插电式混合动力轿车动力总成参数匹配及控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源短缺、环境污染、气候变暖是全球汽车产业面临的共同挑战,而传统燃油汽车的节能减排技术已不能满足社会可持续发展的需求。发展新能源汽车已经成为各国汽车工业发展的必然选择,以此为出发点,全球正在推动一次汽车动力技术革命。以美国为主掀起的插电式混合动力汽车研发成为近期解决动力电池能量密度低、车辆续驶里程短的问题,达到城市内应用零排放目的的有效技术途径之一。
     本文以广东省战略性新兴产业专项资金新能源汽车产业项目为依托,进行插电式混合动力轿车的研究。通过分析比较混合动力汽车动力系统的各种结构入手,比较各种结构形式的混合动力系统的优缺点,最终选定四轮驱动并联式结构来设计该插电式混合动力轿车。
     根据设计要求需达到的性能指标,结合汽车动力学基础理论对插电式混合动力汽车进行了发动机、电动机以及电池等动力部件的选型和参数设计,最后得出其整车动力系及传动系参数。然后以MATLAB/SIMULINK为工作平台,基于混合动力仿真软件ADVISOR建立了插电式混合动力汽车的发动机、永磁同步电机、锂离子电池以及变速器等模型。并对仿真软件ADVISOR进行了二次开发,详细分析并搭建了四轮驱动混合动力汽车仿真模型。对并联式混合动力汽车的控制策略包括电力辅助控制策略、动态自适应控制策略、模糊逻辑控制策略等进行研究,并详细分析了电辅助式控制策略中五种驱动模式,在此基础上提出了优化的控制策略,使其更适合于本文所设计的插电式混合动力轿车。
     从仿真结果可以看出,整车的动力性和燃油经济性等与设计要求所需达到的目标基本符合,所匹配的发动机、电机和电池工作状态良好,基本能工作在最佳效率区域。同时,通过样车控制策略,可以实现合理的功率分配和发动机、电机的起停,制动能量回收,并能保证电池的荷电状态SOC始终维持在最佳区域内,电池容量的选择能满足续驶里程的要求。
Energy shortage, Environmental pollution, global warming are the common challenges facing the automotive industry, and the traditional internal combustion engine vehicles cannot meet the needs of sustainable development of society. So the new energy vehicles have become an inevitable choice for automobile development, for this, the world is driving a revolution in automotive industry. Recently, America focus on plug-in hybrid electric vehicle for solving the problem of battery’s low energy density and short driving range, and this is an effective way to attain zero-emission in the city.
     This paper was based on the special funds of Guangdong’s strategic new industries, research a plug-in hybrid electric vehicle. By analyzing a variety of hybrid electric vehicle power system structure, comparing the various advantages and disadvantages of hybrid systems, finally selected four-wheel parallel structure for the plug-in hybrid electric vehicle.
     According to the design requirements, combining with the basic theory of vehicle dynamics, choose the type of engine, motor and battery for the plug-in hybrid vehicle, and design their parameters, and finally got the vehicle powertrain and driveline parameters. Then on the software MATLAB / SIMULINK platform, basing on the hybrid simulation software ADVISOR established the models of low-powered engine, permanent magnet synchronous motor, lithium ion battery and transmission. In the hybrid simulation software ADVISOR, the thesis did a secondary development, and builded a four-wheel drive model. For parallel hybrid electric vehicle control strategy, this paper researched electric auxiliary control strategy, adaptive control strategy and fuzzy logic control strategy, analysed the five drive modes of electric auxiliary control strategy, and designed an optimal control strategy based on it, make it more suitable for the design of this plug-in hybrid electric vehicle.
     From the simulation result, it could be seen that vehicle dynamic performance and fuel economy can meet the design requirements. The matching engine, motor and battery work in good condition, mostly are in the best efficiency zone. At the same time, through the control strategy, some goals such as proper power distribution, start and stop of engine and motor, brake energy recovery could be fully realized, and ensure that the battery state of charge is always maintained in the best area. Besides, the selection of the battery’s capacity could meet the demand of driving range.
引文
[1]孙永正,李献菁,邓俊,等.插电式串联混合动力轿车的选型匹配与仿真[J].汽车工程, 2010, 32(12):1015-1020
    [2]张恒秋,李守成,张涌,等.基于混合动力汽车动力性的模拟计算[J].机械设计与制造, 2011, 9:215-217
    [3] Masakazu Sasaki. Hybrid Vehicle Technology-Current Status and Future Challenges-Effect of Hybrid System Factors on Vehicle Efficiency [J]. Review of Automotive Engineering, 2005, 11(2): 52-56
    [4]武小兰,王军平,曹秉刚,等.充电式混合动力电动汽车动力系统的参数匹配[J].汽车工程, 2008, 20(12):1095-1098
    [5]赵又群,李佳. Plug-in混合动力汽车动力系统参数匹配[J].应用基础与工程科学学报, 2011, 19(3):459-465
    [6] Y. Wada, S. Shimada, W. Jibin. Environmental performance evaluation of plug-in hybrid electric vehicles [J]. World Electric Vehicle, 2009, 3:1-8
    [7] Markel T, Wipke K. Modeling Grid-Connected Hybrid Electric Vehicles Using ADVISOR [C]. National Renewable Energy Laboratory, Conference Paper NREL/CP-540-30601, 2001
    [8] Markel T. Plug-In HEV Vehicle Design Options and Expectations [C]. ZEV Technology Symposium. NREL/PR-540-40630, 2006, 9
    [9]陈清泉,孙立清.电动汽车的发展现状和趋势[J].科技导报, 2005, 23:24-28
    [10]王峰,方宗德,祝小元.纯电动汽车新型动力传动装置的匹配仿真与优化[J].汽车工程, 2011, 33(9):805-808
    [11]王凤麒,崔胜民.基于ADVISOR的并联式混合动力越野汽车的研究[J].车辆与动力技术, 2005, 1:42-45
    [12]刘明辉.混合动力客车整车控制策略及总成参数匹配研究[D].吉林:吉林大学,2005
    [13] Mehrdad Ehsani, Yimin Gao, Ali Emadi.现代电动汽车、混合动力电动汽车和燃料电池车—基本原理、理论和设计[M].第2版.倪光正,熊素铭.北京:机械工业出版社,2010
    [14]余志生.汽车理论[M].北京:机械工业出版社,2003
    [15]程莺,冯能莲,李克强,等. ADVISOR混合动力电动汽车仿真系统的二次开发及应用[J].汽车工程, 2004, 26(3):249-252
    [16]陈祥丰.混台动力SUV总成参数匹配与优化[D].武汉:武汉理工大学,2010
    [17]曾小华.军用混合动力轻型越野汽车动力总成匹配及控制策略研究[D].长春:吉林大学,2002
    [18] Wenzhong Gao, Sachin Kumar Porandla. Design Optimization of a Parallel Hybrid Electric Powertrain[J]. IEEEl554609. 2005: 530-535
    [19] Hajimiri M H, Salmas F R. A fuzzy energy management strategy for series hybrid electric vehicle with predictive control and durability extension of battery[C] IEEE Conference on Electric and Hybrid Vehicles, 2006: 1-5
    [20] P. Tulpule, V. Marano, G. Rizzoni. Effects of Different PHEV Control Strategies on Vehicle Performance [C]. 2009 American Control Conference, 2009: 3950-3955
    [21] Metin Gokasan, Seta Bogosyan, Douglas J Goering. Sliding Mode Based Powertrain Control for Efficiency Improvement in Series Hybrid Electric Vehicles [J]. IEEE Transactions On Power Electronics, 2006, 21(3): 779-790
    [22]于秀敏,曹珊,李君,等.混合动力汽车控制策略的研究现状及其发展趋势[J].机械工程学报, 2006, 42(11):10-15
    [23]张嘉君,吴志新,乔维高.混合动力汽车整车控制策略研究[J].客车技术与研究, 2007, 4:8-11
    [24]张献伟. Plug-in并联混台动力轿车动力性能仿真及试验结果分析[D].武汉:武汉理工大学,2008
    [25]陈萍.并联混台动力汽车动力总成控制策略的仿真研究[D].长春:吉林大学,2007
    [26] Ochiai K, Wada Y, Kamiya Y, et al. Power System Modeling and Performance Evaluation of Series/ parallel-type Plug-in Hybrid Electric Vehicles [C] IEEE Vehicle Power and Propulsion Conference (VPPC), 2010,9: 1-6
    [27] Ji Wu, Ali Emadi, Michael J. Duoba, et al. Plug-in Hybrid Electric Vehicles: Testing, Simulations, and Analysis [C] IEEE Vehicle Power and Propulsion Conference (VPPC), 2007, 9: 469-476
    [28] Gao, D.W., Mi C, Emadi A. Modeling and Simulation of Electric and Hybrid Vehicles [J]Proceedings of the IEEE, 2007, 4: 729-745
    [29] Rahman S.A, Nong Zhang, Jianguo Zhu. Modeling and Simulation of an Energy Management System for Plug-in Hybrid Electric Vehicles [C] Power Engineering Conference, 2008, 12:1-6
    [30]王国海,韩以伦.并联混合动力汽车动力总成参数匹配与仿真[J].机械设计与制造, 2008(7):100-102
    [31]曾小华,王庆年,王伟华,等.基于ADVISOR软件的双轴驱动混合动力汽车性能仿真模块开发[J].汽车工程, 2003, 25(5):424-427
    [32] Seth Leitman.插电式混合动力电动汽车开发基础[M].王震坡,孟祥峰.北京:机械工业出版社,2011
    [33]崔胜民.新能源汽车技术[M].北京:北京大学出版社,2010
    [34]章桐,贾永轩.电动汽车技术革命[M].北京:机械工业出版社,2010
    [35]陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M].北京:北京理工大学出版社,2001
    [36]于远彬,王庆年.基于ADVISOR的仿真软件的二次开发及其在复合电源混合动力汽车上的应用[J].吉林大学学报(工学版), 2005, 35(4):353-35
    [37]龚慧军.混合动力汽车电机控制和动力系统参数匹配研究[D].长沙:湖南大学, 2009
    [38]张旸.混合动力客车动力系统设计及参数优化[D].合肥:合肥工业大学, 2010
    [39]刘雪梅,黄伟,周云山.插电式混合动力汽车动力系统参数研究[J].计算机仿真, 2009, 26(10):302-306
    [40]郑维.混合动力汽车动力总成参数匹配方法与控制策略的研究[D].哈尔滨:哈尔滨工业大学,2010
    [41]陈全世.先进电动汽车技术[M].北京:化学工业出版社, 2007.
    [42]王保华,王伟明,张建武,等.并联混合动力汽车控制策略比较研究[J].系统仿真学报, 2006, 2:401-404
    [43]李献菁,孙永正,邓俊,等.插电式串联混合动力汽车发动机起停控制策略的优化[J].汽车工程, 2011, 33(2):112-117
    [44] Jinming Liu, Huei Peng. Modeling and Control of a Power-Split Hybrid Vehicle [J]. IEEE Transactions On Control Systems Technology, 2008, 11(6): 1242-1251
    [45] Markel T, Simpson A. Plug-In Hybrid Electric Vehicle Energy Storage System Design [C]. National Renewable Energy Laboratory, Conference Paper NREL/CP-540-39614,2006
    [46]杨泽华.并联式混合动力电动轿车整车仿真及数据分析研究[D].武汉:华中科技大学,2005
    [47]张博,李君,杨世春,等. Plug-in混合动力汽车动力总成优化设计研究[J].汽车工程, 2009, 31(7):592-596
    [48]张博,李君,高莹,等. Plug-in混合动力汽车能量管理策略优化设计[J].农业机械学报, 2009, 40(9):20-25
    [49] Rousseau A, Pagerit S. Plug-in hybrid electric vehicle control strategy parameter optimization[C]. The International Electric Vehicle Symposium and Exposition (EVS-23), 2007