脆塑性岩石破坏后区力学特性的面向对象有限元与无界元耦合模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代计算技术在计算能力和存储容量上的革命仅仅提供了计算更复杂问题的有效工具,而程序的高效性是我们永恒的追求。本文试图从两方面着手,应用面向对象的程序设计方法来提高程序的开发和维护效率;在有限元分析中纳入无界单元以减小岩土工程的计算区域,从而提高程序的计算效率,最终为脆塑性岩石破坏后区力学特性的数值模拟服务。本文分别对面向对象的程序设计方法、无界单元方法以及岩石破坏后区力学特性进行了系统的研究,主要工作如下:
     1、在系统地研究了面向对象程序设计方法的基础上,建立了有限元三维非线性分析的面向对象模型。
     2、采用面向对象的程序设计语言Visual C++,嵌入Matlab数学库,利用其强大的矩阵运算功能,开发了运行于Windowsxp/2000/NT操作系统的,适用于岩土工程二维和三维有限元分析的面向对象有限元分析软件EBPFEM。该软件能进行弹塑性或弹脆塑性有限元计算,能较好的模拟脆塑性岩石的力学性能,可以考虑开挖卸荷;程序中加入了节理单元,可以模拟岩体中的不连续面;程序中还纳入了无界单元,可以模拟岩土工程中经常涉及到的无限和半无限域问题。
     3、在对无界单元方法进行了系统而全面的回顾与总结的基础上,分别阐述了映射无界元和衰减无界元的基本原理及其形函数的具体构造方法,总结了几种常用的映射无界元和衰减无界元的形函数,并且详细推导了一种简单而又非常实用的无界单元—6节点三维无界元的形函数以及其它相关计算公式。
     4、在前人工作的基础上,对岩石的应力应变全过程曲线分类进行了有益的探讨;应用塑性位势理论,详细推导了对应于不同屈服准则的应力脆性跌落过程塑性流动因子的确定方法,并且给出了非理想脆塑性模型应力脆性跌落过程中产生的非零位移增量的一种简便的近似处理方法。
     5、分别对大理岩、红砂岩和花岗岩等几种脆性比较明显的岩石进行了应力脆性跌落系数的试验研究。研究表明脆塑性岩石的脆性是相对的,随着围压的增大,岩石逐渐由脆性向延性转化;脆塑性岩石的应力脆性跌落在围压不大的情形下发生,其应力脆性跌落系数是围压的函数;并给出了大理岩和红砂岩的应力脆性跌落系数与围压的关系表达式。
     6、对非线性有限元分析中不同屈服条件进行了对比研究。研究表明,在三维情形下,采用不同的广义Von Mises条件来逼近莫尔—库仑条件时,Drucker-Prager条件偏于保守,真正的逼近Mohr-Coulomb条件应该介于内角圆和外角圆之间,内角圆偏于保守而外角圆偏于危险,所以等面积圆是相对合适的折中选择。
     7、将应用面向对象方法开发的三维弹-脆-塑性有限元与无界元耦合分析软件EBPFEM对小湾水电站地下洞室群的围岩稳定性进行了不同屈服条件下的分析。证明了本文所设计的分析软件的有效性和实用性,对类似的工程具有一定的参考意义。
The revolutions of the computational power and memory capacity of modern computing technology offer us a valid implement to calculate more complicated problems only, and the high efficiency of program is our perpetual seek. This thesis tries to act from two aspects: applies object-oriented programming method to advance the development and maintenance efficiencies of programs; applies finite elements coupled with infinite elements to reduce the computational domain of geotechnical engineering so as to advance the calculation efficiency of programs, and service to the numerical simulation of the post-failure mechanical properties of brittle-plastic rocks finally. Therefore, object-oriented programming method, infinite element method and the post-failure properties of brittle-plastic rocks are the themes of this paper. Recapitulatively, several aspects are studied as follows:
     1. Based on the systemic research of object-oriented programming method, a three-dimensional object-oriented non-linear brittle-plastic finite element analysis model is constructed.
     2. Applies object-oriented program design language visual C++, embeds Matlab math library and utilizes its powerful matrix operation functions, a geotechnical FEM software (named as EBPFEM) based on Windows98/2000/NT is designed to deal with two or three dimensional problems. This software can execute elastic-plastic and brittle-plastic finite analysis, can preferably simulate mechanical properties of brittle-plastic rocks, can preferably simulate excavation, and can preferably simulate discontinuity between rock mass as well. What’s more, this software can simulate infinite or semi-infinite calculate zone which is often involved in geotechnical engineering because infinite elements are incorporated.
     3. Based on the systemic and comprehensive review and summarize of infinite element method, the fundamental principles of mapping or attenuation infinite elements and the specific construction methods of their shape functions are elaborated respectively, and then shape functions of several mapping or attenuation infinite elements in common use are summarized, and the shape function and some other correlation formulas of a simple and utility infinite element- three dimensional 6 node infinite element are deduced particularly as well.
     4. Based on the works of predecessors, the classification of complete stress-strain curves of rocks is discussed beneficially. Applies plastic potential theory, the methods of determinations of plastic flow factors between brittle stress drop under different yield criterions are deduced, and a simple and approximate treatment method of the non-zero displacement increment generated between the brittle stress drop when the non-ideal brittle-plastic model involved in is put forward.
     5. Tests aims to research on the coefficient of brittle stress drop of several brittle rocks such as marble, red sandstone and granite are performed. The researches show: the brittleness of brittle- plastic rocks is relative, and can change to ductility accompanied by the increasing confining stress; the brittle stress drop of brittle-plastic rocks only takes place when the confining stress is small, and the coefficient of brittle stress drop is a function of the confining stress, and such relation expressions about marble and red sandstone are given as well.
     6. The results of contrast research on different yield criterions of non-linear finite analysis show: in the condition of three-dimension, using different general Von Mises criterions to approximate Morh-Coulomb criterion, Drucker-Prager condition is inclined to conservative, and the accurate one which approximated to Morh-Coulomb criterion is between interior and exterior vertex circle. Interior vertex circle is inclined to be conservative and exterior vertex circle is inclined to be dangerous as well, and so, the equal area circle is the relative well-founded compromise choice.
     7. The application in the stability of underground excavation of Xiaowan Hydropower Project with different yield criterions proves validity and practicability of the three dimensional elastic-brittle-plastic finite elements coupled with infinite elements analysis software (named as EBPFEM), which can be of beneficial reference to analogous projects.
引文
[1] Rehak D R, Baugh Jr J W. Alternative programming techniques for finite element program development[A]. Proceedings IABSE Colloquium On Expert Systems In Civil Engineering[C]. Bergamo, Italy, 1989.
    [2] Peskin R L, Russo M F. An object-oriented system environment for partial differential equation solving[A]. Proceedings ASME Computations In Engineering[C]. 1988. 409-415.
    [3] Miller G R. A Lisp-based object-oriented approach to structural analysis[J]. Engineering with Computers,1988, 4:197-203.
    [4] Forde B W R, Foschi R O, Stiemer S F. Object-oriented finite element analysis[J]. Computers & Structures,1990,34(3):355-374.
    [5] Fenves G L. Object-oricented programming for engineering software development[J]. Engineering with Computers,1990, 6:1-15.
    [6] Mackie R I. Object oriented programming of the finite element method[J]. International Journal For Numerical Methods In Engineering,1992,35(2):425-436.
    [7] Thomas Zimmermann, Yves Dubois-Pelerin and Patricia Bomme. Object-oriented finite element programming (I): Governing Principles[J]. Computer Methods in Applied Mechanics and Engineering,1992, 98:291-303.
    [8] Yves Dubois-Pelerin, Thomas Zimmermann. Object-oriented finite element programming (III): An efficient implementation in C++[J]. Computer Methods in Applied Mechanics and Engineering,1993, 108:165-183.
    [9] Ju J, Hosain M U. Substructuring using the object-oriented approach[A]. Proceedings 2nd International Conference on Computational structures Technology[C]. Athens:op.Cit,1994. 115-120.
    [10] Mackie R I. Object-oriented methods—finite element programming and engineering software design[A]. Pahl & Werner. Computing In Civil And Building Engineering: Proceedings of the Sixth International Conference on Computeing In Civil and Building Engineering[C]. Rotterdam: Balkema,1995,133-138.
    [11] Rihaczek C, Kroplin B. Object-oriented design of finite element software for transient non-linear coupling problems[A]. Proceedings of Second Congress onComputing in Civil Engineering[C]. ASCE,1994.
    [12] Udo Meissner, Joaquin Diaz, Ingo Sch?nenborn. Object-oriented analysis of three dimensional geotechnical engineering systems[A]. Pahl & Werner. Computing In Civil And Building Engineering: Proceedings of the Sixth International Conference on Computeing In Civil and Building Engineering[C]. Rotterdam: Balkema,1995,61-65.
    [13] Werner H, Mackert M, Stark M. Object oriented models and tolls in tunnel design and analysis[A]. Pahl & Werner. Computing In Civil And Building Engineering: Proceedings of the Sixth International Conference on Computeing In Civil and Building Engineering[C]. Rotterdam: Balkema,1995,107-112.
    [14] 崔俊芝,粱俊. 现代有限元软件方法[M]. 北京:国防工业出版社,1995.
    [15] 周本宽,曹中清,陈大鹏. 面向对象有限元程序的类设计[J]. 计算结构动力学及其应用,1996,13(3):269-278.
    [16] 曹中清,周本宽,陈大鹏. 面向对象有限元程序几种新的数据类型[J]. 西南交通大学学报,1997,31(2):119-125.
    [17] 曹中清. 面向对象的有限元程序设计方法[硕士学位论文]. 成都:西南交通大学,1995
    [18] 李会平,曹中清,周本宽. 弹塑性分析的面向对象有限元方法[J]. 西南交通大学学报,1997,32(4):401-406.
    [19] X.A.Kong, D.P.Chen. An object-oriented design of FEM programs[J]. Computers & Structures,1995,57(1): 157-166.
    [20] 孔祥安,翟己. 面向对象有限元程序的数据设计[J]. 西南交通大学学报,1997,31(4):355-360.
    [21] 孔祥安. C++语言和面向对象有限元程序设计[M]. 成都:西南交通大学出版社,1995.
    [22] 张向,许晶月,沈启彧,阮雪榆. 面向对象的有限元程序设计[J]. 计算力学学报,1999,16(2):216-225.
    [23] 项阳,平扬,葛修润. 面向对象有限元方法在岩土工程中的应用[J]. 岩土力学,2000,21(4):346~349.
    [24] 项阳. 面向对象有限元方法及其应用——一种新的锚杆数值模型[硕士学位论文]. 武汉:中国科学院武汉岩土力学研究所,2000.
    [25] 陈健. 三维地层信息系统的建模与分析研究[博士学位论文]. 武汉:中国科学院武汉岩土力学研究所,2001.
    [26] 刘虓. 面向对象有限元结构动力程序分析[硕士学位论文]. 武汉:武汉理工大学,2002.
    [27] 朱晓光. 面向对象非线性有限元程序框架设计[硕士学位论文]. 大连:大连理工大学,2002.
    [28] 李晓军. 地下工程三维并行有限元分析系统面向对象的设计与实现[博士学位论文]. 上海:同济大学,2001.
    [29] 周维垣,刘怀恒. 高等岩石力学[M]. 北京:水利电力出版社,1990.
    [30] Ungless R F. An infinite element[Master Thesis]. Columbia: University of British Columbia, 1973.
    [31] Zienkiewicz O C, Bettess P. Diffraction and refraction of surface wave using finite and infinite elements[J]. International Journal For Numerical Methods In Engineering,1977,13(11): 1271-1290.
    [32] Bettess P. More on infinite element[J]. International Journal For Numerical Methods In Engineering,1980,16(11): 1613-1626.
    [33] Beer G, Meek J L. Infinite domain elements[J]. International Journal For Numerical Methods In Engineering,1981,17(1): 43-52.
    [34] O.C.Zienkiewicz,C.Emson and P.Bettess. A novel Boundary Infinite Element. International Journal for Numerical Methods in Engineering, 1983, 19(3): 393-404
    [35] 吕明.无界元及其在工程中的应用[A]. 中国水利水电科学研究院科学研究论文集[C]. 北京:中国水利水电出版社,1985, No.20,37-46.
    [36] 葛修润,谷先荣,丰定祥. 三维无界元与节理无界元[J]. 岩土工程学报,1986,8(5):9-20.
    [37] 张楚汉,赵崇斌. 用无穷元研究断层对重力坝地基的影响[J]. 水利学报,1986,(9):24-32.
    [38] 赵崇斌,张楚汉,张光斗. 用无穷元模拟半无限平面弹性地基[J]. 清华大学学报(自然科学版),1986,26(3):51-64.
    [39] 张镜剑,涂金良等. 变结点无界元和有限元耦合在三维弹塑性分析中的应用[J]. 华北水利水电学报,1991,(3):1-7.
    [40] Yan Liubin, Bicanic N. Finite and infinite element method analysis of the longmen buttress dam[PHD Thesis]. Dept. of Civil Engineering, University College of Suansea, U.K.C/R/584/1986.
    [41] 燕柳斌. 映射无限元法在工程中的应用[A]. 中国土木工程学会主编. 中国土木工程计算机应用学会第三届学术会议论文集[C]. 北京:冶金工业出版社,1989,30-37.
    [42] 燕柳斌. 用三维映射无限元模拟半空间弹性地基[J]. 红水河,1990,(1):39-42.
    [43] 燕柳斌. 用三维映射无限元模拟重力坝地基[J]. 水利学报,1991,10:7-12.
    [44] 燕柳斌. 无限区域节理的模拟[J]. 广西大学学报(自然科学版),1992,(6):15-19.
    [45] 燕柳斌,赵艳林. 双向映射无限元模拟半无限弹性地区[J]. 广西大学学报,1996,21(3):251-254.
    [46] 燕柳斌,赵艳林. 用映射无限元模拟直立式沉箱基础[J]. 红水河,1997,16(2):25-27.
    [47] 燕柳斌. 结构分析的有限元及无限元方法[M]. 武汉:武汉工业大学出版社,1998.
    [48] 张建辉,邓安福,严春风. 关于三维无限元的一种新模型[J]. 重庆建筑大学学报,1998,20(2):31-34.
    [49] 张建辉,邓安福,何水源. 三维无限元的映射函数[J]. 岩石力学与工程学报,2000,19(1):97-100.
    [50] 王后裕,朱可善,言志信,凌天清. 三维多向映射无限元及其在道路工程中的应用[J]. 岩石力学与工程学,2001,20(3):293~296.
    [51] 王后裕,朱可善,言志信. 三维双向及三向映射无限元[J]. 工程力学,2002,19(3):95-98.
    [52] 张玉娥,牛润明. 引入无限元的地铁区间隧道地震反应分析石家庄铁道学院学报[J]. 2001,14(3):71-74.
    [53] 燕柳斌,李国华,夏小舟. 地基基础—坝体体系动力特性及地震反应分析的有限元与无限元耦合法[J]. 广西大学学报(自然科学版),2003,28(3):249-253.
    [54] 姜忻良,谭丁,姜南. 交叉隧道地震反应三维有限元和无限元分析[J]. 天津大学学报,2004,37(4):307-311.
    [55] 李先炜. 岩块力学性质[M]. 北京:煤碳工业出版社,1983. 33-102.
    [56] Mogi K. Fracture and flow of rocks under high triaxial compression[J]. Journal of Geophysical Research,1971,76: 1255-1269.
    [57] Wawersik W R, Fairhurst C. A study of brittle rock fracture in laboratory compression experiments[J]. Internation Journal of Rock Mechanics & Minning Sciences,1970,7: 561-575.
    [58] Gowd T N, Rummel F. Effects of confining pressure on the fracture behavior of a porous rock[J]. Internation Journal of Rock Mechanics & Minning Sciences,1980,17: 225-229.
    [59] Fredrich J T. Effects of grain size on brittle and semi-btittle strength: implications for micro-mechanical modeling of failure in compression[J]. Journalof Geophysical Research,1990, 95: 907-920.
    [60] 林卓英,吴玉山,关伶俐. 岩石在三轴压缩下脆——延性转化的研究[J]. 岩土力学,1992,13(2):45-53.
    [61] Mogi K. Effect of the intermediate principal stress on rock failure[J]. Journal of Geophysical Research,1967,72(20): 5117-5131.
    [62] 邓小亮. 三轴压缩下大理岩应力——应变全过程的力学特性的试验研究[J]. 桂林冶金地质学院学报,1993,13(3):272-277.
    [63] 徐松林,吴文,王文印等. 大理岩等围压三轴压缩全过程研究Ⅰ:三轴压缩全过程和峰前、峰后卸围压全过程实验[J]. 岩石力学与工程学报,2001,20(6):763-767.
    [64] 葛修润,周伯海,刘明贵等. 电液伺服自适应控制岩石力学试验机及其对岩石力学某些问题研究的意义[J]. 岩土力学,1992,13(2,3):8-13.
    [65] 葛修润. 关于岩石全过程曲线分类的新见解[A]. 首届全国岩土力学与工程青年工作者学术讨论会论文集[C]. 杭州:1992.
    [66] 葛修润,周伯海,刘明贵,丰定祥. 岩石峰值后区特性和数值模拟方法的探讨[A]. 计算机方法在岩石力学及工程中的应用国际学术讨论会论文集[C]. 西安:1993.
    [67] 川本眺万. ひすみ软化を考虑した岩盘掘削の解析[A]. 土木学会论文集[C]. 1981,第312号:107-117.
    [68] 方德平. 岩石应变软化的有限元计算[J]. 华侨大学学报(自然科学版),1991,12(2):177-181.
    [69] 方德平,汪浩. 考虑岩石脆-塑过渡特性的地下洞室受力分析[J]. 地下空间,1991,11(1):15-22.
    [70] 王兵,陈炽昭,张金荣. 考虑岩石应变软化特性隧道的弹-塑性分析[J]. 铁道学报,1992,14:86-95.
    [71] 罗晓辉,何立红. 土体应变软化特性的桩孔扩张弹塑性解析[J]. 武汉城市建设学院学报,1998,15(1):16-20.
    [72] 蒋明镜,沈珠江. 考虑剪账的线性软化柱形扩张问题[J]. 岩石力学与工程学报,1997,16(6): 550-557.
    [73] 张承柱,李朝弟,刘信声. 考虑材料软化时圆板的承载特性[J]. 应用力学学报,1996,13(3):12-19.
    [74] Lo K Y, Lee C F. Stress analysis and slope stability in strain-softening material[J]. Geotechnique,1973,23: 1-11.
    [75] Dems K, Morz Z. Stability condition for brittle plastic structure with propagationdamage surface[J]. Structures & Mechanics,1985,13(1): 85-122.
    [76] 刘文政. 脆塑性结构极限载荷的计算与工程应用[博士学位论文]. 北京:清华大学,1989.
    [77] 沈新普,岑章志,徐秉业. 弹脆塑性软化本构理论的特点及其数值计算[J]. 清华大学学报(自然科学版),1995,35(2):22-27.
    [78] 郑宏,葛修润,李焯芬. 脆塑性岩体的分析原理及其应用[J]. 岩石力学与工程学报,1997,16(1):8-21.
    [79] 郑宏. 岩土力学中的几类非线性问题[博士学位论文]. 武汉:中国科学院武汉岩土力学研究所,2000.
    [80] 任放,盛谦. 弹脆塑性理论与三峡工程船闸开挖数值模拟[J]. 长江科学院院报,1999,16(4):6-14.
    [81] 蒋明镜,沈珠江. 考虑材料应变软化柱形扩张问题[J]. 岩土工程学报,1995,17(4):10-19.
    [82] 蒋明镜,沈珠江. 考虑材料软化特性的地基承载力分析计算[J]. 南京水利科学研究院水利水运科学研究,1996,(1):42-47.
    [83] 蒋明镜,沈珠江. 考虑剪账的弹脆塑性软化球形扩张问题[J]. 江苏农学院报,1996,17(1):83-90.
    [84] 蒋明镜,沈珠江. 岩土类软化材料的柱形扩张统一解问题[J]. 岩土力学,1996,17(1):1-8.
    [85] 阎金安,张宪宏. 岩石材料应变软化模型及有限元分析[J]. 岩土力学,1990,11(1):19-27.
    [86] Roscoe K H, Schofield A N, Worth C P. On the yielding of soil[J]. Geotechnique,1958,8(1): 22-53.
    [87] Gerogiannopoulos N G, Brown E T. The crited state concept applied to rock[J]. International Journal of Rock Mechanics Minning Sciences & Geomechanics Abstract,1978,15: 1-10.
    [88] 周维垣,孙卫军. 岩石的临界状态非关联弹塑性本构模型[J]. 岩石力学与工程学报,1990,9(1): 1-10.
    [89] Dragon A, Mroz Z. A continuum model for plastic-brittle behavior of rock and concrete[J]. International Journal of Engineering Sciences,1979,17: 121-137.
    [90] Krajciaovic D. Continuous damage theory of brittle materials[J]. Journal of Applied Mechanics,1981,48: 809-824.
    [91] 吴澎. 节理岩体的损伤模型及非线性有限元分析[J]. 岩石力学与工程学报,1988,7(3):193-202.
    [92] 蔡德所,张继春. 基岩爆破损伤的数值模拟及其工程应用[J]. 水利学报,1997,4:67-71.
    [93] 王在泉,华安增. 节理岩体损伤变量确定的分形方法[J]. 岩土力学,1998,19(2):45-48.
    [94] 殷有泉. 固体力学非线性有限元引论[M]. 北京:北京大学出版社,1987.
    [95] Pietruszczak S T, Mroz Z. Finite element analysis of strain softening materials[J]. International Journal of Numerical Methods In Engineering,1981,10: 327-334.
    [96] Prevost J H, Hughes T J. Finite element solution of elastic-plastic boundary value problems[J]. Journal of Applied Mechanics,1984,48: 69-74.
    [97] Ge Xiurun. Post failure behaviour and a brittle-plastic model of brittle rock[A]. Computer Methods and Advances in Geomechanics[C]. Rotterdam:Balkema,1997. 151-160.
    [98] 郑继川.面向对象的有限元程序设计方法研究[硕士学位论文]. 西安:西北工业大学,2000.
    [99] 吴晓涵. 面向对象结构分析程序设计[M]. 北京:科学出版社,2002.
    [100] 郑阿奇,丁有和,郑进. Visual C++ 实用教程[M]. 北京:电子工业出版社,2000.
    [101] 吕凤翥. C++ 语言基础教程[M]. 北京:清华大学出版社,1999.
    [102] 王燕. 面向对象的理论与C++实践[M]。北京:清华大学出版社,1997.
    [103] 王勖成,邵敏. 有限单元法基本原理和数值方法[M]. 北京:清华大学出版社,1997.
    [104] 朱伯芳. 有限单元法原理与应用[M]. 北京:中国水利水电出版社,1998.
    [105] 干腾君. 考虑上部结构共同作用的筏板基础分析及其优化[博士学位论文]. 重庆:重庆大学,2001.
    [106] 曾祥勇. 竖向荷载作用下浅基础的层状地基强度和变形有限元分析[硕士学位论文]. 重庆:重庆大学,2001.
    [107] 尤明庆. 岩石试样的强度及变形破坏过程[M]. 北京:地质出版社,2000.
    [108] 尤明庆. 岩样单轴压缩的失稳破坏和试验机加载性能[J]. 岩土力学,1998,19(3):43-49.
    [109] D.R.J.欧文,E.辛顿. 塑性力学有限元——理论与应用[M]. 曾国平等译. 北京:兵器工业出版社,1989.
    [110] 郑颖人,沈珠江,龚晓南. 广义塑性力学——岩土塑性力学原理[M]. 北京:中国建筑工业出版社,2002.
    [111] 黄克智,黄永刚. 固体本构关系[M]. 北京:清华大学出版社,1999.
    [112] 葛修润,周百海. 岩石力学室内试验装置的新进展—RMT-64岩石力学试验系统[J]. 岩土力学,1994, 15(1),50-56.
    [113] 卢允德. 岩石三轴压缩试验及线性软化本构模型的研究[硕士学位论文]. 上海:上海交通大学,2003.
    [114] 徐干成,郑颖人. 岩石工程中屈服准则应用的研究[J]. 岩土工程学报,1990,12(2):93-99.
    [115] 孙均,汪炳. 地下结构有限元解析[M].上海:同济大学出版社,1998. 133-160.
    [116] 王仁,熊祝华,黄文彬. 塑性力学基础[M]. 北京:科学出版社,1982. 572-578.
    [117] 钱伟长. 弹性力学[M]. 北京:科学出版社,1956.
    [118] 陈惠发. 土木工程材料的本构方程[M]. 余天庆,王勋文,刘再华译,刘西拉,韩大建校译. 武汉:华中科技大学出版社,2001.
    [119] 国家电力公司昆明勘测设计研究院. 小湾水利枢纽初步设计图册与工程地质资料[R]. 昆明:国家电力公司昆明勘测设计研究院,2003.
    [120] 葛修润,王水林等. 小湾水电站工程地下洞室群围岩稳定性研究[R].武汉:中国科学院武汉岩土力学研究所,2003.