009.水稻超高产品种的生理特性及遗传基础[D].沈阳农业大学硕士毕业论文,53~60
    章秀福,王丹英,屈衍艳等. 2005.垄畦栽培水稻的植株形态与生理特性研究[J].作物学报,31(6):742~748
    张忠旭,陈温福,杨振玉等. 1999.水稻抗倒伏能力与茎秆物理性状的关系及其对产量的影响[J].沈阳农业大学学报,30(2):81~85
    郑爱珍,任雪平. 2004.硅在水稻生理中的作用[J].农业与技术,24(1):50~52
    周继勇,肖层林,王仁祥. 2006.水稻抗倒性研究进展[J].作物研究[J],5:388~392
    周丽华. 2006.杂交稻茎秆生理特性对其抗倒伏能力的影响[J].河南农业科学,10:20~23
    周利民. 2003.水稻节水灌溉机理研究[J].广东水利水电,2:29~33
    周江明,赵琳,董越勇等. 2008.氮肥和栽植密度对水稻产量及氮肥利用率的影响[J].植物营养与肥料学报,16(2): 274~281
    朱德峰,林贤青,曹卫星. 2002.水稻根系生长及其对土壤密度的反应[J].应用生态学报, 13(1):60~62
    朱德峰,林贤青,陈苇等. 2002.超级稻协优9308营养特性与施肥技术[J].中国稻米,(2):18~19
    邹德堂,秋太权,赵宏伟等. 1997.水稻倒伏指数与其它性状的相关和通径分析[J].东北农业大学学报,28(2):61~64
    邹应斌,敖和军,王淑红等. 2006.超级稻“三定”栽培法研究概念与理论依据[J].中国农学通报,22(5):158~162
    郑景生,黄育民. 2003.中国稻作超高产的追求与实践[J].分子植物育种,1(5):585~596
    吴志红. 2010.直播早稻不同管水方法对倒伏影响试验报告[J].安徽农业学报,16(12):95
    Cheng S, Zhuang J, FanY, eta.2007. Progress in Research and Development on Hybrid Rice:a Super-domesticate in China. Ann. Bot, 100:959~966
    Donald. C.M. etal. 1976 . The Biological Yield and Harvest Index of Cereals as Agronomic and Plant Breeding Criteria [J]. Adv. In Agronmy, 28, 361~405
    Duan Chuanren, Wang Bochu. 2010. Relationship between the minute structure and the lodging resistance of rice stems [J]. Rice Science, 17(4): 311-318
    Hiroshi Nakano, Satoshi Morita. 2008. Effects of Time of First Harvest Total Amount of Fertilizer, and Fertilizer Application Method on Total Dry Matter Yield in Twice Harvesting of Rice [J]. Science Direct Field Crops Research, 105:40~47
    Hitaka N. 1986. Experimental Studies on the Mechanisms of Lodging and Effect on Yield in Rice Plants [J]. Bull. Nat. Inst.Agri.Sci, A15:1~175
    Ichii M, Hada K. 1983. Application of Ratoon to a Test of Agronomie Chararcters in Rice Breeding II. The Relationship between Ratoon Ability and Lodging Resistance [J]. Jpana.J.Breed. 33(3):251~258
    Ishimaru K, Togawa E, Ookawa T. 2008. New Target for Rice Lodging Resistance and its Effect in Typhoon [J]. Planta, 227(3):601~609
    KashiwagiT, IshimaruK. 2004. Identification and Functional Analysis of a Locus for Improvement of Lodging Resistance in Rice [J]. Plant Physiology, 134:676~683
    Kazuki Saito, Koichi Futakuchi. 2009. Performance of Diverse Upland Rice Cultivars in Low and Hige Soil Fertility Conditions in West Africa [J]. Field Crops Research, 111:243~250
    Kashiwagi T, Togawa E, Hirotsu N, Ishimaru K. 2008. Improvement of Lodging Resistance with QTLs for Stem Diameter in Rice [J]. Theor Appl Genet, 117:749~757
    Kona M. 1995. Physiological Aspects of Lodging. In T Matsuo, K Kumazawa, R Ishii, Klshihara, H Hirata, eds, Science of the Rice plant [J]. Physiology, Food and Agriculture Policy Research Center,Tokyo, 2:971~982
    Lim, KT. 1978. Yamamoto R~Studies on the Lodging Resistance of Rice Plant Growing under Submerged Condition and its Preventive Measure II. Relationship between the Lodging Resistance and the Structural Body [J]. Japan. Jour. Crop Sci, 47:681~689
    Martin, G.C, and W.A. 1984. Russell. Correlated Responses of Yield and Other Agronomic Traits to Recurrent Selection for Stalk Quality in a Maize Synthetic [J]. Crop Sci.24:746~750
    Ookawa T, Ishihara K V.etal. 1992. Differences in the physical Characteristics of the Culm in Relation to Lodging Resistance in Paddy Rice [J]. Japanese Journal of Crop Science, 61(3) :419~425
    Rao M. 1981. Lodging Resistance Ability in Rice [J]. Agron. Abroda, Rice, 2:81~82
    Shan-Ben Wan, Kiyochika Hoshikawa. 1991. Sutdies on Lodging in Rice Plnats.II.
    Moprhological Characteristies of the Stem at the Breaking Position [J]. NJP.J Crop Sci. 60(4):566~573
    Sherratt M J,Baldock C, Haston J L,et.al. 2003. Fibrillin Microfibrils are Stiff Reinforcing Fibres in Compliant Tissues [J]. Journal of Molecular Biology, 3329 (1):183~193
    Stam P P. 1992. Seedling Traits of Maize as Indicators of Root Lodging [J]. Agronomic, 12(2):157~162
    Takayuki Kashiwagi, Yuka Madoka, Naoki Hirotsu. 2006. Locusprl Improves Lodging Resistance of Rice by Delaying Senescence and Increasing Carbohydrate Rice Cumulation [J]. Plant Physiology and Biochemistry, 44:152~157
    Venkateswarlu B.G S V Prasad. 1980 .Pre and Post Flowering Photosynthetic Contribution to Grain Yield in Rice [J]. Indian J Plant Physiol, 23:300~308
    Wang D L, Zhu J. 1999. Paterson A.H. Mapping QTLs with Epistatic Effects and QTL X Environment Interaction by Mixed Linear Model Approaches [J]. Theor Appl Genet,99:1255~1264