Al-Mg-Mn-Zr-Er合金组织和力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微合金化是提高铝合金综合性能的有效方法之一。本文采用传统的铸锭冶金法制备含Er的Al-4.5Mg-0.7Mn-0.1Zr-0.4Er合金。借助硬度测试(HBS)、金相显微组织观察(OM)、X射线衍射分析(XRD)、扫描电镜(SEM)与能谱分析(EDS)、透射电镜观察(TEM)等分析测试手段,研究了退火制度对Al-4.5Mg-0.7Mn-0.1Zr-0.4Er合金的力学性能与微观组织的影响,深入分析了Er在合金中的存在形式、与合金元素的交互作用以及对合金的强化机理,并初步研究了实验合金的疲劳极限和平面应力断裂韧性,分析了Er对疲劳极限和平面应力断裂韧性的作用及机理。
     研究退火温度和时间对合金力学性能的影响,结果表明,退火温度对合金力学性能影响很大,而退火保温时间对合金力学性能影响程度小。冷轧变形量为81.3%的合金在不同温度下退火2小时,在125℃~225℃之间,强度下降缓慢,225℃~275℃之间强度急剧下降,延伸率显著上升,275℃之后强度几乎不再发生变化。结合硬度法和金相法确定了合金的再结晶起始温度为225℃,再结晶终了温度为275℃。通过实验对比研究表明,冷轧板在125℃退火1个小时,合金的综合力学性能最佳。
     按照国标GB/T3075-1982,测试了合金室温下的条件疲劳极限。合金板材在应力比R=0.1,循环寿命为10~7条件下的疲劳极限为293.6MPa。与传统的5083板材相比,实验合金的疲劳极限有了很大的提高。用扫描电镜对疲劳断口进行观察和分析,结果表明:疲劳裂纹起源于试样侧表面,因为在循环载荷作用下,该处存在应力集中,导致裂纹萌生和扩展。随着退火温度的提高,合金的疲劳寿命显著下降。按照HB5261-83,采用紧凑拉伸试样,测试了出合金板材的平面应力断裂韧性KC为51.92MPa·m~(1/2)。
     对合金不同退火温度的试样进行了SEM和TEM观察。发现合金中除了α-Al基体、Al_6Mn相外,合金中存在大量的Al_3(Er,Zr)粒子,大小为几十纳米,这些粒子与基体成共格关系,并且弥散分布于基体中,起到了析出强化的作用。在退火过程中,这些第二相粒子并没有长大粗化,说明它们具有很好的高温稳定性。这些纳米级粒子能够强烈钉扎位错和亚结构,对晶界迁移及晶粒的长大有显著的抑制作用,阻碍了再结晶的形成。
The addition of trace mircoalloying element to aluminum alloys is one of those effective means to improve the synthesis properties of the aluminum alloys. In our group’s earlier research, rare-earth element Er have been proved to have positive effects on the structure and properties of Al-5Mg and Al-Mg-Mn alloys. In this thesis, Al-4.5Mg-0.7Mn-0.1Zr-0.4Er alloy was prepared by using the Metallurgy cast processing. By means of hardness testing, tensile properties measurement, optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS), effects of annealing temperature and time on microstructure and mechanical properties of Al-4.5Mg-0.7Mn-0.1Zr-0.4Er alloy were investigated. The existing forms of Er and interactions with other alloying elements in the alloy, the strengthening and refining mechanism were profoundly studied. The effects of Er on the fatigue propertity and the plane ssress fracture toughness of the alloy were also discussed.
     It was shown that annealing temperature has a significant affect on the mechanical properties and microstructure of the experimental alloys while the annealing time has little affect on the mechanical properties and microstructure of the experimental alloys.The mechanical properties of the alloys changed a little when annealed at the temperatures below 225℃at which temperture only recovery happens. Mechanical properties of the alloys vary strongly only for the annealing temperatures of 225~275℃with the recrystallization. The second phase particles containing Er do remarkably inhibit the coarsening of recrystallized grains. When the alloy was annealed at 125℃for 1 hour, the optimized mechanical properties were obtained.
     According to GB/T3075-1982, the high cycle fatigue behavior of Al-4.7Mg-0.7Mn-0.1Zr-0.4Er alloy was studied using an up-and-down method. Fatigue strength of the alloy is determined as 293.6MPa by the up-and-down method calculation under the conditions of stress ra tio R=0.1 and cycles N=107 which was higher than the traditional 5083 alloy. The fatigue fracture morphology was examined by means of Scanning Electron Microscopy (SEM) and the crack propagation process was also analyzed. Results show that the crack was initiated on the surface of the samples where stress concentration existing under the cyclic lording.
     According to HB5261-83, the plae-sress frature toughness(KC) was tested using the CS sample. The KC was determined as 51.92MPa·m~(1/2) which may be lower than its true value because bucking appeared during the testing process. The frature morphology was examined by means of SEM.
     A large amount of Al_3(Er,Zr) particles can be observed in researched alloy, which were high dispersed and coherent with the Al matrix. They are responsible for two mechanisms in the experimental alloy: precipitation strengthening and find grain strengthening. These particles can pin the dislocation and substructure, hinder the dislocation moving and transffering of substructure. Hence Al_3(Er,Zr) is the important strengthening phase in experimental alloy. The Al_3(Er, Zr) remarkably inhibit the coarsening of recrystallized grains.
引文
1 Miller W S, Zhuang L, Bottema J, Wittebrood A J, Smet P De, Haszler A, Vieregge A. Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering, 2000, 280(1):37~49
    2王祝堂,田荣璋.铝合金及其加工手册.中南工业大学出版社, 2003:3~4
    3刘静安,谢水生.铝合金材料的应用与技术开发.冶金工业出版社, 2004:7~9
    4孙伟成,张淑荣等.稀土元素在铝合金中的合金化作用.兵器材料科学与工程. 1990,(2):64~68
    5杜挺.稀土在金属材料中的一些物理化学作用.金属学报. 1997,33(1):69-77
    6王钰.船用铝合金材料.轻金属, 1996, (6):58~64
    7 Arild H. Clausen, Tore Borvik, Odd S. Hopperstad, Ahmed Benallal. Flow and fracture characteristics of aluminium alloy AA5083–H116 as function of strain rate, temperature and triaxiality. Materials Science and Engineering A, 2004, 364:260~272
    8周晓霞,张仁元,刘银峁.稀土元素在铝合金中的作用和应用.新技术新工艺, 2003, (4):43~45
    9孙伟成,张淑荣等.稀土元素在铝合金中的合金化作用.兵器材料科学与工程, 1990, (2):64~68
    10雷广孝.稀土在铝及铝合金中的作用和应用概况.轻合金加工技术, 1990, (2):5~10
    11 Vladivoj Ocenasek, Margarita Slamova. Resistance to recrystallization due to Sc and Zr addition to Al–Mg alloys. Materials Characterization, 2001, (47) :157~162
    12 Zhang Yonghong, Yin Zhimin, Zhang Jie, Pan Qinlin, Peng Zhihui. Recrystallization of Al-Mg-Sc-Zr alloys. Rare metal materials and engneering, 2002, 31(3):2~5
    13 M.J. Jones, F.J. Humphreys. Interaction of recrystallization and precipitation: The effect of Al3Sc on the recrystallization behaviour of deformed aluminium. Acta Materialia, 2003, (51):2149~2159
    14 B1ake N, HoPkins MA, Constitution and age hardening of A1-Sc alloys. Mater Sci, 1985, 20(8):2861~2867
    15 Stepanov, Butoba M. Effect of scandium in aluminum and it’s alloys. Magy A1um,1986,23(9):313~319
    16 Yu.A. Filatov, V.I. Yelagin, V.V. Zakharov. New Al–Mg–Sc alloys. Materials Science and Engineering A, 2000, (280):97~101
    17 Y. W. Riddle, H. G. Paris. Proceedings of ICAA-6 Aluminum Al-alloys, 1998, (2):1179~1181
    18 R. R. Sawtell, C. L. Jerisen, Metall. Traps. A, 1990, (21A): 421~422
    19 L. A. Willey, United States Patents, 771669, 1971
    20潘复生,周守则,石功奇.我国稀土铝合金的研究和应用(2).轻合金加工技术, 1990, (4):11~15
    21黎文献,易丹青.稀土对6063合金耐蚀性能的影响.中国稀土学报, 1992, 10(1): 63~68
    22程家宁,于贵复.稀土元素在高强度耐热铸造铝合金中应用的研究.稀土, 1981, (4):1~3
    23张淑芳,王冰,赵连山,孙长英.稀土在铝合金建筑型材中的应用研究.稀土, 1989, (4): 44~46
    24张启运.稀土元素对Al-Si共晶合金的变质作用.金属学报, 1981, 17(2):130~136
    25陈玉勇,贾均,马顺龙.氯化稀土对ZL102合金变质作用及性能影响的研究.稀有金属, 1989, 13(6): 472~476
    26 Hu Jiandong. Strucral stability and stacking faults in a laser-metted ZL108 Al-Si alloy containing rare earth. J of Mater Sci, 1992, (27): 671~674
    27陈越.稀土在铝及铝合金中的应用.上海有色金属, 1998, 19(3):136~141
    28潘复生,周守则,石功奇.我国稀土铝合金的研究和应用(1).轻合金加工技术, 1990, (3):1~12
    29余琨,李松瑞,黎文献.含Sc和Zr的2618铝合金冷轧板材退火时组织性能的变化.金属热处理, 1999, (6):2~6
    30潘青林,尹志民,邹景霞,陈显明,张传福.微量Sc在Al-Mg合金中的作用.金属学报, 2001, 37(7):7~8
    31陶辉锦,李绍唐,刘记立,周向,康宁,尹志民. Sc在铝合金中的微合金化作用机理.粉末冶金材料科学与工程, 2008, 13(5):5~6
    32 Buschow. KHJ, Philips. Res.Repts.1970, (25):227~228
    33晓哲.稀土元素铒及其应用.科普知识, 2005, (12):20~21
    34 L.F.蒙多尔福著,王祝堂等译,铝合金的组织与性能.冶金工业出版社,1988:125~128
    35聂祚仁,金头男,徐国富,杨军军,付静波,左铁镛.一种铝铒合金.(国家发明专利,ZL01134612.4)
    36聂祚仁,金头男,杨军军,邹景霞,徐国富,付静波,阮海琼,左铁镛. Al-Zn-Mg-Er稀土铝合金. (国家发明专利,ZL03119119.3)
    37聂祚仁,金头男,付静波,杨军军,邹景霞,徐国富,秦肖. Al- Mg-Li-Zr-Er合金. (国家发明专利,申请号:03153576.3)
    38 Yang Junjun, Nie Zuoren, Jin Tounan.etc. Effect of Trace Rare Earth Element Er on High Pure Al. Trans. of Nonf. Met. Sci. of China, 2003, 13(5):1035~1039
    39杨军军,聂祚仁,付静波,左铁镛.稀土在铝合金中的作用及研究进展.北京工业大学学报, 2002, 28(6):500~505
    40徐国富,聂祚仁,金头男.微量稀土Er对LF3铝合金铸态组织的影响.中国稀土学报, 2002, 20(2):143~145
    41杨军军,聂祚仁,金头男.稀土元素Er对Al-4Cu合金组织与性能的影响.中国稀土学报, 2002, 20(增刊):159~162
    42阮海琼,金头男.含稀土Er的Al-Zn-Mg合金的组织与性能.北京工业大学学报, 2004,30(4):483~487
    43付静波,聂祚仁,金头男.微量稀土元素Er对1420合金织构的影响.金属热处理, 2006, 31(4):5~8
    44赵中魁,周铁涛等.Al-Zn-Mg-Cu-Li-Er合金时效组织中Er相的TEM观察[J].稀有金属材料与工程,2004,33(10):1108-1111
    45 Rosalbino F, Angelini E, De Negri S, Saccone A, Delfino S. Influence of the rare earth content on the electrochemical behaviour of Al–Mg–Er alloys. Intermetallics, 2003, (11): 435~436
    46 Richard A. Karnesky, Marsha E. van Dalen, David C. Dunand, David N. Seidman. Effects of substituting rare-earth elements for scandium in a precipitation-strengthened Al–0.08 at.%Sc alloy. Scripta Materialia, 2006, (55):437~440
    47杜凤山,闫亮,戴圣龙,杨守杰.高强铝合金疲劳特性研究.航空材料学报, 2009, 29(1):2~4
    48姚卫星,郭盛杰. LC4CS铝合金的超高周疲劳寿命分布.金属学报, 2007, 43(4):399~403
    49刘晓山,何国求,范宋杰. A356铸造铝合金的单轴疲劳特性及断口分析.金属功能材料, 2008, 15(4):8~9
    50贾法勇,霍立兴,吴冰.铝合金5083纵向角接板焊接接头疲劳强度.机械工程学报, 2005,41(8):2~5
    51 Roder O, Wirtz T, Gysle A, Liitjering G. Fatigue properties of Al-Mg alloys with and without scandium. Materials Science and Engineering A, 1997:181~184
    52 Watanabe C, Monzen R, Tazaki K. Effects of Al3Sc particle size and precipitate-free zones on fatigue behavior and dislocation structure of an aged Al–Mg–Sc alloy. International Journal of Fatigue, 2008, (30): 635~641
    53高旭东.稀土Er对Al-4.5Mg-0.15Zr和Al-4.5Mg-0.7Mn-0.10Zr合金的影响研究.北京工业大学硕士论文, 2007, 4
    54王慧敏,严红革.平面应变断裂韧性KIC的研究.材料导报, 2002, 16(11):11~13
    55董大军,上官晓峰.铸造铝合金A356平面断裂韧度KIC的研究.铸造, 2007 , 56 (5):4~6
    56单朝晖,王中光,张匀.铝-锂合金平面应力断裂韧性的研究.材料工程,1992:2~4
    57汝继刚,伊琳娜. 7B04铝合金疲劳断裂性能研究.轻合金加工技术, 2007, 35(10):3~6
    58耿东生,孟亮,高杨. Ce及Na,K对2090合金板材不同方向断裂韧性的影响.稀有金属材料与工程, 1993, 22(4):4~6
    59张茁,陈康华,方华婵.微量Yb对AI-Zn-Mg-Cu-Zr合金力学性能和断裂韧性的影响.粉末冶金材料科学与过程, 2008,13(3):2~4
    60 R.Sen, S.Kaiser, M.K.Mitra, M.K.Banerjee. Plane strain fracture toughness of scandium doped Al–6Mg alloy. Journal of Alloys and Compounds, 2008, (457):135~143
    61 Ansan, Kyunggi-Do. Annealing behavior of 5083 Al alloy deformed at cryogenic temperature. Korea Journal of Materials Science, 2005, (40):797~799.
    62高旭东,邢泽炳,季小兰,苏学宽,聂祚仁.稀土铒(Er)对Al-4.5Mg-0.15Zr合金组织与性能的影响.金属热处理, 2007, 32(8):40~43.
    63李超.金属学原理.哈尔滨工业大学出版社, 1989:321~322
    64朱大鹏.微量杭和锆对Al-Mg-Mn合金组织性能的影响.中南大学硕士论文, 2004:
    65 Hume-Rothery W, Smellman R E and Hawworth C W. Structure of Metals and Alloys. 5th ed.London: Institute of metals, 1969.47-62 and 124-125
    66刘扬邦. Al-4.5Mg-0.7Mn-0.4Er-0.1Zr合金的性能与组织研究.北京工业大学硕士论文, 2008, 32~35
    67刑泽炳. Er微合金化的Al-4.5Mg-0.7Mn-0.1Zr合金的组织与性能研究.北京工业大学博士学位论文,2008,90~94
    68陈耀明.评价及估算切口疲劳强度的新方法.航空工业出版社, 2006:98~102
    69徐以锋.电解含钛铝合金的疲劳性能研究.郑州大学硕士论文, 2003:9~12
    70孙秀堂,李洪升,常成.平面应力断裂韧度KC的测试与研究.宇航材料工艺, 1994, (2):53~55
    71金属板材Kr曲线实验方法.中华人民共和国航空工业部标准.航空工业部, 1984;213~214
    72 Juijerm P, Noster U, Altenberger I, Scholtes B. Fatigue of deep rolled AlMg4.5Mn (AA5083) in the temperature range 20-300℃. Materials Science and Engineering A. 2004, (379):286~292
    73 Sidhom N, Laamouri A, Fathallah R, Braham C, Lieurad HP. Fatigue strength improvement of 5083 H11 Al-alloy T-welded joints by shot peening: experimental characterization and predictive approach. International Journal of Fatigue, 2005, (27):729~745
    74李念奎.船用铝合金的机械性能.轻金属, 1994, (9):54~55
    75王祝堂,田荣璋.铝及铝合金加工手册.中南工业大学出版社, 1989:300
    76 Christian B Fuller, Albert R Krause, David C Dunand, David N Seidman. Microstructure and mechanical properties of a 5754 aluminum alloy modified by Sc and Zr additions. Materials Science and Engineering A, 2002, (338):8~16