岩石破裂过程及其渗流—应力耦合特性研究的弹塑性细胞自动机模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着深部采矿工程、边坡工程以及核废物地下处置等工程的不断发展,国内外的工程建设都面临许多岩石力学问题,一些重大工程灾害也时有发生,岩石破裂机制及其渗流-应力耦合特性的研究是解决并进而控制重大工程灾害的基础。基于此,本文在弹塑性理论、经典Biot渗流理论和细胞自动机自组织理论的基础上,提出了岩石破裂过程及其渗流-应力耦合特性研究的弹塑性细胞自动机模型,并开发了相应的数值模拟分析系统EPCA(Elasto-Plastic Cellular Automaton)和HM-EPCA(Hydro-Mechanics coupling analysis with Elasto-Plastic Cellular Automaton),用于研究非均质岩石的破裂过程及其在渗流-应力耦合作用下的破裂机理。主要工作如下:
     1、基于细胞自动机局部作用原理,在力的平衡条件、变形协调条件,以及达西定律、渗流连续方程的基础上,建立了平面连续体(实体)的细胞自动机更新规则,用于求解岩石力学、渗流力学及其渗流-应力耦合问题;
     2、基于弹塑性理论和细胞自动机自组织理论,提出了用于模拟岩石破裂过程的弹塑性细胞自动机模型,给出了模拟岩石破裂过程的基本思路以及模拟岩石非均质性、破裂过程的声发射的具体方法,并利用VC++工具,开发了具有自主版权的数值模拟分析系统EPCA;
     3、利用EPCA分析系统,模拟了岩石单轴压缩破裂过程,研究了循环载荷作用下的宏观变形行为及破裂过程中声发射的Kaiser效应;研究了岩石的非均质性、高径比以及尺寸等对岩石破裂过程的影响;模拟了岩石试样在拉伸载荷(直接拉伸、巴西圆盘和三点弯曲等)作用下的破裂过程,模拟结果与实验结果吻合较好;
     4、针对岩石单轴压缩破裂过程中出现的I类曲线和II类曲线,引入应力-应变线性组合的加载控制方式,利用EPCA系统模拟岩石破裂过程的I类和II类行为,分析了II类曲线产生的机理;
     5、在岩石破裂过程弹塑性细胞自动机模型的基础上,增加了应力-渗流耦合模型,基于弹塑性理论、经典Biot渗流理论和细胞自动机自组织理论,提出了岩石破裂过程应力-渗流耦合特性研究的弹塑性细胞自动机模型,并利用VC++
With the development of mining engineering in deep underground, side slope engineering and nuclear waste disposal etc, people in the world encounter numerous rock mechanical problems during engineering construction. Some fatal engineering disasters occur from time to time. Research on rock failure mechanism as well as hydro-mechanical coupling characteristics is the key to solve and control the engineering disasters. In order to solve these issues, based on elasto-plastic theory, Biot theory and cellular automaton self-organized theory, an elasto-plastic cellular automaton model is built to study rock fracturing process and coupled hydro-mechanical effect. The EPCA (Elasto-Plastic Cellular automaton) code and HM-EPCA (Hydro-Mechanics coupling analysis with Elasto-Plastic Cellular automaton) code for rock failure process simulation are developed to study the failure mechanism of heterogeneous rocks with and without consideration of hydro-mechanical effect. The following contents are included in this thesis:
     1. According to CA local action theory, solid CA updating rules are built on the basis of equilibrium equation, consistent equation and Darcy’s law, fluid continuity equation to solve problems related to rock mechanics, seepage field and coupled hydro-mechanics.
     2. An EPCA (Elasto-Plastic Cellular automaton) model is built to simulate the failure process of heterogeneous rocks on the basis of elasto-plastic theory and cellular automaton self-organization theory. The basic thought for simulating rock failure process as well as heterogeneous model of rock material and acoustic emission during failure process is presented. An EPCA code is developed in Visual C++ environment.
     3. By using EPCA code, the failure process of heterogeneous rocks under uniaxial compression is conducted. The mechanical behavior and Kaiser effect of AE under cyclic loading is investigated. The EPCA code is used to study the effect of heterogeneity, H/W ratio of rock specimen and sample size etc. on the failure process of rocks. The failure processes of rocks under tensile loading such as direct tension and indirect tension, including notched brazilian disc and three points bending, are studied and the results are well agreement with experimental results.
     4. By introducing the linear combination of stress and strain loading control method, the EPCA model is used to simulate the failure process of rocks to obtain not only Class I curves, but also Class II curves. The mechanism of Class II behavior is discussed.
     5. An HM-EPCA (Hydro-Mechanics coupling analysis with Elasto-Plastic Cellular automaton) model is built on the basis of EPCA model, by introducing hydro-mechanical coupling model. An HM-EPCA code is developed in Visual C++ environment.
引文
1. 伍法权. 中国 21 世纪若干重大工程地质与环境问题,工程地质学报,2001,9(2):115~120
    2. 杨更社,孙钧. 中国岩石力学的研究现状及其展望分析. 西安公路交通大学学报. 2001. 21(3):5-7
    3. Tsang C F. Coupled processes associated with nuclear waste repositories. New York: Academic Press, 1987
    4. Tsang C F. Coupled thermomechanical and hydrochemical processes in tock fractures. Review of Geophysics,1991,29(5): 537~548
    5. Jing Lanru, Feng Xiating, Numerical modeling for coupled thermo-hydro-mechanical and chemical processes (THMC) of geological media-international and chinese experiences, 岩石力学与工程学报,2003,22(10):1704~1715
    6. Jing L, Stephansson O, Tsang CF, Kautsky F. DECOVALEX mathematical models of coupled T-H-M processes for nuclear waste repositories. Executive summary for phaseⅠ、Ⅱ and Ⅲ.SKI report 96:58. Swedish nuclear power inspectorate,Stockholm,Sweden,1996.
    7. Jing L, Stephansson O, Tsang CF, Knight LJ, Kautsky F. DECOVALEX Ⅱproject, Executive summary. SKI report 99:24. Swedish nuclear power inspectorate,Stockholm,Sweden,1999.
    8. Ove Stephansson, John A.Hudon, Lanru Jing. International Conference on Coupled T-H-M-C Processes in Geosystems: Fundamentals, Modelling, Experiments and Applications. 13-15 October 2003, Stockholm,Sweden.
    9. 孙钧. 岩土力学与地下工程结构分析计算的若干进展. 力学季刊. 2005. 26(3):329-338.
    10. 夏蒙棼,韩闻生,柯孚久,白以龙. 统计细观损伤力学和损伤演化诱致突变(I),力学进展,1995,25(1):1~40
    11. 夏蒙棼,韩闻生,柯孚久,白以龙. 统计细观损伤力学和损伤演化诱致突变(II),力学进展,1995,25(2):145~173
    12. C.A. Tang, H. Liu, P.K.K. Lee, Y. Tsui, L. G. Tham, Numerical studies of theinfluence of microstructure on rock failure in uniaxial compression—Part I: effect of heterogeneity, Int. J. Rock Mech. Min. Sci., 2000;37(4):555-569
    13. C. A. Tang, H. Liu, P. K. K. Lee, Y. Tsui, L. G. Tham, Numerical studies of the influence of microstructure on rock failure in uniaxial compression—Part II: constraint, slenderness, and size effect, Int. J. Rock Mech. Min. Sci., 2000;37(4):571-583
    14. S. C. Blair, N. G. W. Cook, Analysis of Compressive fracture in rock using statistical techniques: Part I. A non-linear rule-based model, Int. J. Rock Mech. Min. Sci. ,1998,35(7):837-848
    15. S. C. Blair, N. G. W. Cook, Analysis of Compressive fracture in rock using statistical techniques: Part II. Effect of microscale heterogeneity on macroscopic deformation, Int. J. Rock Mech. Min. Sci. ,1998,35(7):849-861
    16. 尹双增. 断裂损伤理论及应用,北京:清华大学出版社,1992
    17. 唐辉明,晏同珍. 岩体断裂力学理论与工程应用,武汉:中国地质大学出版社.
    18. Kesler CE, Naus DJ, Lott JL, Fracture mechanics: its applicability to concrete, In Proc. Int. Conf. On the Mechanical behavior of Materials, Kyoto Soc. of Mat. Sci., Vol. IV, 1972:113~124
    19. Bazant Z. P., Er-Ping Chen, 结构破坏的尺度律,力学进展,1999,29(3):383~433
    20. 倪玉山、张琦,混凝土断裂尺寸效应的研究进展,力学进展,1997,27(1):97~127
    21. Walsh P F, Fracture of plain concrete, Indian Concrete Journal, 1972,46(11)
    22. Walsh P F, Crack initiation in plain concrete, Magazine Concrete Res. 1976,28:37~41
    23. Hilerborg , A. Modeer , M. , Peterson, P. E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 1976, (6):773~782
    24. Hilerborg , A. Modeer , M. , Peterson, P. E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cementand Concrete Research, 1976, (6):773~782
    25. 吴智敏,徐世,王金来, 基于虚拟裂缝模型的混凝土双 K 断裂参数,水利学报,1999,7:12~16
    26. 徐道远,俞建荣,粘聚裂纹模型及其在混凝土开裂中的应用,水利学报,1989,9:18~24
    27. 杨庆生,杨卫,断裂过程的有限元模拟,计算力学学报,1997,14(4):407~412
    28. Ba?ant, Z. P. , Oh, B-H. Crack band model for concrete. Material and Structures, 1983, Vol.16:155~177
    29. Shen B. Stephansson O., Numerical analysis of mined mode I and mode II fracure propagation, Int. J. Rock Mech. Min. Sci. &Geomech. Abstr. ,1993,30(7):861-867
    30. 王水林、葛修润,流形元方法在模拟裂纹扩展中的应用,岩石力学与工程学报,1997,16(5):405~410
    31. 王水林、葛修润、章光,受压状态下裂纹扩展的数值分析,岩石力学与工程学报,1999,18(6):671~675
    32. 周维垣,寇晓东,无单元法及其在岩土工程中的应用,岩土工程学报,1998,20(1)
    33. Weibull W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951: 293-297.
    34. Curran D.R., Seaman L., Shockey D. A., Dynamic failure of solids, Phys. Rep.,1987,147:253~388
    35. 邢修三,非平衡统计断裂力学基础,力学进展,1991,21:153~168
    36. 沈为,损伤力学,武汉:华中理工大学出版社,1989
    37. 夏蒙棼、韩闻生、柯孚久、白以龙,统计细观损伤力学和损伤演化诱致突变(I),力学进展,1995,25(1):1~40
    38. 夏蒙棼、韩闻生、柯孚久、白以龙,统计细观损伤力学和损伤演化诱致突变(II),力学进展,1995,25(2):145~173
    39. 杨卫,细观力学和细观损伤力学,力学进展,1992,22(1):1~9
    40. Haritos G.K., Hager J.W., Amos A.K. 等,细观力学:细观结构与力学的纽带,力学进展,1990,20(3):394~400
    41. 谢和平,岩石、混凝土损伤力学,徐州:中国矿业大学出版社
    42. 谢和平,分形岩石力学,北京:科学出版社
    43. 谢和平、刘夕才、王金安,关于 21 世纪岩石力学发展战略的思考,岩土工程学报,1996,18(4):98~102
    44. Curtin W.A., Scher H., Brittle fracture in disordered materials: a spring network model, J. Mater. Res., 1990,5:535~553
    45. Curtin W.A., Ahn B. K., Taketa N., Modeling brittle and tough stress-strain behavior in unidirectional ceramic matrix composites, Acta. Mater. 1998,46:3409~3420
    46. M. Murat, M. Anholt, and H.D. Wagner, Fracture Behavior of Short-fiber Reinforced Materials, J. Mater. Res. 1992,7(11): 3120-3131
    47. Van Mier J. G. M., Mode I fracture of concrete: discontinuous crack growth crack interface grain bridging, Cement and Concrete Research, 1991,21:1~15
    48. Van Mier J. G. M., Facture processes of concrete: assessment of material parameters for fracture models. 1997, CRC Press, Inc., Boca Raton, Florida, U. S.
    49. Van Mier J. G. M., Vervuurt A. and Van Vliet M. R. A., Materials engineering of cement-based composites using lattice models, Computational Fracture Mechanics in Concrete Technology: 1~32.
    50. Schlangen E., Van Mier J. G. M., Simple lattice model for numerical simulation of concrete material and structures, Material and Structure, 1992,25:534~542
    51. Schlangen E., Van Mier J. G. M., Micro-mechanical analysis of fracture of concrete, Int. J. Damage Mech., 1992,1:435~454
    52. Schlangen E., Garboczi E. J., Fracture simulations of concretes using lattice model: computational aspects, Engng. Fracture Mech.,1997,57(2/3):319~332
    53. Raghuprasad B. K., Bhattacharya G. S., Mihashi H., Size effect in notched concrete plane under plane stress-a lattice model, Int. J. of Fracture, 1994, 67:R3~R8
    54. Raghuprasad B. K., Bhat D.N., Bhattacharya G. S., Simulation of Fracture in a Quasi-brittle Material in Direct Tension –a Lattice Model, Engineering Fracture Mechanics, 1998, 61, pp445~460.
    55. 杨强,张浩,周维垣. 基于格构模型的岩石类材料破坏过程的数值模拟. 水利学报. 2002.4:46-50
    56. 杨强,程勇刚,张浩. 基于格构模型的岩石类材料开裂数值模拟. 工程力学. 2003. 20(1):117-120
    57. Cundall, P.A. A computer model for simulating progressive large scale movement in blocky rock systems. Proc. Int. Symp. Rock Fracture, 1971,ISRM, Nancy, France:2~8,
    58. Cundall, P.A. and Strack , O.D.L.,A discrete numerical model for granular assembles, Geotechnique, 1979,29:47~65
    59. Ba?ant Z P, et al, Random particle model for fracture of aggregate or fiber composites, J. Engng. Mech. 1990,116(8):1686-1705
    60. Peter Mora, David Place, Simulation of the frictional stick-slip instability, PAGEOPH, 1994,143:61~87
    61. David Place, Peter Mora, The lattice solid model to simulate the physics of rocks and earthquakes: incorporation of friction, Journal of Computational Physics, 1999,150:332~372
    62. Zhong, X. X., Chang, C. S., Micromechanical modeling for behavior of cementitious granular materials, Journal of Engineering Mechanics, ASCE, 1999,.125(11):1280~1285
    63. Mohamed, A.R. and Hansen, W., Micromechanical modeling of concrete response under static loading—Part I: Model development and validation, ACI Materials Journal, 1999,96, 2:196~203
    64. Mohamed, A.R. and Hansen, W., Micromechanical modeling of concrete response under static loading — Part II: Model predictions for shear and compressive loading, ACI Materials Journal, 1999,96,3:354~358
    65. 邢纪波、俞良群、王泳嘉,砂岩类脆性无序介质连续破坏过程的细观模拟,地质力学学报,1998,4(3):28~35
    66. 邢纪波、俞良群、王泳嘉,三维梁-颗粒模型与岩石类材料细观力学行为模拟,岩石力学与工程学报,1999,18(6):627~630
    67. 刘光廷、王宗敏,用随机骨料模型数值模拟混凝土材料的断裂,清华大学学报(自然科学版),1996(36):84~89
    68. Tadmor E.B., Ortia M., Phillips R. et al., Quasi-continuum analysis of defects in solids, Philosophical Magazine A, 1996,73(6): 1529~1536
    69. 凌建明,压缩荷载条件下岩石细观损伤特征的研究,同济大学学报,1993,21(2):219~226
    70. 杨更社、谢定义、张长庆等,岩石损伤特征的 CT 识别,岩石力学与工程学报,1996,15(1):48~54
    71. 杨更社、谢定义、张长庆等,岩体损伤的 CT 数分布规律的定量分析,岩石力学与工程学报,1998,17(3):279~285
    72. 杨更社、谢定义、张长庆等,岩石损伤扩展力学特性的 CT 分析,岩石力学与工程学报,1999,18(3):250~254
    73. 葛修润、任建喜、蒲毅彬等,煤岩三轴细观损伤的演化规律的 CT 分析,岩石力学与工程学报,1999,18(5):497~502
    74. 葛修润、任建喜、蒲毅彬等,岩石细观损伤演化规律的 CT 实时试验研究,中国科学 E,2000, 30(2):104~111
    75. 任建喜、葛修润、蒲毅彬等,岩石卸荷损伤演化机理 CT 实时分析初探,岩石力学与工程学报,2000,19(6):104~111
    76. 任建喜、葛修润,岩石蠕变损伤扩展机理细观分析初探,岩石力学与工程学报,2001,20(增 1):871~874
    77. 冯夏庭,智能岩石力学导论,北京:科学出版社,2000
    78. Feng, X. T., Chen S.L., Li, S.J, Effects of water chemistry on microcracking and compressive strength of granite, Int. J. Rock Mech. Min. Sci., 2001,38(4):557~568
    79. 盛金昌、速宝玉,裂隙岩体渗流应力耦合研究综述,岩土力学,(1998) 19 (2 ): 92-98
    80. Louis C., Rock hydraulics in rock mechanics, edited by L. Muller, New York, 1974
    81. Snow D T. Rock fracture spacings, openings and porosities. J. Soil Mech. Found. Div., Proc. ASCE, 1968, 94(SMI): 73-91.
    82. Jones F O. A laboratory study of the effects of confining pressure flow and storage capacity in carbonate rocks. J. Petrol. Technol., 1975, 21.
    83. Kranz R L, et al. The permeability of whole and jointed Barre Granite. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1979, 16(4): 225-234.
    84. Gale J E, The effects of fracture type (induced versus natural) on thestress-fracture closure permeability relationships. In: Proc. 23th Symp. On Rock Mech., Berkeley. California, 1982
    85. 陈祖安,伍向阳等,岩石渗透率随静水压力变化的关系研究,岩石力学与工程学报,1995.6,No. 2,155-159
    86. 刘继山,单裂隙受正应力时的渗流公式,水文地质工程地质,1987(2)
    87. 刘继山,结构面力学参数与水力参数耦合关系及其应用,水文地质工程地质,1988(2)
    88. 仵彦卿、张悼元,岩体水力学导论,成都:西南交通大学出版社,1995
    89. 詹美礼、速宝玉,交叉裂隙水流 N-S 方程有限元分析,水科学进展,(1997) 8 (1), 1-8
    90. 詹美礼、速宝玉,接触型裂隙水力等效张开度研究,岩土力学,(1997) 18 (1), 40-47
    91. 速宝玉、詹美礼、王媛,裂隙渗流与应力耦合特性的试验研究,岩土工程学报,(1997) 19 (4), 73-77
    92. 张金才、张玉卓,应力对裂隙岩体渗流影响的研究,岩土工程学报,(1998)20(2):19-22
    93. 张玉卓、张金才,裂隙岩体渗流与应力梢合的试验研究岩土力学,(1998) 19 (2):59-62
    94. 郑少河、赵阳升、段康廉,三维应力作用下天然裂隙渗流规律的实验研究,1999 (18) 2, 133-136
    95. Oda M., An equivalent continuum model far coupled stress and fluid flow analysis in jointed rock masses, Water Resources Research, 1986(13)
    96. Killsall P. C., et al, Evaluation of excavation induced changes in rock permeability, Int. J. Rock Mech. Min.Sci.,1984(3 )
    97. 周创兵、熊文林,不连续面渗流与变形耦合的机理研究,水文地质工程地质,(1996) 23 (3): 14-17
    98. M. Bai, F. Meng, D. Elsworth, J.-C. Roegiers, Analysis of stress-dependant permeability in nonorthogonal flow and deformation fields, Rock Mech. Rock Engng., (1999)32(3),195-219
    99. Gangi A. F., The variation of mechanical and transport properties of cracked rock with pressure. Proc. 22nd U.S. Rock Mech..1981
    100. Walsh J B. New model for analyzing the effect of fracture on compressibility. J.Geophs. Resear., 1979, 84(B7): 3532-3536.
    101. Walsh J B. Effect of pore pressure and confining pressure on fracture permeability. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1981, 18(5): 429-435.
    102. Witherspoon P. A. et al, New approaches to problems of fluid flow in fractured rock mass, U. S. Symp. Rock Mech. 22nd,1981
    103. J. Noorishad, M.S. Ayatollahi and P.A. Witherspoon, A finite-element method for coupled stress and fluid flow analysis in fractured rock masses. International Journal of Rock Mechanics and Mining Sciences 19 (1982):185–193
    104. Yuzo Ohnishi, Akirako Bayashi, Makoto Nishigaki,地下工程围岩的热力-水力-力学特性,第六届国际岩石力学会议论文选集《岩石力学的进展》,重庆:重庆大学出版社,1990
    105. M. Oda, T. Yamabe, et al, Elastic stress and strain in jointed rock masses by means of crack tensor analysis,Rock Mech. Rock Engng., (1993)26(2), 89-112
    106. 王媛、速宝玉、徐志英,等效连续裂隙岩体渗流与应力全耦合分析,河海大学学报,1998 (26) 2,26-30
    107. 王媛、徐志英、速宝玉,裂隙岩体渗流与应力耦合分析的四自由度全耦合法,水利学报,1998 (7),55-59
    108. 黄涛、杨立中,隧洞裂隙岩体温度-渗流耦合数学模型研究,岩土工程学报,(1999) 21 (5 ), 554-558
    109. 赖远明、吴紫江、朱元林、朱林楠,寒区隧洞温度场、渗流场和应力场耦合问题的非线性分析,岩土工程学报,(1999) 21 (5), 529-553
    110. 朱珍德、孙钧,裂隙岩体的渗流场与损伤场耦合分析模型及其工程应用,长江科学院院报,(1999),16(5), 22-27
    111. 杨天鸿,唐春安,朱万成等. 岩石破裂过程渗流与应力耦合分析. 岩土工程学报. 2001. 23(4):489-493
    112. C. A. Tang, L. G. Tham, P. K. K. Lee, T. H. Yang and L. C. Li. Coupled analysis of flow, stress and damage (FSD) in rock failure.Int. J. Rock Mech. & Min. Sci., 2002, 39(4):477-489
    113. 李元香,康立山,陈毓屏,格子气自动机,清化大学出版社、广西科学技术出版社,1994
    114. 周成虎,孙战利,谢一春. 地理元胞自动机研究[M]. 北京:科学出版社,2001
    115. Hiizu Nakanishi. Cellular-automata of earthquakes with deterministic dynamics[J]. Physical Review A,1990,41(12):7 086~7 089
    116. Bak P,Chao T. Earthquakes as a self-organized critical phenomenon[J]. J. Geophys. Res.,1989,94(1 311):15 635~15 637
    117. Chen K,Bak P. Self-organized criticality in a crack-propagation model of earthquakes[J]. Phy. Rev. A,1991,43(2):625~630
    118. 郑 捷. 研究地震和岩石破裂现象的非线性科学方法[A]. 见:非线性科学在地震中的应用[C]. 北京:地震出版社,1992,45~538
    119. 陆远忠,吕悦军. 带断层的细胞自动机及其算法复杂性[J]. 地震学报,1994,16(2):183~189
    120. 刘长海,陈军,凌学书. 三维大型 CA 的“地震”能量—频度、时空分布[J]. 地震学报,1997,19(3):299~302
    121. 刘 杰,刘桂萍,李 丽等. 基于大陆地震活动特点建立的简化动力学模型—细胞自动机模型[J]. 地震,1999,19(3):230~238
    122. Montheillet F., Gilormini P., Predicting the mechanical behavior of two-phase materials with cellular automata, International Journal of Plasticity, 1996,12(4):561~574
    123. Kuntz M., Lavallee P., Mareschal J. C., Determination of elastic properties of very heterogeneous media with cellular automata, Journal of Geophysical Research, 1997,102(B4):7647~7658
    124. Gurdal Z., Tatting T., Cellular automata for design of truss structures with linear and non-linear response, Proceedings of the 41st AIAA/ASME/ASCE/AHS/ASC Structure, Structural Dynamics and Materials Conference, Atlanta, GA, April 3~6,2000
    125. Tatting T., Gurdal Z., Cellular automata for design of two-dimensional continuum structure, 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, September 6-8, 2000
    126. 沈成武,戴诗亮,杨吉新等,平面弹性力学中的细胞自动机方法,清华大学学报(自然科学版),2001,41(11):35-38
    127. 沈成武,唐小兵,杨吉新,平面桁架力学分析的细胞自动机方法初探,武汉交通科技大学学报,2000,24(2):105-108
    128. 周辉. 矿震孕育过程的混沌性及非线性预测理论研究[博士学位论文[D]. 沈阳:东北大学,2000:70~73
    129. 周辉、王泳嘉、谭云亮、冯夏庭. 岩石破坏过程的物理细胞自动机模型(I)—基本模型. 岩石力学与工程学报. 2002,21(4):475~478
    130. 周辉、谭云亮、冯夏庭、王泳嘉. 岩石破坏过程的物理细胞自动机模型(Ⅱ)—模拟例证. 岩石力学与工程学报. 2002,21(6):782~786
    131. 周辉、冯夏庭、谭云亮、王泳嘉. 物理细胞自动机与岩石弹-脆-塑性性质的细观机制研究. 岩土力学. 2002,23(6):678~682
    132. 谭云亮、周辉、王泳嘉、马志涛. 模拟细观非均质材料破坏演化的物理元胞自动机 PCA 理论. 物理学报. 2001,50(4):704~710
    133. 冯夏庭,周辉,李明田. 岩石破裂过程的细胞自动机方法. 全球华人中青年学者岩土力学与工程学术论坛-中国科学院岩土力学与工程学术研讨会. 武汉. 特邀报告. 2003. 10.
    134. Ming-Tian Li , Xia-Ting Feng, Hui Zhou. Cellular automata simulation of the interaction mechanism of two cracks in rock under uniaxial compression. International Journal of Rock Mechanics & Mining Sciences 41 (2004) 452
    135. 李明田. 岩石破裂过程数值模拟的格构细胞自动机方法研究. 中国科学院研究生院博士学位论文. 2004.01
    136. 柴军瑞, 仵彦卿. 均质土坝渗流场与应力场耦合分析的数学模型. 陕西水力发电. 1997, 13(3):4-7.
    137. 柴军瑞, 仵彦卿. 岩体渗流与应力耦合机理研究综述. 中国水利水电发展文库. 中国水利水电出版社. 1999
    138. 柴军瑞, 仵彦卿 等. 裂隙水流对裂隙壁的双重力学效应. 工程勘察, 2002(5): 20-22.
    139. 祝玉学, 译. 物理系统的元胞自动机模拟[M]. 北京:清华大学出版社. 2003. 8
    140. Wolfram S., Statistical mechanics of cellular automata, Rev. Mod. Phys.,1983,601~644
    141. Wolfram S., Celluar automaton fluids: Basic theory, J. Stat. Phys., 1986,45:471~526
    142. Wolfram S., Theory and applications of Cellular automata, World Publishing CO. PTE. LTD.,1986
    143. Wolfram S., Cellular automata and complexity, Addison-Wesley, Reading MA, 1994
    144. Durand, B., Róka, Z.: The Game of Life: Universality Revisited, Vol. 460 of Mathematics and Its Applications [6], 1999, 51–74.
    145. Hardy J., Pomeau Y., de Pazzis O., Time evolution of a two-dimensional model system, J. Math. Phys., 1973,14:1746~1759
    146. Frisch U., Hasslacher B., Pomeau Y., Lattice-gas automata for the Navier-Strokes equation, Phys. Rev. Lett., 1986, 56:1505~1508
    147. 朱照宣,点格自动机,力学与实践,1987,9:1~6
    148. Langton C G. Artificial life[A]. In: Volume V of SFI Studies of Complexity[C]. New Mexico: Addition Wesley. 1992
    149. Gurdal Z., Tatting T., Cellular automata for design of truss structures with linear and non-linear response, Proceedings of the 41st AIAA/ASME/ASCE/AHS/ASC Structure, Structural Dynamics and Materials Conference, Atlanta, GA, April 3~6,2000
    150. Tatting T., Gurdal Z., Cellular automata for design of two-dimensional continuum structure, 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, September 6-8, 2000
    151. Montheillet F., Gilormini P., Predicting the mechanical behavior of two-phase materials with cellular automata, International Journal of Plasticity, 1996,12(4):561~574
    152. Kuntz M., Lavallee P., Mareschal J. C., Determination of elastic properties of very heterogeneous media with cellular automata, Journal of Geophysical Research, 1997,102(B4):7647~7658
    153. 冯夏庭,周辉,李明田. 岩石破裂过程的细胞自动机方法. 全球华人中青年学者岩土力学与工程学术论坛-中国科学院岩土力学与工程学术研讨会. 武汉. 特邀报告. 2003. 10.
    154. Ming-Tian Li , Xia-Ting Feng, Hui Zhou. Cellular automata simulation of the interaction mechanism of two cracks in rock under uniaxial compression. International Journal of Rock Mechanics & Mining Sciences 41 (2004) 452
    155. 李明田. 岩石破裂过程数值模拟的格构细胞自动机方法研究. 中国科学院研究生院博士学位论文. 2004.01
    156. 徐秉业. 塑性力学. 北京:高等教育出版社. 1988.
    157. 郑颖人,龚晓南. 岩土塑性力学基础[M]. 北京:中国建筑工业出版社. 1989.8
    158. D. R. J. Owen, E. Hinton, Finite element in plasticity: Theory and practice. Pinerige Press Limited. 1980 .
    159. 余天庆,损伤理论及其应用,北京:国防工业出版社,1993
    160. Weibull W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951: 293-297.
    161. Hudson JA, Fairhurst C. Tensile strength, Weibull’s theory and a general statistical approach to rock failure. In: The Proceedings of the Civil Engineering Materials Conference held in Southampton 1969: 901-904.
    162. Dems K, Mroz Z. Stability condition for brittle plastic structure with propagation damage surface. J. Struct. Mech. 1985, 13(1): 85-122
    163. H. Zheng, D.F. Liu, C.F. Lee, X.R. Ge. Principle of analysis of brittle-plastic rock mass. Int. J. of Solids and Struc, 42 (2005) 139–158
    164. 沈新普,岑章志,徐秉业. 弹脆塑性软化本构理论的特点及其数值计算. 清华大学学报(自然科学版). 1995, 35(2): 22~27.
    165. 任放,盛谦. 弹脆塑性理论与三峡工程船闸开挖数值模拟. 长江科学院院报. 1999. 16(4):6-8.
    166. Feng X T, Pan P Z, Zhou H. Simulation of rock microfracturing process under uniaxial compression using elasto-plastic cellular automata. Int J. Rock Mech. and Min. Sci. 2006 (in press)
    167. Mogi K. Earthquake predirection. Academic Press. (Harcourt Brace Jovanovich. Publishers). Tokyo. 1985.
    168. 唐春安. 岩石破裂过程中的灾变[M]. 煤炭工业出版社. 1993
    169. Moore, D.E., Lockner, D.A., 1995. The role of microcracking in shear-fracture propagation in granite. J. Struct. Geol. 17(1), 95-114.
    170. 凌建明. 节理岩体损伤力学及时效损伤特性的研究[博士学位论文][D], 同济大学, 1992, 55~59.
    171. Tapponnier, P., Brace, W.F., 1976. Development of stress-induced microcracks in Westerly granite. Int. J. Rock Mech. Min. Sci. 13, 103-112.
    172. Kranz, R.L., 1983. Microcracks in rocks: a review. Tectonophysics 100, 449-480.
    173. Shimada, M., Cho, A., 1990. Two types of brittle fracture of silicate rocks under confining pressure and their implications in the earth’s crust. Tectonophysics
    175, 221-235.
    174. Wu, X.Y., Baud, P., Wong, T.F., 2000. Micromechanics of compressive failure and spatial evolution of anisotropic damage in Darley Dale sandstone. Int. J. Rock Mech. Min. Sci. 37, 143-160.
    175. Ayling, M.R., Meredith, P.G., Murrell, S.A.F., 1995. Microcracking during triaxial deformation of porous rocks monitored by changes of rock physical properties. I: elastic-wave propagation measurements on dry rocks. Tectonophysics 245, 205-221.
    176. Lockner, D.A., Byerlee, J.D., Kuksenko, V., Ponomarev, A., Sidorin, A., 1992. Observations of quasi-static fault growth from acoustic emissions. In: Evans, B., Wong, T.F.(Eds.), Fault Mechanics and Transport Properties of Rocks. Academic Press, San Diego, CA, pp. 3-31.
    177. Cox, S.J.D., Meredith, P.G., 1993. Microcrack formation and material softening in rock measured by monitoring acoustic emissions. Int. J. Rock Mech. Min. Sci. 30(1), 11-24.
    178. Kawakata, H., Cho, A., Kiyama, T., Yanagidani, T., Kusunose, K., Shimada, M., 1999. Three-dimensional observations of faulting process in Westerly granite under uniaxial and triaxial conditions by X-ray CT scan. Tectonophysics 313, 293-305.
    179. 吴紫汪, 马巍, 浦毅彬等. 冻土蠕变变形特征细观分析[J]. 岩土工程学报,1997,19(3):1~6.
    180. 杨更社, 谢定义, 张长庆等. 岩石损伤特性的 CT 识别[J]. 岩石力学与工程学报,1996,15(1):48~54
    181. 杨更社, 谢定义, 张长庆. 岩石损伤 CT 数分布规律的定量分析[J]. 岩石力学与工程学报, 1998, 17 (3):279~285
    182. 葛修润,任建喜,浦毅彬等. 煤岩三轴细观损伤演化规律的 CT 动态试验[J]. 岩石力学与工程学报,1999,18(5):497~502
    183. Fang, Z., Harrison, J.P., 2002. Application of a local degradation model to the analysis of brittle fracture of laboratory scale rock specimens under triaxial conditions. Int. J. Rock Mech. Min. Sci. 39, 459-476.
    184. Tang, C.A., 1997. Numerical simulation of progressive rock failure and associated seismicity. Int. J. Rock Mech. Min. Sci. 34, 249-262.
    185. Blair, S.C., Cook, N.G.W., 1998. Analysis of compressive failure in rock using statistical techniques. Part I: a non-linear rule-based model. Int. J. Rock Mech. Min. Sci. 35, 837-848.
    186. Tang, C.A., Liu, H., Lee, P.K.K., Tsui, Y., Tham, L.G., 2000. Numerical studies of the influence of microstructure on rock failure in uniaxial compression. Part I: effects of heterogeneity. Int. J. Rock Mech. Min. Sci. 37, 555-569.
    187. Tang, C.A., Tham, L.G., Lee, P.K.K., Yang, T.H., Li, L.C., 2002. Coupled analysis of flow, stress and damage (FSD) in rock failure. Int. J. Rock Mech. Min. Sci. 39, 477-489.
    188. Liu, H.Y., 2003. Numerical modeling of the rock fracture process under mechanical loading. Licentiate thesis Lule? University of Technology, 04.
    189. Sarkar P. A brief history of cellular automats. ACM Computing Surveys. 2000.32: (1) 80-107
    190. 冯夏庭, 周辉, 李明田. 岩石破坏过程的细胞自动机方法. 2003. 全球华人中青年学者岩土力学与工程学术论坛, 特邀报告.
    191. Ming-Tian Li , Xia-Ting Feng, Hui Zhou . Cellular automata simulation of the interaction mechanism of two cracks in rock under uniaxial compression.International Journal of Rock Mechanics & Mining Sciences 41 (2004) 452
    192. 重庆建筑工程学院和同济大学编. 岩体力学. 中国建筑工业出版社. 1979.9
    193. 张承娟. 利用岩石记忆特性量测钻孔地应力[J]. 水利发电学报. 1990, 29(2): 72~81.
    194. 张晖辉,颜玉定,余怀忠,尹祥础. 循环载荷下大试件岩石破坏声发射实验-岩石破坏前兆的研究[J]. 岩石力学与工程学报. 2004, 23(21): 3621~3628.
    195. 李先炜. 岩体力学性质[M]. 北京:煤炭工业出版社. 1990.3
    196. Pan Yishan, Wei Jianming. Experimental and theoretical study on size effect on strain softening of rock materials. Chinese Journal of Rock Mechanics and Engineering. 2002. 21(2): 215-218.
    197. Naser A. Al-Shayea. Crack propagation trajectories for rocks under mixed mode I–II fracture. Engineering Geology. 81(2005): 84-97.
    198. Xeidakis G. S., Samaras I. S., Zacharopoulos D. A., Papakaliatakis G. E. (1997) : Trajectories of unstably growing cracks in mixed mode I-II loading of marble beams. Rock Mech. Rock Engng. 30(3), 19-33.
    199. Wawersik W,Fairhurst C. A study of brittle rock fracture in laboratory compression experiments[J]. International Journal of Rock Mechanics and Mining Sciences,1970,7:561-575.
    200. Hudson J A,Crouch S L,Fairhurst C. Soft, stiff and servo-controlled testing machines:a review with reference to rock failure[J]. Engineering Geology,1972,6:155-189
    201. Hudson J A,Brown E T,Fairhurst C. Optimizing the control of rock failure in servo-controlled laboratory tests[J]. Rock Mechanics,1971,3:217-224.
    202. Terada M,Yanagitani T,Ehara S. AE rate controlled compression test of rocks[C]. Proc. 3rd Conf. on Acoustic Emission Microseismic Activity in Geologic Structures and Materials. Trans Tech, Clausthal. 1984:159-171.
    203. Okubo S,Terada M,Ehara S. A study on the time dependent microfracturing and strength of Oshima granite[J]. Tectonophsics,84,1982:343-362.
    204. Okubo S,Nishimatsu Y. Uniaxial compression testing using a linear combination of stress and strain as the control variable[J]. Int. J. Rock Mech.Min. Sci. & Geomech. Abstr,1985,22(5) :323-330.
    205. He C,Okubo S,Nishimatsu Y. A study on the Class II behavior of rock[J]. Rock Mech and Rock Engng.,1990,23:261-273.
    206. Krajcinovic D,Silva M. Statistical aspects of the continuous damage theory[J]. Int. J. Solids Struc.,1982,18(7):551-562.
    207. Schreyer H L,Chen Z. One dimensional softening with localization[J]. J. of Appl. Mech.,1986,53:791-797.
    208. 王明洋,严东晋,周早生,钱七虎. 岩石单轴试验全程应力应变曲线讨论[J]. 岩石力学与工程学报. 1998,17(1):101-106.
    209. 李锡夔,Cescotto S. 梯度塑性的有限元分析及应变局部化模拟[J]. 力学学报,1996,28(5):575-584.
    210. 潘一山,徐秉业,王明洋. 岩石塑性应变梯度与Ⅱ类岩石变形行为研究[J]. 岩土工程学报,1999,21(4):471-474.
    211. 钱觉时,吴科如. 砼I、II类断裂及其数值分析[J]. 重庆建筑工程学院学报,1993,15(4):79~88.
    212. 鄢建华,黄宝德,汤雷. 岩石类材料峰后本构关系研究进展[J]. 地质灾害与环境保护,2003,14(4): 58-62.
    213. Peng-zhi Pan, Xia-ting Feng, J A Hudson. Simulations on Class I and Class II curves by using the linear combination of stress and strain control method and elasto-plastic cellular automata . Int J. Rock Mech. and Min. Sci. 2006 (in press)
    214. Okubo S, Nishimatsu Y, He C. Loading rate dependence of Class II rock behavior in uniaxial and triaxial compression tests—an application of a proposed new control method. Int J Mech Sci Geomech Abstr 1990; 27(6): 559–62.
    215. Okubo S, He C, Nishimatsu Y. Time dependent behavior in uniaxial compression. J Min Metall Inst Jpn 1987;103:177–81 [in Japanese].
    216. 李世平,李玉寿,吴振业. 岩石全应力应变过程对应的渗透率-应变方程. 岩土工程学报.1995. 17(2):13-19
    217. 薛禹群主编.地下水动力学原理.北京:地质出版社,1986:98~101
    218. 法 默(Farmer,I.W).岩石的工程性质.汪浩,译.中国矿业大学出版社.1988:18-23
    219. 蔡耀军.裂晾岩体三维空间非均质各向异性渗透性评价.地质科技情报,1989,8 (2):89-98.
    220. 潘别桐,吴旭君.工程岩体渗透性研究现状和趋向.地质科技情报,1988,7(2):61-67
    221. 杨天鸿,唐春安,徐涛,芮勇勤著. 岩石破裂过程的渗流特性-理论、模型与应用[M]. 科学出版社. 北京. 2004.10
    222. 仵彦卿. 裂隙岩体应力与渗流关系研究. 水文地质工程地质. 1995,12(2):30-35.
    223. 陈祖安,伍向阳,孙德明,杨伟. 砂岩渗透率随静压力变化的关系研究. 岩石力学与工程学报. 1995,2:155-159
    224. Li S P,Wu D X. Effect of confining pressure, pore pressure and specimen dimension on permeability of Yinzhuang sandstone. Int. J. Rock Mech. Min. Sci., 1997. 34(3/4): 435-441.
    225. 章梦涛,潘一山,梁冰,王来贵. 煤岩流体力学. 科学出版社. 北京. 1995.8
    226. 王君连. 工程地下水计算[M]. 北京:中国水利水电出版社. 2004.
    227. A.E. 薛定谔,著. 王鸿勋,张朝琛,孙书琛,译. 多孔介质中的渗流物理[M]. 石油工业出版社. 1982.8
    228. 杜延龄,许国安. 渗流分析的有限元法和电网络法[M]. 北京:水利电力出版社. 1992.3
    229. 王秀娟,杨学保,迟博等. 大庆外围低渗透储层裂缝与地应力研究[J]. 大庆石油地质与开发. 2004. 23(5):88-90.
    230. 王秀娟,赵永胜,文武等. 低渗透储层应力敏感性与产能物性下限[J]. 石油与天然气地质. 2003. 24(2):162-165.
    231. 向阳,向丹,杜文博. 致密砂岩气藏应力敏感的全模拟实验研究[J]. 成都理工大学学报. 2002. 29(6):617-619.
    232. 杨满平,李允,李治平. 气藏含束缚水储层岩石应力敏感性实验研究[J]. 天然气地球科学. 2004. 15(3):227-229
    233. 张浩,康毅力,陈一健等. 岩石组分和裂缝对致密砂岩应力敏感性影响[J]. 天然气工业. 2004. 24(7):55-57.
    234. 张新红,秦积舜. 低渗岩心物性参数与应力关系的试验研究[J]. 石油大学学报(自然科学版). 2001. 25(4):56-60.
    235. 石玉江,孙小平. 长庆致密碎屑岩储集层应力敏感性分析[J]. 石油勘探与开发. 2001. 28(5):85-87.
    236. 廖新维,王小强,高旺来. 塔里木深层气藏渗透率与应力敏感性研究[J]. 天然气工业. 2004. 24(6):93-94.
    237. 陈古明,胡捷. 平落坝气田二段气藏储层敏感性实验研究[J]. 天然气工业. 2001. 21(3):53-56.
    238. 景岷雪,袁小玲. 碳酸盐岩岩心应力敏感性实验研究.. 天然气工业. 2002. 22(增):114-117.
    239. 杨满平,李允. 考虑储层初始有效应力的岩石应力敏感性分析. 天然气地球科学. 2004. 15(6):601-603.
    240. 刘建军,刘先贵. 有效压力对低渗透多孔介质孔隙度、渗透率的影响. 地质力学学报. 2001. 7(1):41-44.
    241. Kikani J, Pedrosa O A J R. Perturbation analysis of stress-sensitive reservoirs[J]. SPEFE. 1991. (SEPT): 379-386.
    242. Zhang M Y, Ambastha A K. New insights in pressure-transient analysis for stress sensitive reservoirs[J]. SPE 28420, 1994, (SEPT): 617-627.
    243. 李传亮. 储层岩石的应力敏感性评价方法[J]. 大庆石油地质与开发. 2006. 25(1):40-42.
    244. 尹洪军,何应付. 变形介质渗流规律和压力特征分析[J]. 水动力学研究与进展. 2002. 17(5):538-546.
    245. 李世平,李玉寿,吴振业.岩石全应力应变过程对应的渗透率-应变方程[J].岩土工程学报,1995,17(2):13-18.
    246. 彭苏萍,屈洪亮,罗立平等、沉积岩石全应力应变过程的渗透性试验研究[J]、煤炭学报,2000,25(2):l13-116.
    247. 卢平,沈兆武,朱贵旺,方恩才. 岩样应力应变全程中的渗透性表征与试验研究. 中国科学技术大学学报. 2002,32(6):678-684
    248. 张金才,张玉卓,刘天泉. 岩体渗流与煤层底板突水. 地质出版社. 北京. 1997.8
    249. 李宗利,任青文,王亚红. 岩石与混凝土水力劈裂缝内水压分布的计算. 水利学报. 2005. 36(6):656-661
    250. 李宗利,张宏朝,任青文,王亚红. 岩石裂纹水力劈裂分析与I临界水压计算. 岩土力学. 2005. 26(8):1216-1220.
    251. 李连崇,杨天鸿,唐春安,等.岩石水压致裂过程的耦合分析[J].岩石力学与工程学报. 2003,22(7):l 060-l 066.
    252. 李志萍,王 勇. 岩盐水压致裂溶解的数值模拟. 天津城市建设学院学报. 2004. 10(3):151-155.
    253. 张辉. 水压致裂法应力测量及在工程中的应用. 云南水力发电. 2005. 21(6):25-28.
    254. Papanastasiou E An efficient algorithm for propagating fluid-driven fractures[J]. Computational Mechanics. 1999. 24(4):258-267.
    255. 黄润秋,王贤能,陈龙生.深埋隧道涌水过程的水力劈裂作用分析[J].岩石力学与工程学报,2000,l9(5):573- 576.
    256. 冷雪峰,杨天鸿,国怀专,李连崇. 单孔岩石水压致裂过程的数值模拟分析. 世界有色金属. 2002. 10:32-34.
    257. 王国庆. 岩体水力劈裂试验及裂纹扩展的无单元法计算. 河海大学硕士学位论文. 2004.4
    258. Rutqvist J., Feng X-T, J. Hudson, Jing L., Kobayashi A., Koyama T., Pan P-Z, Lee H-S, Rinne M., Sonnenthal E. & Yamamoto Y.. Multiple-code bench mark simulation study of coupled THMC process in the excavation disturbed zone associated with geological nuclear waste repositories. GeoProc 2006 Conference.
    259. Rutqvist J., Birkholzer J. T., Chijimatsu M., Kolditz O., Liu Q. –S., Oda Y., Wang W., & Zhang C. –Y. 2006. Comparative simulation study of coupled THM processes near back-filled and open-drift nuclear waste repositories in Task D of the International DECOVALEX Project. GeoProc 2006 Conference.
    260. Rutqvist J., Sonnenthal E., Jing L., & Hudson J. 2006. Task definition for DECOVALEX THMC Task B, Phase 3: A Bench Mark Test on Drift Wall Coupled THMC Processes. GeoProc 2006 Conference.