机械系统动态特性参数时频域辨识理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
系统动态特性参数的时频域辨识方法作为模态分析领域的新进展和时频分析理论的新应用,正在逐渐引起国际学术界的重视。在总结了国内外模态分析发展历程,归纳了时频域参数辨识技术存在的问题的基础上,本文就机械系统动态特性参数的时频域辨识新方法以及参数辨识中的关键问题展开研究。全文主要完成了以下几个方面的工作:
     1)为了解决时频图像脊识别问题,提出一种基于标准微粒群算法的单条脊识别方法。在改进微粒群进化方程基础上,又提出一种基于改进多目标微粒群算法的多条脊线识别方法。实验证明了基于微粒群算法的脊提取方法具有运算速度快,结构简单,识别精度高,迭代次数少,抗噪声干扰等优点。
     2)构建了一种蚂蚁爬山算法识别多条脊线。实验证明了这种算法能有效提取出变换域平面的多条脊,且精度高。并通过设定脊线能量阈值和设定连线间距的方式,有效剔除伪脊。
     3)从多自由度系统时域脉冲响应函数模型入手,构建了一种系统动态特性参数的核函数辨识法。在对该方法进行理论研究的基础上,建立了“CWD-能量重心转移-改进Hough变换”方法提取脊,然后计算固有频率的完整的辨识过程。仿真实验证明该方法不仅有较高的分辨率,对噪声不敏感,而且运算时间短。
     4)为了扩大小波辨识的应用范围,提出把NExT法与连续小波变换法相结合的综合辨识方法。推导了小波辨识法参数估计的公式,给出了参数估计的完整过程。分析了Gabor小波在减少边缘效应和提高密集模态辨识能力方面的优势。还仿真研究了Gabor小波形状因子对模态参数辨识精度的影响,给出了选择形状因子的建议。通过仿真实验,证明了小波辨识法对噪声的鲁棒性。
     5)构建了一种EMD与自适应特征匹配协同识别的参数辨识法。并把微粒群算法引入自适应特征匹配算法中,提出基于PSO算法的自适应匹配法;建立了完整的辨识过程。仿真验证了经过EMD预处理之后,参数匹配速度明显提高,匹配精度也有所提高。
     6)借助悬臂梁对几种方法做了对比实验,并结合工程实例验证了几种方法的可行性。
The time-frequency domain identification method of system dynamic characteristic parameters as new progress in the field of modal analysis and application of the time-frequency analysis theory is gradually attracting the attention of the international academia. On the basis of summing up the development of the modal analysis and the existing problems of the time-frequency domain parameters identification technique, this dissertation deals with the new identification methods of mechanical system dynamic characteristic parameters in time-frequency domain and the key issues in the process of parameter identification. The following contributions have been made.
     1) In order to solve the problem of detecting a time-frequency image ridge, the particle swarm optimization (PSO) algorithm is introduced. A method of single ridge detection based on the standard PSO algorithm is proposed. Furthermore, a method of multi-ridge detection based on the improved multi-objective PSO algorithm is presented by modifying the PSO evolutionary equations. The simulation experiment results prove that these methods are fast and simple, with high accuracy, less iterations and small noise.
     2) A hill-climbing algorithm is proposed for detecting multi-ridge. Experiment results show that the method is effective and accurate for multi-ridge detection, and those virtual ridges are eliminated by setting up the ridge energy threshold and the distance among ridges.
     3) Starting from the model of impulse response of multi-degrees of freedom (MDOF) system, an identification method for the system modal parameters with the time-frequency kernel is formulated. By firstly detecting the ridge using the CWD (Choi-Williams Distribution)-Time-frequency Reassignment and the improved Hough transform and then evaluating the inherent frequency, the integrated identification process is established. The integrated identification process of the method is established. The simulation results show the identification method not only has a higher resolution and is not sensitive to noise, but also is characterized with short time of computation.
     4) To expand the scope of the application of the wavelet identification, an identification method combining the NExT (Natural Excitation Technique) and the continuous wavelet transform is proposed. The equations of the parameters estimation using the wavelet identification method are derived, and the whole process of the parameters estimation is given. The selection of basic wavelet is fully studied. The advantages, with which the Gabor wavelet can minimize the edge-effects and improve the capability of identifying the heavily coupled modes, are systematically analyzed. Thereafter, the influences of Gabor mother wavelets with different shaping factors on the accuracy of the modal parameter identification are evaluated. The robustness of this method is proved by simulation.
     5) An EMD (Empirical Mode Decomposition) cooperated with adaptive matched pursuit identification method is proposed. The Laplace wavelet is selected for time-frequency atom to formulate the four parameters time-frequency atom dictionary. The adaptive feature matching algorithm based on PSO algorithm is presented. The simulation results show that after the pretreatment of the EMD, the speed and accuracy of parameter matching are significantly upgraded.
     6) These algorithms are applied separately to socle beam testing, and the feasibility as well as accuracy of these methods are justified by technical practice.
引文
[1] 周传荣,赵淳生,机械振动模态参数识别及其应用,北京:科学出版社,1989.
    [2] 张令弥,振动模态分析二十年:进展与展望,全国第七届模态分析与试验学 术会议论文集,山东,长岛,1995. 10:15~18.
    [3] 杨为,邱清盈,胡建军,机械结构的理论模态分析方法,重庆大学学报,2004,27(6):1~4.
    [4] 傅志方,华宏星,模态分析理论与应用,上海:上海交通大学出版社,2000.
    [5] Cole H.A,On Line Failure Detection And Damping Measurement of Aerospace Structures By Random Decrement Signatures, NASA CR-2205,1973.
    [6] 李德葆,陆秋海,实验模态分析及其应用,北京: 科学出版社,2001.
    [7] 大久保信行著,尹传家译,机械模态分析,上海:上海交通大学出版社,1985.
    [8] Richardson M I &Formenti D L.Parameter Estimation from Frequency Response Measurements using Rational Fraction Polynomials. Proc. of the 1st International Modal Analysis Conference, 1982, 540~550.
    [9] Richardson M I. Global Frequency & Damping Estimates from Frequency Response Measurements. Proc. of the 4th International Modal Analysis Conference, 1986.
    [10] Friswell M I & Penny.J E T. The Choice of Orthogonal Polynomials in the Rational Fraction Rolynomial Method. Modal Analysis, 1993,8(3).
    [11] 秦仙蓉,张令弥,对模态参数识别的整体正交多项式算法的评述,强度与环境,2000(4):30~38.
    [12] 曹树谦等,振动结构模态分析——理论、实验与应用,天津:天津大学出版社,2001.
    [13] Ibrahim, S.R., Mikulcik, E.C., A Time Domain Vibration Test Technique, Shock and Vibration Bulletin, 1973(43),Part 4.
    [14] lbrahim S. R., Random Decrement Technique for Modal Identification of Structures, AIAA Journal of Spacecraft and Rockets, Vol. 14(11), 1977, 696~700.
    [15] Cole H.A., On the Lione Analysis of Random Vibrations, AIAA, No. 68, 1968:288~319.
    [16] Vandiver, J. K., Dunwoody, A.B., Campbell, R.B. & Cook, M.R., A Mathematical Basis for The Random Decrement Vibration Signature Analysis Technique, Journal of Mechanical Design, Vo1.104, 1982:307~313.
    [17] Ibrahim S.R., Modal parameter identification from responses of general unknown random inputs. Proceedings of the 14th IMAC. 1996, 2204~2219.
    [18] Ibrahim, S.R., Mikulcik E.C., A method for the direct identification of vibration parameters from the free responses, Shock and Vibration Bulletin. 1997(4). 183~198.
    [19] 林循泓,振动模态参数识别及其应用,南京:东南大学出版社,1990.
    [20] Vold, H, & Rocklin, G.F..The Numerical Implementation of a Multi-Input Modal Estimation Method for Mini-Computers, Proceeding of 1st IMAC, 1982.
    [21] Juang, J. N., Pappa, R. S.. An Eigensystem Realization Algorithm for ModalParameter Identification and Modal Reduction, J. Guid. Control, and Dyn. N8, 1985: 620~627.
    [22] Chuang M.T., Chen S.Y. &Tsuei Y.G., Modal Parameter Identification by Eigen-System Realization Algorithm, Proceedings of 15th IMAC, FLORIDA, USA:50~56.
    [23] Luscher, D.J., James M.W., Brownjohn, Hoon Sohn et al, Modal Parameters Extraction of Z24 Bridge Data, Proceedings of 19th IMAC, Florida, USA, February 5-8, 2001:836~841.
    [24] Akaike, H., Power Spectrum Estimation though Autoregressive Model Fitting, Annals of the Institute of Statistical Mathematics, 21, 1969: 407~419.
    [25] 傅志方,施勤忠,多维时序模型分析及其在模态分析中的应用,全国第三届振动理论及应用会议论文集,中国:哈尔滨,1987:1273~1280.
    [26] 欧阳普仁,杨叔子,时序建模算法的改进及模态参数的识别,全国第五届振动理论及应用会议论文集,1988:632~637.
    [27] 张景绘,邱阳,时间序列分析在振动中的应用,振动与冲击,1983.
    [28] 赵永辉,于开平,邹经湘,利用 ARV 模型识别水轮机轴系模态参数,机械强度,2000,22 (3):170~173.
    [29] 赵永辉,邹经湘,利用 ARMAX 模型识别结构模态参数.振动与冲击,2000,19 (1):34~36.
    [30] Peeters. B, De Roeck, G. Pollet, T. & Schueremans, L., Stachastic Subspace Techniques Applied to Parameter Identification of Civil Engineering Structures, Proceedings of New Advances in Modal Synthesis of Large Structures: Nolinear Damped and Nondeterministic Cases, Lyon, France, September 1995:151~162.
    [31] L. Hermans and H. Vander Auweraer. Modal Testing and Analysis of Structures under Operational Conditions: Industrial Applications, Mechanical Systems and Signal Processing 13(2), 1999:193~216.
    [32] CHEN Ai-lin, ZHANG 1.ing-mi Study of Stochastic Subspace System Identification Method. CHINESE JOURNAL OF AERONAUTICS, 2001, 21(4):222~228.
    [33] 徐良,江见鲸,过静珺,随机子空间识别在悬索桥实验模态分析中的应用,工程力学,2002,19(4):46~49.
    [34] 史东锋,许锋,申凡等,结构在环境激励下的模态参数辨识,航空学报,2004,25(2):125~129.
    [35] 禹丹江,任伟新,基于经验模式分解的随机子空间识别方法,地震工程与工程振动,2005,25(5):61~66.
    [36] L.科恩著,白居宪译,时——频分析:理论与应用,西安:西安交通大学出版社,1997.
    [37] D.Gabor. Theory of communication. J.IEE (London), 1946(93):429~457.
    [38] J.F.Allen and L.R.Rabiner. A unified approach to short-time Fourier analysis and syntheses. Pros.IEEE, 1977(65):1558~1564.
    [39] E.P. Wigner. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 1932(40):749~759.
    [40] J.ViIle. Theorite et applications de la notion de signal analytique. Cables et Transmission. 1948 (2A):61~74.
    [41] W. D. Mark. Spectral analysis of the convolution and adhering of non-stationary stochastic processes. J.Sound Vib., 1970(11):19~63.
    [42] H.Margaial and R.N.Hill, Correlation measurements in quantum theory. Prog. Theor.Phys. 1961(26):722~738.
    [43] W. Rihaczek. Signal energy distribution in time and frequency. IEEE Trans. Information Theory. 1968(14):369~374.
    [44] C. H. Page. Instantaneous power spectra. J. Appl. Phys., 1952(23):103~156.
    [45] Hyung-III Choi and William J.Williams. Improved time-frequency representation of multicomponent signals using exponential kernels. IEEE Trans. ASSP., 1989, 37(6).
    [46] YunXin Zhao, Les E.Atlas, Rober J. Marks. The use of cone-shaped kernels for generalized time-frequency representations of nonstationary signals. IEEE Trans. ASSP., 1990, 38(7):1084~1091.
    [47] Jechang Jeong, William J. Williams. Kernel design for reduced interference distributions. IEEE Trans.SP., 1992, 40(2): 402~419.
    [48] Leon Cohen. Time-frequency distribution—A review. Proc. of IEEE, 1989, 77 (7).
    [49] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond, 1998, 454: 903~995.
    [50] A Grossmann, J Morlet. Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 1984, 15: 723~736.
    [51] Y Meyer. Ondelettes et functions splines. Seminaire EDP, Ecole Polytechnique, Paris, 1986.12.
    [52] R Coifman, M V Wickerhauser. Entropy Based Algorithms for Best Basis Selection. IEEE Trans. on Information Theory, 1992 (38): 313~318.
    [53] M V Wicherhauser. Acoustic Signal Compression with Wavelet Packets in Wavelet: A Tutorial in Theory and Applications. C.K. Chui (Ed.), Academic Press, Boston, 1992. 679~700.
    [54] P Flandrin, O Rioul. Affine Smoothing of the Wigner-Ville Distribution. Proc. Int. Conf. ASSP[C], 1990. 2455~2458.
    [55] Rioul P, Flandrin. Time-Scale Energy Distributor: A General Class Extending Wavelet Transforms. IEEE Trans. On Signal Processing, 1992, 40(7): 1746~1757.
    [56] David E. Newland. Harmonic wavelet analysis, Proc. R. Soc. Land, 1993, 443: 203~205.
    [57] Norden E. H., Zheng S., Steven R. L.,et a1. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-station time series analysis. Proc. R. Soc. A, 1998, 454: 903~995.
    [58] Ma. S., HHT analysis of near-field Seismic ground motion [D]. Colorado School of Mines, 2001.
    [59] Yang Jann N., Ying Lei, Shuwen Pan, Norden Huang. System Identification of Linear Structures Based on Hilbert-Huang Spectral Analysis. Part I: Normal modes. Earthquake Engineering and Structure Dynamics, 2003(32):1443~1467.
    [60] Yang Jann N., Ying Lei, Shuwen Pan, Norden Huang. System Identification of Linear Strucauras Based on Hilbert-Huang Spectral Analysis. Part 2: Complex modes. Earthquake Engineering and Structure Dynamics, 2003(32):1533~1554.
    [61] 续秀忠,李中付,华宏星等,非平稳环境激励下线性结构在线模态参数辨识,上海交通大学学报,2003,37(1):118~126.
    [62] David A. Schoenwald. System identification using a wavelet-based approach. Proceedings of the 32nd Conference on Decision and Control. 1993, 3064~3065.
    [63] Huang, S. Y., Qi G. Z., Yang, J. C. S. Wavelet for System Identification. Proceedings of the 12th International Modal Analysis Conference (IMAC), Honolulu, Hawaii, 1994:1162~1167.
    [64] Newland D.E., Wavelet analysis of vibration, Part 1: Theory, Journal of Vibration and Acoustics. 1994(12):409~416.
    [65] Newland D.E., Wavelet analysis of vibration, Part 2: Wavelet maps, Journal of Vibration and Acoustics. 1994(16), 417~425.
    [66] Staszewski W.J., Copper J.E. Flutter data analysis using the wavelet transform. Proceedings of the International Seminar on New Advances in Modal Synthesis of Large Structures: Nonlinear, Damped and Non-deterministic Cases, Lyon, France, 1995, 203~214.
    [67] Staszewski W.J., Identification of damping in m.d.o.f systems using time-scale decomposition, Journal of Sound and Vibration. 1997(203). 283~305.
    [68] Piere. Argoul, Linear Dynamical Identification: An Integral Transform Seen As A Complex Wavelet Transform. Mechanics. 1997(32):215~222.
    [69] 王永刚,张景绘,小波变换在动力学系统识别中的应用,强度与环境. 1997(4):22~29.
    [70] Ruzzene M., Fasana A., Garibaldi L., Piombo B., Natural frequencies and dampings identification using wavelet transform: application to real data. Mechanical Systems and Signal Processing. 1997(2). 207~218.
    [71] 于开平,邹经湘,史桂香,小波分析在结构系统识别中的应用,力学与实践,1998(5):42~44.
    [72] Staszewski W.J., Identification of nonlinear systems using wavelets experimental study. Proceedings of the 15th IMAC. 1997, 1012~1016.
    [73] Slavic J., Simonovski I., Boltezar M., Damping Identification using a continuous wavelet transform: application to real data, Journal of Sound and Vibration. 2003(262), 291~307.
    [74] Kijeswski T, Kareem A. Wavelet Transform for System Identification in Civil Engineering, Computer Aided Civil and Infrastructure Engineering,2003(18):339~355.
    [75] Zhang G-M., Wang Y-W., Zhang S-Y., Optimal frequency-to-bandwidth ratio of wavelet in ultrasonic non-destructive evaluation, Ultrasonic. 2001(3), 13~17.
    [76] 于开平,邹经湘,模态参数辨识的小波变换方法,宇航学报,1999,20(4): 72~78.
    [77] 李鹤,姚红良,闻邦椿等,基于小波变换方法的高层建筑模态参数辨识,振动与冲击,2005,24(5):96~98.
    [78] Mitra, Mira and Gopalakrishnan, S., Spectrally formulated wavelet finite element for wave propagation and impact force identification in connected 1-D wave-guides. International Journal of Solids and Structures, 2005, 42(16): 4695~4721.
    [79] Lardies J, Ta MN, Berthiller M. Modal parameter estimation based on the wavelet transform of output data. Archive of Applied Mechanics, 2004, 73: 718~733.
    [80] Gleen K. Heitman. Complexity of identification of Input-Output system. Journal of Mathematical Analysis and Applications, 1995, 192: 1007~1033.
    [81] 邹家军,冯志华,基于小波脊的 MDOF 系统的模态参数辨识,苏州大学学报(自然科学版),2004,20(3):35~40.
    [82] 谭冬梅,姚三,翟伟廉,振动模态的参数识别综述,华中科技大学学报(自然科学版),2002(3):73~79.
    [83] 徐亚兰,陈建军,胡太彬,系统模态参数辨识的小波变换方法,西安电子科技大学学报,2004(2):281~286.
    [84] 刘宁,王太勇,赵坚,模态参数辨识的小波方法改进研究,天津大学学报,2006,39(7):788~791.
    [85] Strang G,Nguyen T. Wavelet and filter banks. Wellesley-Cambridge Press, 1996.
    [86] Lawrence C., Freudinger Rick Lind, Martin J. Brenner. Correlation filtering of modal dynamics using the Laplace wavelet. Proceedings of 16th International Modal Analysis Conference[C]. California:Santa Barbara, 1998, 868~877.
    [87] 何正嘉,訾艳阳,Laplace 小波及其工程应用,工程数学学报,2001,18(5):87~92.
    [88] Bonato P., Ceravolo R, and De 5tefano A. Time Frequency and Ambiguity Function Approaches in Structural Identification. Journal of Engineering Mechanics (ASCE}, 1997(123):1260~1267.
    [89] Bonato P, Ceravolo R., Stefano A De.. The Use of Wind Excitation in Structural Identification. Journal of Wind Engineering and Industrial Aerodynamics, 1998:74- 76, 709~718.
    [90] Bonato P, Ceravolo R., Stefano A De, Vlolonari F., Use of Cross-Time-Frequency Estimators for Structural Identification in Non-Stationary Condition and under Unknown Excitation. Journal of Sound and Vibration, 2000, 237(5):775~791.
    [91] Brincker R, De Stefano A. and Piombo B. Ambient Data to Analyse The Dynamic Behaviour of Bridges: A First Comparison Between Different Techniques. Proceedings of 14th IMAC, Society of Experimental Mechanics, Bethel, CT, USA, 1996: 477~482.
    [92] Bonato P., Ceravolo R. and De Stefano A. et al, A New Cross Time Frequency Method For The Structural Identification of Mechanical Systems In Nonstationary Conditions. Damage Assessment of Structures (Gilchrist M.D., Dulieu Barton J. M.and Worden K,Editors), Uetikon Zuerich, Switzerland: Trans Tech Publications.1998:363~372.
    [93] Bonato P., Ceravolo R. and De Stefano A. et al, Time Frequency Based Techniques for The Structural Identification Of Systems. Proceedings of the IEEE International Symposium on Time Frequency and Time Scale Analysis, Pittsburgh, Pennsylvania, USA, 1998: 445-448.
    [94] 续秀忠,李中付等,非平稳环境激励下线性结构在线模态参数辨识,上海交通学学报,2003,37(1):118~121.
    [95] James G. H., Carne T. G., Lauffer J. P., The Nature Excitation Technique(NExT) for Modal Parameter Extraction from Operating Wind Turbines,SAND92-1666, Sandia National Laboratory, Albuquerque, NM, 1993.
    [96] NicholasP. Jone, Cheryl A.Spartz.. Structrural Damping Estimation for long-span Bridges. Journal of Engineering Mechanics.1990, 16(11):2414~2433.
    [97] James G. H., Carne T. G, Mayes, R.L., Modal Parameter Extraction from Large Operational Structures Using Ambient Excitation. 14th SEM International Modal Analysis Conference, Dearborn, MI, Feb, 1996:12~15.
    [98] Ziyad H.Duron, Sheldon Rubin, Hakan Ozisik.Condition Assessment of Large Strutures: Experience with Amibent Test Approach. Proceeding of the 15th SEM International Modal Analysis Conference.1997:106~112.
    [99] Joseph Lardies, Stephane Gouttbroze. Identification of Modal Parameters Using the Wavelet Transform. Identification Journal of Mechanical Sciences, 2002, 44: 2263~228.
    [100] 张令弥,中村幸雄,吉田昭仁,基于环境激励的建筑结构试验建模应用研究,第八届全国振动理论及应用学术会议,上海:2003.
    [101] 韩海明,沈涛虹,宋汉文,工况模态分析的 EMD 方法,振动与冲击.2002, 21(4):69~71.
    [102] 陈隽,徐幼麟,HHT 方法在结构模态参数识别中的应用,振动工程学报,2003,16( 3):383~388.
    [103] LiLi Wang, Jinghui Zhang, Chao Wang, Shiyue Hu. Time-Frequency Analysis of Nonlinear System: the Skeleton Linear model and the Skeleton Curves. Journal of Sound and Acoustics. 2003, 125: 170~177.
    [104] LiLi Wang, Jinghui Zhang, Chao Wang, Shiyue Hu. Identification of Nonlinear Systems through Time-Frequency Filtering Technique. Journal of Sound and Acoustics. 2003, 125:199~204.
    [105] 续秀忠,张志谊,华宏星,应用时变参数建模方法辨识时变模态参数,航空学报,2003,24(3):230~233.
    [106] 续秀忠,张志谊,华宏星,应用时频分析方法辨识时变系统的模态参数,振动工程学报,2003,9:358~362.
    [107] Staszewski W.J., Identification of non-linear systems using multi-scale ridges and skeletons of the wavelet transform, Journal of Sound and Vibration. 1998(3), 639~658.
    [108] Haase M, Widjajakusuma J., Damage Identification Basel on Maxima Lines of the Wavelet Transform. International Journal of Engineering Science.2003, 41:1423~1443.
    [109] Joseph, Lardies and Minh-Nghi, Ta. A wavelet-based approach for the identification of damping in non-linear oscillators. International Journal of Mechanical Sciences, 2005, 47(8): 1262~1281.
    [110] D.E. Adams, R.J. Allemang. Survey of nonlinear detection and identification techniques for experimental vibrations. Proceedings of ISMA23, Vol. I, 1998, 269~281.
    [111] M. Feldman, S. Braun. Identification of non-linear system parameters via the instantaneous frequency: application of the Hilbert transform and Wigner-Ville techniques. Proceedings of 13th IMAC, 1995, 637~642.
    [112] M. Feldman. Non-linear free vibration identification via the Hilbert transform. Journal of Sound and Vibration, 1997, 208(3):475~489.
    [113] Song Zhihua. Nonlinear dynamic system identification based on wavelet approximation. Proceedings of the 3rd Word Congress on Intelligent Control and Automation, 2000:2226~2230.
    [114] Argoul P., Le T-P., Instantaneous indicators of structural behaviour based on continuous Cauchy wavelet transform, Mechanical Systems and Signal Processing.2003(17), 243~250.
    [115] Simonovski I., Boltezar M., The norms and variances of the Gabor, Morlet and General harmonic wavelet functions. Journal of Sound and Vibration. 2003(264): 545~557.
    [116] 崔锦泰著,程正兴译,小波分析导论,西安:西安交通大学出版社,1995.
    [117] 程正兴,小波分析算法与应用,西安交通大学出版社,1998.
    [118] S. G. Mallat, A wavelet tour of signal processing, Academic Press, New York, 1998.
    [119] C. Pislaru,J. M. Freeman, D.G.ford. Modal parameter Identification for CNC machine tools using Wavelet Transform. International Journal of Machine Tools & Manufacture. 2003(43):987~993.
    [120] 张贤达,保铮,非平稳信号分析与处理,北京:国防工业出版社,1998.
    [121] K. Gram-Hansen, K. Dorize. On the choice of parameters for time-frequency analysis. Wavelet and Applications, Proceedings of the international conference, Masson, Parts, 1991, 86~92.
    [122] 钟佑明 秦树人 汤宝平. Hilbert-Huang 变换中的理论研究. 振动与冲击, 2002, 21(4):13~17.
    [123] Carmona R., Hwang W.L., Torresani B., Characterization of signals by the ridges of their wavelet transforms, IEEE Transactions on Signal Processing.1997: 2586~2589.
    [124] Carmona R., Hwang W-L., Torresani B., Practical Time–Frequency Analysis, Gabor and Wavelet Transforms with an Implementation in S, Wavelet Analysis and its Applications, Vol. 9, Academic Press, San Diego, CA, 1998.
    [125] Newland D.E., Ridge and phase identification in the frequency analysis of transient signals by harmonic wavelets, Journal of Vibration and Acoustics. 1999(21):149~155.
    [126] Carmona R., Hwang W.L., Torresani B., Identification of chirps with continuous wavelet transform, in A. Antoniadis, G. Oppenheim (Eds.), Wavelets and Statistics, Lecture Notes in Statistics, Vol. 103, Springer, New York, 1994, 95~108.
    [127] Hough P. V. C., Methods and means for recognizing Complete patterns. US Patent, 3069654, 1962.
    [128] Ballard D. H.. Generalizing the Hough transform to arbitrary shapes. Pattern Recognition, 1981, 13(2):111~122.
    [129] Duda P. O., Hart P E., Use of the Hough transform to detect lines and curves in pictures. CACM, 1972, 15(1):11~15.
    [130] 张子瑜,吴镇扬,李想等,基于 Hough 变换的任意时频分布线条特征提取,电子学报,2001(4):433~435.
    [131] 尚斌,赵俊渭,张艳萍等,基于 Hough 变换的声呐航迹检测算法,声学与电子工程,2005,78(2):29~32.
    [132] J.Kennedy,R.Eberhart.A discrete binary version of the particle swarm optimization algorithm.Proc. of the 1997 Conf. On Systems, Man, and and Cybernetics, 4104~4109. Piscataway, NJ: IEEE Service Center.
    [133] 曾建潮,介婧,崔志华,微粒群算法,北京:科学出版社,2004.
    [134] 侯志荣,吕振肃,基于 MATLAB 的粒子群优化算法及其应用,计算机仿真,2003,20(10):68~70.
    [135] 于凤芹,曹家麟,基于时频重排-霍夫变换的雷达回波信号检测信号数据处理,现代雷达,2005,27(2):40~46.
    [136] Schaffer J.D. Genetic Algorithms and their Applications: Proceedings of the first Int. Conf. On Genetic Algorithm, 1985: 93~100.
    [137] Parsopoulos KE and Vrahatis MN. Particle Swarm Optimization method in multiobjective problems. Proceedings ACM Symposium on Applied Computing (SAC 2002): 603~607.
    [138] C.A. Coello Coello, M.S.Lechuga. MOPSO: A proposal for multiple objective particle swarm optimization. IEEE Congress on Evolutionary Computation (CEC 2002), Honolulu, Hawaii, USA, 2002.
    [139] 张利彪,周春光,基于粒子群算法求解多目标优化问题,计算机研究与发展,2004(7):1286~1291.
    [140] 张策,机械动力学,北京:高等教育出版社,2000.
    [141] N. Sudarshan Rao, P. S. Moharir. A Signal-Dependent Evolution Kernel for Cohen Class Time–Frequency Distributions .Digital Signal Processing. 1998(8):158~165.
    [142] Barkat B, Boashash B. A High-resolution quadratic time-frequency distribution for multi-component signals analysis.IEEE Transaction on Signal Processing, 2001, 49(10):2232~2239.
    [143] James G H., Carne T.G, Lauffer J.P, The Natural Excitation Technique (NExT) for Modal Parameter Extraction from operating Structures, Modal Analysis, 1995(14): 260~277.
    [144] S. Hans, E. Ibraim, S. Pernot, et al.. Damping identification in muti-degree-of freedom system via a wavelet-logarithmic decrement-Part 1: theory. Journal of Sound and Vibration, 2000, 235(3): 361~374.
    [145] S. Hans, E. Ibraim, S. Pernot, et al., Damping identification in muti-degree-of freedom system via a wavelet-logarithmic decrement-Part 2: study of a civil engineering building. Journal of Sound and Vibration, 2000, 235(3): 375~403.
    [146] J. C. Hong and Y. Y. Kim, “Determination of the optimal Gabor wavelet shape for the best time-frequency localization using the entropy concept. 2004, Exp. Mech.44, 387~395.
    [147] Staszewski W.J., Identification of non-linear systems using multi-scale ridges and skeletons of the wavelet transform, Journal of Sound and Vibration. 1998(3), 639~658.
    [148] B.A.D. Piombo, A. Fasana, S. Marchesiello, et al. Modeling and identification of the dynamic response of a supported bridge. Mechanical Systems and Signal Processing, 2000, 14(1): 75~89.
    [149] Miha B, Janko S. Enchancements to the continuous wavelet transform for damping identifications on short signals. Mechanical Systems and Signal Processing, 2004(18):1065~1076.
    [150] 刘宁,系统模态参数小波辨识方法研究,天津大学博士学位论文,2006,3.
    [151] Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12):3377~3415.
    [152] Shie Q, Dapang C. Joint .Time-frequency Analysis. Englewood Cliffs: Prentice Hall, 1996.
    [153] Huber P. J., Project pursuit. The Annals of Statistics, 1985, 13(2):435~475.
    [154] L. K. Jone, On A Conjecture of Huber Concerning. The Convergence of Projection Pursuitre Gression, Th Ea Nnalso Fs Tatistics, 1987, l15 (2):880~882.
    [155] 何正嘉,訾艳阳,孟庆丰等,机械设备非平稳信号的故障诊断原理及应用, 北京:高等教育出版社,2001.
    [156] 孙大瑞,吴乐南,基于特征的弹性图匹配人脸识别算法,应用科学学报,2002,20(4):377~381.
    [157] 胥永刚,机电设备监测诊断时域新方法的应用研究,西安交通大学博士学位论文,2003.
    [158] 师汉民,湛刚,吴雅,机械振动系统(上册),武汉:华中理工大学出版社,1992.
    [159] Elliott S J, Johnson M E. Radiation modes and the active control of sound power. J. Acoust. Soc. Aura., 1993, 94(4):2194~2204.
    [160] Seybert A. F., Soenarko B., Rizzo F. J., Shippy D. J., An advanced computational method for radiation and scattering of acoustic waves in three dimensions. J. Acoust. Soc. Aura., 1985; 77(2): 362~368.
    [161] 黎胜,赵德有,结构声辐射的振动模态分析和声辐射模态分析研究,声学学报,2004,29(3):2194~2204.
    [162] Chen H. De Baerdemaeker J., Modal analysis of the dynamic behavior of pineapples and its relation to fruit firmness. Transactions of the ASAE.1993, 36(5):1439~1444.
    [163] Shmulevich I., Detection of fruit firmness by frequency analysis. Transactions of the ASAE, 1996, 39(3):1047~1055.
    [164] 王俊,滕斌,周鸣,梨敲击激励后产生的动力学特性研究,农业机械学报,2004,35(2):65~68.