深海热液区嗜热菌噬菌体D6E的分子特征及GVE2与宿主的蛋白质互作研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋占整个地球表面积的71%,多样性的生态环境蕴藏着丰富的生物资源。深海热液口是地球上一个极其恶劣的生存环境-高温、高压、缺氧、含有大量有毒的化学物质,但是其中及其周围却存在着一个完整的生态系统。噬菌体被认为是地球上最丰富的生命体,几乎可以在地球上的每个生态环境中找到,同样也暗示着它们在微生物多样性和生态平衡上发挥着重要作用。嗜热菌作为深海热液口生态群落的初级生产者,是推动营养和能量循环的主要动力。噬菌体是一类特殊群体,它们寄生在细菌体内,根据环境变化发生溶原或者裂解,从而引起宿主菌在整个生态群落中的分布。由于深海热液口在地理分布上具有一定的独立性,所以噬菌体与宿主的关系直接影响着整个热液口生态群落的存在和结构。随着基因组测序技术的发展,越来越多的噬菌体基因组信息添加到基因组数据库中,这为噬菌体生物信息学研究提供了大量的数据,不仅包括噬菌体序列之间的分析,还有利于研究噬菌体群体之间的结构组成。噬菌体的基因组虽然很小,但是却编码了自身复制所需的蛋白,如DNA包装蛋白、头尾结构蛋白、DNA复制相关蛋白、转录调控蛋白、裂解相关蛋白等。通过比较基因组学,可以得到大量的基因多样性数据,同时发现基因组之间存在着非常明显的序列相似性。这些序列可以通过同源或者点特异性重组促进噬菌体基因模块发生互换;或者,通过非定向的遍及整个基因组发生非同源重组。
     在本论文中,通过各种筛选培养基对深海热液区样品中的嗜热菌和高温噬菌体进行了分离、纯化,并得到了4株高温噬菌体,对其中的高温噬菌体D6E进行了进一步研究。结果表明,高温噬菌体D6E为肌尾科病毒,有二十面体的头部,长长的尾巴和尾丝。经测序,D6E基因组有49335 bp,为双链环状DNA,可以编码49个预测有功能的蛋白。和其它噬菌体一样,D6E的基因排列也是成簇分布的,按功能可以分为四个部分:DNA包装和头部装配、尾部组成、溶原与裂解、DNA复制和转录。通过在NCBI数据库中进行比对分析发现,D6E的大部分结构相关蛋白与已知噬菌体蛋白的同源性非常低,但是溶原和裂解相关基因以及DNA复制和转录相关基因的核苷酸序列与本实验室另外一株已测序的高温噬菌体GVE2不管在基因排列、还是这些基因编码的氨基酸序列上都具有非常高的相似性。采用蛋白质组学技术,对D6E病毒粒子的蛋白质组进行了分析,结果得到了10个与结构相关的蛋白,包括核衣壳蛋白、入口蛋白、支架蛋白等,其中质谱匹配率非常高的两个未知蛋白ORF3(第3条带)和ORF16(第9条带)的功能有待进一步研究。
     根据本实验室分离获得的深海嗜热菌噬菌体GVE2基因组测序结果和预测阅读框分析,重组表达并纯化了20个GVE2蛋白,制备相应的多克隆抗体,采用Western Blot对噬菌体的基因表达进行了分析。通过免疫共沉淀(Co-IP)和GST下拉(GST pull-down)试验寻找在感染过程中GVE2与宿主可能发生相互作用的蛋白。通过实验,得到了两种蛋白复合体:与GVE2 ORF5(核衣壳蛋白,VP371蛋白)相互作用的分子伴侣蛋白;与GV2 ORF36相互作用的未知蛋白。本实验室前期工作中发现宿主的天冬氨酸转氨酶和分子伴侣蛋白参与了噬菌体的感染过程,因此,本试验进一步研究噬菌体GVE2 VP371蛋白与宿主天冬氨酸转氨酶和分子伴侣形成的蛋白复合体在噬菌体感染中的作用。Western blot和细菌双杂交试验结果显示,VP371蛋白和分子伴侣蛋白之间、分子伴侣蛋白和天冬氨酸转氨酶之间存在相互作用,而VP371蛋白和天冬氨酸转氨酶之间没有相互作用,复合体中3个蛋白呈串联结构结合在一起。在噬菌体感染实验中我们发现,随着感染时间的增加,VP371的转录表达量逐渐增大,同时分子伴侣蛋白和天冬氨酸转氨酶都比未感染时有了明显上调表达。因此,在噬菌体感染过程中,GVE2核衣壳蛋白VP371和宿主的分子伴侣蛋白发生相互作用,并依次递进促进了分子伴侣蛋白和天冬氨酸转氨酶的上调表达,从而进一步调控了宿主细胞的代谢活动。
     本论文对对高温噬菌体GVE2的ORF3(入口蛋白)和ORF56(胸腺嘧啶合成酶)进行了功能鉴定。ORF3预测为噬菌体入口蛋白,虽然在氨基酸序列上它与其他噬菌体具有很低的同源性,但与SPP1、HK97的入口蛋白都具有相似的螺旋/折叠排列结构,属于HK97入口蛋白家族,在DNA包装过程中发挥着相同的功能。预测二级结构分析发现,GVE2同SPP1和Phi29都具有非常保守的α-Helices,可能是在基因组包装过程中保留下来的一种古老结构域。通过免疫电镜定位,结果表明入口蛋白位于头尾的连接处。Orf56编码原核型的胸腺嘧啶合成酶,与已知的不同物种的胸腺嘧啶合成酶有很高的相似性。ORF56中可以找到符合胸腺嘧啶合成酶的活性中心的保守序列,还具有五个非常保守的motif,包括叶酸结合位点、催化活性中心、dUMP-结合位点、质子转运位点和功能待定区域。通过体外结合试验,结果发现ORF56编码的蛋白可以与其自身mRNA结合。
Bacteriophages can be detected in almost every biological niche and represent ahuge source of biodiversity and possibly the largest part of the biomass on the planet.Therefore,phages are thought to play major roles in the ecological balance ofmicrobial life and in microbial diversity.This view has gained strong support from thework in the past 30 years or so on viruses in extreme ecosystems.With the discoveryof deep-sea hydrothermal vents and their attendant communities,researches onhydrothermal vent communities have become attractive interests in the field ofoceanography and biology.The isolation and characterization of viruses often lead tonew insights into virus relationships and to a more detailed understanding of thebiochemical environment of their host cells.The increasing number of viral (andcellular) genomes that have been sequenced has directed our attention to utilize thisinformation to rationalize the organization of viral life forms.In general,ourunderstanding of the deep-sea thermophilic bacteriophages is far behind ourknowledge of the terrestrial,mesophilic bacteriophages.The recent discovery of manynovel extremely thermophilic bacteriophage,especially among members isolatedfrom deep-sea hydrothermal vents,is likely to lead to a more complete understandingof not only thermophiles,but also the biochemical adaptations required for the life inextreme environments,and to new insights into both host and virus evolution.Genome sequencing has revealed the important role of horizontal gene transfer inprokaryotes.Comparative viral genomics has created a wealth of information that hasmade it possible to construct gene and genome phylogenies as well as to observecomplex relationships among virus genomes.However,phages that infectthermophilic eubacteria have remained mostly unexplored.Genomes of only a few ofsuch phages have been sequenced completely.The only phage infecting thermophilicbacteria which identified from deep-sea hydrothermal vent that has been characterizedat the molecular level is GVE2,a siphovirus that infects Gebacillus sp.The functionalanalysis of the GVE2 genome and its gene expression strategy has revealed a wealthof new data about transcription and replication regulation,indicating that furtherstudies of phages infecting thermophilic bacteria are warranted.
     Our studies focus on the molecular biology of host-phage interactions especially at protein level using biochemistry,molecular microbiology and molecular biologyapproaches.In this investigation,several thermophilic bacteriophages were isolatedfrom deep-sea hydrothermal vents in east pacific.Among them,the thermophilicbacteriophage D6E was characterized.D6E was an atypical myovirus with anicosahedral capsid (60 nm in diameter),a tail (16 nm in width,60 in length) and a tailfiber (4 nm in width,60 nm in length).An accurate mode of DNA pyrosequencingwas used to sequence the genome and mass spectrometry was used to accomplish thecomprehensive virion protein survey.Based on sequencing,the phage contained a49335-bp double-stranded genomic DNA.The genome encoded 49 putative openreading frames (ORFs).Functions for D6E gene products were predicted on the basisof similarity to proteins of known functions from diverse phages and bacteria.D6Eencoded four clusters of proteins involved in DNA packaging and headmorphogenesis,lysis and lysogeny,DNA replication and transcription.Advancedbioinformatics techniques were used to identify classical morphogenesis genes.Thestructural genes of D6E,most of which had no similarity to sequences in publicdatabases,were identified by mass spectrometric analysis of purified virions.Therewas also evidence that the capsid protein and portal protein could generate tertiaryand quaternary structures similar to corresponding proteins of other bacteriophages,despite the lack of significant sequence similarity.A comparative analysis of D6Esequence with GVE2,isolated from east pacific,was conducted.The comparisonsconfirmed that these phages were genetic mosaics,with mosaic segments separated bysharp transition in the sequence.The mosaicism provided clear evidence thathorizontal exchange of genetic material myoviruse and siphovirus was a resource forfuture studies of vertical gene transmission.Based on proteomic analysis of thepurified D6E virions,10 structural proteins were revealed,including capsid protein,portal protein,etc.
     To reveal the protein-protein interaction between bacteriophage and its host,thethermophilic bacteriophage GVE2 was characterized.Twenty of the predicted 62GVE2 ORFs were expressed as recombinant proteins,and the purified recombinantproteins were used for antibody preparations.The expression profiles of these geneswere analyzed by Western blots.Based on GST pull down,Co-IP and nativeSDS-PAGE,several protein complexes associated with host-phage interaction wereobtained.Subsequently the interactions between ORF5 encoding capsid protein (VP371),chaperonin protein (CHG) and aspartate aminotransferase (AST) werecharacterized by Western blot and bacteria two-hybrid system.The results showedthat the VP371 was bound with CHG and CHG bound with AST.However no bindingwas observed between VP371 and AST.Northern blots and Western blots indicatedthat chg and ast genes were up-regulated after phage infection.It is well known thatCHG and AST were involved in energy metabolism,matter and energy transportation,suggesting that they might play very important roles in host immune response againstbacteriophage infection.
     In this paper,novel portal protein and thymidylate synthase were identifiedfrom the deep-sea thermophilic bacteriophage GVE2 for the first time.Portal protein,located asymmetrically at one of the twelve vertices of the capsid,play very importantroles in viral DNA packaging.The GVE2 portal protein (designated as VP411 protein)shared low similarity to known portal proteins from other species,but they showedhigh similarities in the predicted secondary structures,suggesting that they had thesame function in viral DNA packaging.The Northern blot and Western blot resultsdemonstrated that the vp411 gene was expressed in the late stage of GVE2 infection,implying that it might be a viral late gene.As revealed by immuno-electronmicroscopy,the gold particles were observed in the junction between the phage headand the phage tail when the anti-VP411 IgG was used as the primary antibody,indicating that it had the location in the virion expected of a portal protein.Thymidylate synthase (TS) is essential for de novo synthesis of dTMP and is a keyenzyme involved in DNA synthesis and transcriptional regulation of organisms.Dueto their biologic importance,TSs have been intensively studied.In this investigation,a thermostable TS was identified from the deep-sea thermophilic bacteriophageGeobacillus virus E2 (GVE2).It was demonstrated that the GVE2-TS was highlyhomologous to known TSs and contained five characteristic conserved domains.Thetemporal analyses by Northern and Western blots revealed that the GVE2-TS wastranscribed and expressed early after Geobacillus virus E2 infection,identifying it asan early viral gene.As shown by gel mobility shift assays,the recombinant GVE2-TSprotein had the capacity to bind its own mRNA.Our study presented the first reporton thymidylate synthase from deep-sea thermophilic bacteriophage.
引文
[1] Corliss JB, Dymond J, Gordon LI, Edmond JM, von Herzen RP, Ballard RD, Green K, Williams D, Bainbridge A, Crane K, van Andel TH. Submarine Thermal Sprirngs on the Galapagos Rift [J]. Science. 1979 Mar 16;203(4385):1073-1083.
    [2] L(?)pez-Garc(?)a P, Duperron S, Philippot P, Foriel J, Susini J, Moreira D. Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge [J]. Environ Microbiol. 2003 5(10):961-976.
    [3] Postec A, Urios L, Lesongeur F, Ollivier B, Querellou J, Godfroy A. Continuous enrichment culture and molecular monitoring to investigate the microbial diversity of thermophiles inhabiting deep-sea hydrothermal ecosystems [J]. Curr Microbiol. 2005 50(3):138-144
    [4] Nercessian O, Fouquet y, Pierre C, Prieur D, Jeanthon C. Diversity of bacteria and archaea associated with a carbonate-rich metalliferous sediment sample from the rainbow vent field on the Mid-Atlantic Ridge [J]. Environ Microbiol 2005 7(5):698-714.
    [5] Walter MR. Ancient hydrothermal ecosystems on earth: a new palaeobiological frontier [J]. Ciba Found Symp. 1996 202:112-127.
    [6] Moyer CL, Dobbs FC, Karl DM. Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl Environ Microbiol. 1995 Apr;61 (4): 1555-1562.
    [7] Kormas KA, Tivey MK, Von Damm K, Teske A. Bacterial and archaeal phylotypes associated with distinct mineralogical layers of a white smoker spire from a deep-sea hydrothermal vent site (9 degrees N, East Pacific Rise) [J]. Environ Microbiol. 2006 8(5):909-920.
    [8] Kato C, Inoue A, Horikoshi K. Isolating and characterizing deep-sea marine microorganisms [J]. Trends Biotechnol. 1996 14(1):6-12.
    [9] Nakagawa S, Takai K, Inagaki F, Hirayama H, Nunoura T, Horikoshi K, Sako Y. Distribution, phylogenetic diversity and physiological characteristics of epsilon-Proteobacteria in a deep-sea hydrothermal field [J]. Environ Microbiol. 2005 7(10): 1619-1632.
    [10] Horikoshi K. Barophiles: deep-sea microorganisms adapted to an extreme environment [J]. Curr Opin Microbiol. 1998 1(3):291-295.
    [11] P. Buford Price. A habitat for psychrophiles in deep Antarctic ice [J]. Proc Natl Acad Sci U S A. 97(3): 1247-1251.
    [12] Rex MA, Stuart CT, Coyne G.. Latitudinal gradients of species richness in the deep-sea benthos of the North Atlantic. Proc Natl Acad Sci U S A. 2000 Apr 11 ;97(8):4082-4085.
    [13] Massana R, Murray AE, Preston CM, DeLong EF. Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel [J]. Appl Environ Microbiol. 1997 63(1):50-56.
    [14] Brock TD, Freeze H. Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile [J]. J Bacteriol. 1969 98(1):289-297.
    [15] Brock TD, Brock KM, Belly RT, Weiss RL. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature [J]. Arch Mikrobiol. 1972 84(l):54-68.
    [16] Huber R Wilharm T, Huber D, Trincone A, Burggraf S, Konig H, Rachel R, Rockinger I, Fricke H, Stetter KO. Aquifex pyrophilus gen.nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria [J]. Syst. Appl. Microbiol. 15:340-351.
    [17] Sako Y, Takai K, Ishida Y, Uchida A, Katayama Y. Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria [J]. Int J Syst Bacteriol. 1996 46(4): 1099-1104.
    [18] Brock TD, Freeze H. Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile [J]. J Bacteriol. 1969 98(1):289-297.
    [19] Bl(?)chl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 degrees C [J]. Extremophiles. 1997 1(1):14-21.
    [20] Kashefi K, Lovley DR. Extending the upper temperature limit for life [J]. Science. 15;301(5635):934.
    [21] Mrabet NT, Van den Broeck A, Van den brande I, Stanssens P, Laroche Y, Lambeir AM, Matthijssens G, Jenkins J, Chiadmi M, van Tilbeurgh H, et al. Arginine residues as stabilizing elements in proteins [J]. Biochemistry. 1992 31(8):2239-2253.
    [22] Kirino H, Aoki M, Aoshima M, Hayashi Y, Ohba M, Yamagishi A, Wakagi T, Oshima T. Hydrophobic interaction at the subunit interface contributes to the thermostability of 3-isopropylmalate dehydrogenase from an extreme thermophile, Thermus thermophilus [J]. Eur J Biochem. 1994 220(1):275-281.
    [23] Brown JW, Haas ES and Pace NR. Characterization of ribonuclease P RNAs from thermophilic bacteria [J]. Nucleic Acids Research, 1993,21:671-679.
    [24] Sandman K, Reeve JN. Structure and functional relationships of archaeal and eukaryal histones and nucleosomes [J]. Arch Microbiol. 2000 173(3):165-169.
    [25] Woese CR, Kandler O, and Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya [J]. PNAS June 1, 1990 87(12):4576-4579.
    [26] Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology [J]. Int J Syst Bacteriol. 1994 44:846-849.
    [27] Ara et al. Pseudosporangium ferrugineum gen. nov., sp. nov., a new member of the family Micromonosporaceae [J]. Int J Syst Evol Microbiol. 2008 58:1644-1652.
    [28] Moore LV, Bourne DM, Moore WE. Comparative distribution and taxonomic value of cellular fatty acids in thirty-three genera of anaerobic gram-negative bacilli [J]. Int J Syst Bacteriol. 1994 44(2):338-347.
    [29] Kreil DP, Ouzounis CA. Identification of thermophilic species by the amino acid compositions deduced from their genomes [J]. Nucleic Acids Res. 2001 29(7): 1608-1615.
    [30] Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, Graham DE, Overbeek R, Snead MA, Keller M, Aujay M, Huber R, Feldman RA, Short JM, Olsen GJ, Swanson RV. The complete genome of the hyperthermophilic bacterium Aquifex aeolicus [J]. Nature. 1998 392(6674):353-358.
    [31] Kyrpides NC, Ouzounis CA, Iliopoulos I, Vonstein V, Overbeek R. Analysis of the Thermotoga maritima genome combining a variety of sequence similarity and genome context tools [J]. Nucleic Acids Res. 2000 28(22):4573-4576.
    [32] Bao Q, Tian Y, Li W, Xu Z, Xuan Z, Hu S, Dong W, Yang J, Chen Y, Xue Y, Xu Y, Lai X, Huang L, Dong X, Ma Y, Ling L, Tan H, Chen R, Wang J, Yu J, Yang H. A complete sequence of the T. tengcongensis genome [J]. Genome Res. 2002 12(5):689-700.
    [33] Henne A, Br(?)ggemann H, Raasch C, Wiezer A, Hartsch T, Liesegang H, Johann A, Lienard T, Gohl O, Martinez-Arias R, Jacobi C, Starkuviene V, Schlenczeck S, Dencker S, Huber R, Klenk HP, Kramer W, Merkl R, Gottschalk G, Fritz HJ. The genome sequence of the extreme thermophile Thermus thermophilus [J]. Nat Biotechnol. 2004 22(5):547-553.
    [34] Przylas I, Terada Y, Takaha T, Fujii K, Saenger W, Strater N, Tomoo K. Crystal structure of amylomaltase from Thermus aquaticus, a glycosyltransferase catalyzing the production of large cyclic glucans [J]. J Mol Biol. 2000 296:873-886.
    [35] Kang SK, Cho KK, Ahn JK, Bok JD, Kang SH, Woo JH, Lee HG, You SK. Three forms of thermostable lactose-hydrolase from Thermus sp. IB-21: cloning, expression, and enzyme characterization. [J]. Biotechnol 2005 116(4): 337-346.
    [36] Satoshi W, Akiko K, Kunio M. Crystal structure of atypical cytoplasmic ABC-ATPase SufC from Thermus thermophilus HB8 [J]. J Mol Biol 2005 353:1043-1054.
    [37] Gabriela O, Slawomir D, Jozef K. High-level expression, secretion and purification of the thermostable aqualysin I from Thermus aquaticus YT-1 in Pichia pastoris [J]. Protein Expr Purif 2003 29:223-229.
    [38] Hidalgo A, Betancor L, L(?)pez-Gallego F, Moreno R, Berenguer J, Fern(?)ndez-Lafuente R, Guis(?)n JM. Design of an immobilized preparation of catalase from Thermus thermophilus to be used in a wide range of conditions.: Structural stabilization of a multimeric enzyme [J]. Enzyme Microb Tech 2003 33(2-3):278-285.
    [39] Fuci(?)os P, Abad(?)n CM, Sanrom(?)n A, Longo MA, Pastrana L, R(?)a ML. Identification of extracellular lipases/esterases produced by Thermus thermophilus HB27: partial purification and preliminary biochemical characterisation. J Biotechnol. 2005 117(3):233-241.
    [40] Bae J, Kim D, Choi Y, Koh S, Park JE, Su Kim J, Moon SH, Park BH, Park M, Song HE, Hong SI, and Lee DS. A hexokinase with broad sugar specificity from a thermophilic bacterium [J]. Biochem Biophys Res Commun 2005 334(3):754-763.
    [41] Kang SK, Cho KK, Ahn JK, Bok JD, Kang SH, Woo JH, Lee HG, You SK, Choi YJ. Three forms of thermostable lactose-hydrolase from Thermus sp. IB-21: cloning, expression, and enzyme characterization [J]. J Biotechnol. 2005 116(4):337-346.
    [42] Fuhrman JA. Marine viruses and their biogeochemical and ecological effects [J]. Nature. 1999 399(6736):541-548.
    [43] Wilhelm SW, Suttle CA. Viruses and nutrient cycles in the sea [J]. Bioscience 1999 49:781-788. Middelboe M, Riemann L. Steward GF, Hansen V, Nyhroe O. Virus-induced transfer of organic carbon between marine bacteria in a model community [J]. Aquat Microb Ecol 2003 333:1-10.
    [44] Middelboe M, Riemann L. Steward GF, Hansen V, Nybroe O. Virus-induced transfer of organic carbon between marine bacteria in a model community [J]. Aquat Microb Ecol 2003 333:1-10.
    [45] Lawrence JE, Suttle CA. Effect of viral infection on sinking rates of Heterosigma akashiwo and its implications for bloom termination [J]. Aquat Microb Ecol.2004 37:1-7.
    [46] Gobler CJ, Hutchins DA, Fisher NS, Cosper EM, Sanudo-Wilhelmy S. Release and bioavailability of C,N, P, Se, and Fe following viral lysis of a marine Chrysophyte. Limnol. Oceanogr.[J]. 1997 42:1492-1504.
    [47] Poorvin L, Rinta-Kanto JM, Hutchins DA, Wilhelm SW. Viral release of iron and its bioavailability to marine plankton. Limnol. Oceanogr.2004 49:1734-1741.
    [48] Daughney CJ, et al. Adsorption and precipitation of iron from seawater on a marine bacteriophage (PWH3a-P1) [J]. Mar. Chem. 2004 91:101-115
    [49] Smith AW, et al. Antisense treatment of Caliciviridae: an emerging disease agent of animals and humans [J]. Curr Opin Mol 2002 4:177-184.
    [50] Philippa JD, W et al. Antibodies to selected pathogens in free-ranging terrestrial carnivores and marine mammals in Canada [J]. Vet. Rec 2004 155:135-140.
    [51] Kellogg CA, Rose JB, Jiang SC, Thurmond J, Paul JH. Genetic diversity of related vibriophages isolated from marine environments around Florida and Hawaii [J]. USA. Mar. Ecol. Prog. Ser. 1995 120:89-98.
    [52] Moebus K, Nattkemper H. Bacteriophage sensitivity patterns among bacteria isolated from marine waters [J]. Helgol Wiss Meeresunters 2005 34:375-385.
    [53] Suttle CA. Viruses in the sea [J]. Nature. 2005 437(7057):356-361.
    [54] Sullivan MB, Waterbury JB, Chisholm SW. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus [J]. Nature. 2003 424(6952): 1047-1051.
    [55] Wichels A, Biel SS, Gelderblom HR, Brinkhoff T, Muyzer G, Sch(?)tt C. Bacteriophage diversity in the North Sea [J]. Appl Environ Microbiol. 1998 64(11):4128-4133.
    [56] Bergh O, B(?)rsheim KY, Bratbak G, Heldal M. High abundance of viruses found in aquatic environments [J]. Nature. 1989 340(6233):467-468.
    [57] Proctor LM, Fuhrman JA. Viral mortality of marine bacteria and cyanobacteria [J]. Nature 1990 343:60-62.
    [58] Cochlan WP, Wikner J, Steward GF, Smith DC, Azam F. Spatial distribution of viruses, bacteria, and chlorophyll-a neric, oceanic and esturarine environment [J]. Mar Ecol Prog Ser 1993 92:77-87.
    [59] Jiang SC, Paul JH. Seasonal and diel abundance of viruses and occurrence of lysogeny/bacteriocinogeny in the marine environment. Mar col Prog 1994 Ser 104:163-172.
    [60] Maranger R, Bird DF. Viral abundances in aquatic systems: a comparison between marine and fresh waters. Mar Eco Prog. 1995 Ser 121:217-226.
    [61] Pamela KC, John HP. Seasonal and diel abundance of viruses and occurrence of lysogeny/bacteriocinogeny in the marine environment [J]. Mar Ecol Prog Ser 1994 104:163-172.
    [62] Borsheim KY, Bratbak G, Heldal M. Enumeration and biomass estimation of planktonic bacteria and viruses by transmission electron microscopy [J]. Appl Environ Microbiol.1990 56:352-356.
    [63] Hennes KP, Suttle CA. Direct counts of viruses in natural waters and laboratory cultures by epifluorescence microscopy. Limnol Oceanogr. 1995 40:1050-1055.
    [64] Noble RT. Fuhrman JA. Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol. 1998 14:113-118.
    [65] Marie D, Brussaard, CPD, Thyrhaug R, Bratbak G, Vaulot D. Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl Environ Microbiol.1999 65: 45-52.
    [66] Brussaard CPD. Optimization of procedures forcounting viruses by flow cytometry. Appl Environ Microbiol. 2004 70:1506-1513.
    [67] Wommack, Ravel J, Hill RT, Colwell RR. Hybridization Analysis of Chesapeake Bay Virioplankton [J]. Appl Environ Microbiol. 65:241-250.
    [68] Chen F, Suttle CA, Short SM. Genetic diversity in marine algal virus communities as revealed by sequence analysis of DNA polymerase genes [J]. Appl Environ Microbiol. 1996 62(8):2869-74.
    [69] Edwards RA, Rohwer F. Viral metagenomics [J]. Nat Rev Microbiol. 2005 3(6):504-510.
    [70] Desnues C, Rodriguez-Brito B, Rayhawk S, Kelley S, Tran T, et al. Biodiversity and biogeography of phages in modern stromatolites and thrombolites [J]. Nature. 2008 452(7185):340-343.
    [71] Yu MX, Slater MR, Ackermann HW. Isolation and characterization of Thermus bacteriophages [J]. Arch Virol. 2006 151(4):663-679.
    [72] Pederson DM, Welsh LC, Marvin DA, Sampson M, Perham RN, Yu M, Slater MR. The protein capsid of filamentous bacteriophage PH75 from Thermus thermophilus [J]. J Mol Biol. 2001 309(2):401-421.
    [73] Tatyana N, Jing L, Laurence F, Selene KS, Andrey RP. Thermus thermophilus Bacteriophage φYS40 Genome and Proteomic Characterization of Virions [J]. J Mol Biol 2006 364(4):667-677.
    [74] Anastasiya S, Marko D, Konstantin K, Tatyana N, Mikhail SGelfand, et al. Temporal regulation of viral transcription during development of Thermus thermophilus bacteriophage φ YS40 [J]. J Mol Biol. 2007 366(2): 420-435. Yu MX, Slater MR, Ackermann H W. Isolation and characterization of Thermus bacteriophages [J]. Arch Virol. 2006 151(4):663-679.
    [75] Ackermann H-W, DuBow MS, Virus of prokaryotes, vol Ⅱ, natural groups of bacteriophages. CRC Press, Boca Raton, 1987 1-218.
    [76] Sakaki Y, Oshima T. A new lipid-containing phage infecting acidophilic thermophilic bacteria [J]. Virology. 1976 75(l):256-259.
    [77] Rice G, Stedman K, Snyder J, Wiedenheft B, Willits D, Brumfield S, McDermott T, Young MJ. Viruses from extreme thermal environments [J]. Proc Natl Acad Sci U S A. 2001 98(23): 13341-13345.
    [78] Suttle CA. Marine viruses-major players in the global ecosystem [J]. Nat Rev Microbiol. 2007 5(10):801-812.
    [79] Paul JH, Sullivan MB. Marine phage genomics: what have we learned [J]. Curr Opin Biotechnol. 2005 16(3):299-307.
    [80] Campbell A. Comparative molecular biology of lambdoid phages [J]. Annu Rev Microbiol. 1994 48:193-222.
    [81] Brussow H. Phages of dairy bacteria [J]. Annu Rev Microbiol. 2001 55:283-303.
    [82] Medini D, Serruto D, Parkhill J, Relman DA, Donati C, Moxon R, Falkow S, Rappuoli R. Microbiology in the post-genomic era [J]. Nat Rev Microbiol. 2008 6(6):419-430.
    [83] Medini D, Serruto D, Parkhill J. Relman DA. Donati C, Moxon R, Falkow S, Rappuoli R. Microbiology in the post-genomic era. Nat Rev Microbiol. 2008 6(6):419-430.
    [84] Pfister P, Wasserfallen A, Stettler R, Leisinger T. Molecular analysis of Methanobacterium phage psiM2 [J]. Mol Microbiol. 1998 30(2):233-244.
    [85] Benson SD, Bamford JK, Bamford DH and Burnett RM. Viral evolution revealed by bacteriophage PRD1 and human adenovirus coat protein structures [J]. Cell 98:825-833.
    [86] Benson SD, Bamford JKH, Bamford DH, Burnett RM. Does common architecture reveal a viral lineage spanning all three domains of life [J]. Mol Cell 16:673-685.
    [87] Hendrix RW. Bacteriophage genomics [J]. Curr Opin Microbiol. 2003 6(5):506-511.
    [88] Desiere F, Pridmore RD, Brussow H, Comparative genomics of the late gene cluster from lactobacillus phages. [J]. Virology. 2000 275(2):294-305.
    [89] Desiere F, Lucchini S, Brussow H. Comparative sequence analysis of the DNA packaging, head, and tail morphogenesis modules in the temperature cos-site streptococcus thermophilus bacteriophage Sfi21. [J]. Virology. 1999 260:244-253.
    [90] Juhala RJ, Ford ME, Duda RL, Youlton A, Hatfull GF, Hendrix RW. Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages [J]. J Mol Biol. 2000 299(1):27-51.
    [91] Casiens SR. Comparative genomics and evolution of the tailed-bacteriophages. [J]. Curr Opin Microbiol. 2005 8(4):451-458.
    [92] Rohwer F, Edwards R. The phage proteomic tree: a genome-based taxonomy for phage [J]. J Bacteriol. 2002 184(16):4529-4535.
    [93] Bamford DH, Grimes JM, Stuart DI. What does structure tell us about virus evolution [J]. Curr Opin Struct Biol. 2005 15(6):655-663.
    [94] Lindell D, Jaffe JD, Coleman ML, Futschik ME, et al. Genome-wide expression dynamics of a marine virus and host reveal feature of co-evolution [J]. Nature. 2007 449(7158):83-86.
    [95] Desiere F, Mcshan WM, Van sinderen D, Ferretti JJ, Brussow H. Comparative genomics reveals close genetic relationships between phages from dairy bacteria and pathogenic streptococci: evolutionary implications for prophage-host interactions [J]. Virology. 2001 288(2):325-341.
    [96] Hatfull GF, Cresawn SG, Hendrix RW. Comparative genomics of the mycobacteriophages: insights into bacteriophage evolution [J]. Res Microbiol. 2008 159(5):332-339.
    [97] Lindell D, Jaffe JD, Coleman ML, Futschik ME, Axmann IM, Rector T, Kettler G, Sullivan MB, Steen R, Hess WR, Church GM, Chisholm SW. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution [J]. Nature 2007 449(7158):83-86.
    [98] Mojica FJ, D(?)ez-Villase(?)or C, Garc(?)a-Mart(?)nez J, Almendros C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system [J]. Microbiology 2009 155(Pt 3):733-740.
    [99] Waters LS, Storz G. Regulatory RNAs in bacteria [J]. Cell. 2009 136(4):615-628.
    [100] Rohwer F, Segall A, Steward G, Seguritan V, Breitbart M, Wolven F, Azam F. The complete genomic sequence of the marine phage Roseophage SIO1 shares homology with nonmarine phages [J]. Limnol Oceanogr 2000 45:408-418.
    [101] Hardies SC, Comeau AM, Serwer P, Suttle CA. The complete sequence of marine bacteriophage VpV262 infecting vibrio parahaemolyticus indicates that an ancestral component of a T7 viral supergroup is widespread in the marine environment [J]. Virology 2003 310(2):359-371.
    [102] Chen F, Lu J. Genomic sequence and evolution of marine cyanophage P60: a new insight on lytic and lysogenic phages [J]. Appl Environ Microbiol. 2002 68(5):2589-2594.
    [103] Wilson WH, Schroeder DC, Allen MJ, Holden MT, Parkhill J, Barrell BG, Churcher C, Hamlin N, Mungall K, Norbertczak H, Quail MA, Price C, Rabbinowitsch E, Walker D, Craigon M, Roy D, Ghazal P. Complete genome sequence and lytic phase transcription profile of a Coccolithovirus [J]. Science 2005 309(5737): 1090-1092.
    [104] Mann NH, Cook A, Millard A, Bailey S, Clokie M. Marine ecosystems: bacterial photosynthesis genes in a virus [J]. Nature 2003 424(6950):741.
    [105] Millard A, Clokie MR, Shub DA, Mann NH. Genetic organization of the psbAD region in phages infecting marine Synechococcus strains [J]. Proc Natl Acad Sci U S A. 2004 101(30):11007-11012.
    [106] Whittam TS, Bumbauqu AC. Inferences from whole-genome sequences of bacteriophage pathogens [J]. Curr Opin Genet Dev. 2002 12(6):719-725.
    [107] Bamford DH, Grimes JM, Stuart DI. What does structure tell us about virus evolution [J]. Curr Opin Struct Biol. 2005 15(6):655-663.
    [108] Yoichi M, Abe M, Miyanaqa K, Unno H, Tanji Y. Alteration of tail fiber protein gp38 enables T2 phage to infect Escherichia coli O157:H7 [J]. J Biotechnol. 2005 115(1): 101-107.
    [109] Tetart F, Repoila F, Monod C, Krisch HM. Bacteriophage T4 host range is expanded by duplications of a small domain of the tail fiber adhesion [J]. J Mol Biol. 1996 258(5):726-731.
    [110] Gurnev PA, Oppenheim AB, Winterhalter M, Bezrukov SM. Docking of a single phage lambda to its membrane receptor maltoporin as a time-resolved event [J]. J Mol Biol. 2006 359(5): 1447-1455.
    [111] Tetart F, Desplats C, Krisch HM. Genome plasticity in the distal tail fiber locus of the T-even bac(?)eriophage: recombination between conserved motifs swaps adhesion specificity [J]. J Mol Biol. 1998 282(3):543-556.
    [112] Xu L, Benson SD, Butcher SJ, Bamford DH, Burnett RM. The receptor binding protein P2 of PRD1, a virus targeting antibiotic-resistant bacteria, has a novel fold suggesting multiple functions. [J]. Structure. 2003 11(3):309-322.
    [113] Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes [J]. Science. 2008 321(5891):960-964.
    [114] Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA [J]. Science. 2008 322(5909): 1843-1845.
    [115] Barrangous R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes [J]. Science 2007. 315(5819):1709-1712.
    [116] Carreras CW, Santi DV. The catalytic mechanism and structure of thymidylate synthase [J]. Annu Rev Biochem 1995 64:721-762.
    [117] Kaneda S, Takeishi K, Ayusawa D, Shimizu K, Seno T, Altman S. Role in translation of a triple tandemly repeated sequence in the 5'-untranslated region of human thymidylate synthase Mrna[J]. Nucleic Acids Res 1987 15(3): 1259-1270.
    [118] Winter RB, Morrissey L, Gauss P, Gold L, Hsu T, Karam J. Bacteriophage T4 regA protein binds to mRNAs and prevents translation initiation [J]. Proc Natl Acad Sci U S A. 1987 84(22):7822-7826.
    [119] Carey J, Cameron V, de Haseth PL, Uhlenbeck OC. Sequence-specific interaction of R17 coat protein with its ribonucleic acid binding site [J]. Biochemistry. 1983 22(11):2601-2610
    [120] Speckling G, Gluick TC, Draper DE. Ribosome initiation complex formation with the pseudoknotted alpha operon messenger RNA [J]. J Mol Biol. 1993 229(3):609-622.
    [121] Gold L. Posttranscriptional regulatory mechanisms in Escherichia coli [J]. Annu Rev Biochem. 1988 57:199-233.
    [122] Yates JL, Arfsten AE, Nomura M. In vitro expression of Escherichia coli ribosomal protein genes: autogenous inhibition of translation [J]. Proc Natl Acad Sci U S A. 1980 77(4): 1837-1841.
    [123] Chu E, Cogliati T, Copur SM, Borre A, Voeller DM, Allegra CJ, Segal S. Identification of in vivo target RNA sequences bound by thymidylate synthase [J]. Nucleic Acids Res. 1996 24(16):3222-3228.
    [124] Perry KM, Fauman EB, Finer-Moore JS, Montfort WR, Maley GF, Maley F, Stroud RM. Plastic adaptation toward mutations in proteins: structural comparison of thymidylate synthases [J]. Proteins 1990 8(4):315-33.
    [125] Chu E., Koeller DM, Johnston PG, Zinn S, Allegra CJ. Regulation of thymidylate synthase in human colon cancer cells treated with 5-fluorouracil and interferon-gamma [J]. Mol Pharmacol 1993 43:527-533.
    [126] Keyomarsi K, Samet J, Molnar G, Pardee AB. The thymidylate synthase inhibitor, ICI D1694, overcomes translational detainment of the enzyme [J]. J Biol Chem 1993 268:15142-15149.
    [127] Afonso CL, Tulman ER, Lu Z, Oma E, Kutish GF, Rock DL. The genome of Melanoplus sanguinipes entomopoxvirus [J]. J Virol 1999 73(1):533-52.
    [128] Belfort M, Maley G, Pedersen-Lane J, Maley F. Primary structure of the Escherichia coli thyA gene and its thymidylate synthase product [J]. Proc Natl Acad Sci U S A. 1983 80(16):4914-4918.
    [129] M(?)ller K, Tidona CA, Bahr U, Darai G. Identification of a thymidylate synthase gene within the genome of Chilo iridescent virus [J]. Virus Genes. 1998 17(3):243-258.
    [130] Garrett CE, Coderre JA, Meek TD, Garvey EP, Claman DM, Beverley SM, Santi DV. A bifunctional thymidylate synthetase-dihydrofolate reductase in protozoa [J]. Mol Biochem Parasitol. 1984 11:257-265.
    [131] Henne A, Br(?)ggemann H, Raasch C, Wiezer A, Hartsch T, The genome sequence of the extreme thermophile Thermus thermophilus [J]. Nat Biotechnol. 2004 22(5):547-53.
    [132] Naryshkina T, Liu J, Florens L, Swanson SK, Pavlov AR, Pavlova NV, Inman R, Minakhin L, Kozyavkin SA, Washburn M, Mushegian A, Severinov K. Thermus thermophilus bacteriophage phiYS40 genome and proteomic characterization of virions [J]. J Mol Biol. 2006 364(4):667-677.
    [133] Mathews Ⅱ, Deacon AM, Canaves JM, McMuIlan D, Lesley SA, Agarwalla S, Kuhn P. Functional analysis of substrate and cofactor complex structures of a thymidylate synthase-complementing protein [J]. Structure. 2003 11(6):677-690.
    [134] Kanai A, Sato A, Imoto J, Tomita M. Archaeal Pyrococcus furiosus thymidylate synthase 1 is an RNA-binding protein [J]. Biochem J. 2006 393(Pt 1):373-379.
    [135] Xiang X, Chen L, Huang X, Luo Y, She Q, Huang L. Sulfolobus tengchongensis spindle-shaped virus STSV1: virus-host interactions and genomic features [J]. J Virol. 2005 79(14):8677-8686.
    [136] Camacho AG, Gual A, Lurz R, Tavares P, Alonso JC. Bacillus subtilis bacteriophage SPP1 DNA packaging motor requires terminase and portal proteins. [J]. J Biol Chem. 2003 278(26):23251-23259.
    [137] Chemla YR, Aathavan K, Michaelis J, Grimes S, Jardine PJ, Anderson DL, Bustamante C. Mechanism of force generation of a viral DNA packaging motor. [J]. Cell. 2005 122(5):683-692.
    [138] Droge A, Tavares P. In vitro packaging of DNA of the Bacillus subtilis bacteriophage SPP1. [J]. J Mol Biol. 2000 296(1): 103-115.
    [139] Moore SD, Prevelige PE Jr. DNA packaging: a new class of molecular motors [J]. Curr Biol. 2002 12(3):R96-98.
    [140] Orlova EV, Gowen B, Droge A, Stiege A, Weise F, Lurz R, van Heel M, Tavares P. Structure of a viral DNA gatekeeper at 10 A resolution by cryo-electron microscopy [J]. EMBO J. 2003 22(6): 1255-1262.
    [141] Newcomb WW, Homa FL, Brown JC. Involvement of the portal at an early step in herpes simplex virus capsid assembly [J]. J Virol. 2005 79(16): 10540-10546.
    [142] Baumann RG, Mullaney J, Black LW. Portal fusion protein constraints on function in DNA packaging of bacteriophage T4 [J]. Mol Microbiol. 2006 61(1): 16-32.
    [143] Smith DE, Tans SJ, Smith SB, Grimes S, Anderson DL, Bustamante C. The bacteriophage straight phi29 portal motor can package DNA against a large internal force. [J]. Nature. 2001 413(6857):748-752.
    [144] Lebedev AA, Krause MH, Isidro AL, Vagin AA, Orlova EV, Turner J, Dodson EJ, Tavares P, Antson AA. Structural framework for DNA translocation via the viral portal protein [J]. EMBO J. 2007 26(7):1984-1994.
    [145] Liu B, Zhang X. Deep-sea thermophilic Geobacillus bacteriophage GVE2 transcriptional profile and proteomic characterization of virions [J]. Appl Microbiol Biotechnol. 2008 80(4):697-707.
    [146] Guerrero CA, Bouyssounade D, Z(?)rate S, Isa P, L(?)pez T, Espinosa R, Romero P, M(?)ndez E, L(?)pez S, Arias CF. Heat shock cognate protein 70 is involved in rotavirus cell entry J Virol. 2002 76(8):4096-4102.
    [147] Sullivan CS, Cantalupo P, Pipas JM. The molecular chaperone activity of simian virus 40 large T antigen is required to disrupt Rb-E2F family complexes by an ATP-dependent mechanism [J]. Mol Cell Biol. 2000 20(17):6233-6243.
    [148] Nanda SK, Johnson RF, Liu Q, Leibowitz JL. Mitochondrial HSP70, HSP40, and HSP60 bind to the 3' untranslated region of the Murine hepatitis virus genome [J]. Arch Virol. 2004 149(1):93-111.
    [149] He Y, Tan SL, Tareen SU, Vijaysri S, Langland JO, Jacobs BL, Katze MG. Regulation of mRNA translation and cellular signaling by hepatitis C virus nonstructural protein NS5A [J]. J Virol. 2001 75(11):5090-5098.
    [150] Marusich El, Kurochkina LP, Mesyanzhinov VV. Chaperones in bacteriophage T4 assembly [J]. Biochemistry (Mosc). 1998 63(4):399-406.