养猪废水中有机物厌氧生物降解机理的分子生物学解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界养猪第一大国,生猪产量超过全世界总量的一半。近年来,我国养猪业飞速发展,给环境带来的污染问题已经成为社会关注的热点之一。养猪废水具有机物浓度高、悬浮物多、臭味大、污染成分复杂、排放量大,各项指标常超出国家排放标准几倍甚至几十倍的特点。据估算,我国养猪业废水COD的排放量超过工业废水和生活污水的排放总和。一个万头的猪场COD的排放量相当于4-6万人口的排放量。UASB厌氧生物技术是目前我国养猪废水处理的关键技术。而现有的畜禽厌氧生物处理技术研究往往仅停留在研究脱氮、除磷、COD的去除效率和产气率等的工艺参数方面,而对废水中主要有机污染物的生物降解机理,降解效率与微生物群落结构的关系,不同工艺参数条件下微生物群落结构的动态变化以及人工强化生境下,外源微生物对处理系统中微生物群落结构和功能的影响等方面研究还比较缺乏。
     本研究将传统微生物培养和现代分子生物学技术相结合,通过梯度变性凝胶电泳(DGGE)、16S rDNA限制性内切酶消化文库分析(ARDRA)等分子生物学技术和细菌筛选、分离鉴定以及代谢机理研究,解析了养猪废水厌氧生物处理的快速启动和稳定运行前后微生物群落结构的演变和微生物多样性;分析了典型难降解有机污染物(包括含氮杂环化合物和纤维素)的生物降解机理;解析了人工强化生境中,外源菌和本土菌共同作用的降解效率,以及相应的微生物群落的变化,初步明确了养猪废水厌氧处理环节的重要功能种群,为优化微生物群落结构、调节群落功能提供了科学依据,为实现养猪废水厌氧生物高效处理、可控运行提供理论和实践依据。研究的主要成果如下:
     1.全面系统地分析养猪废水厌氧处理环节微生物群落结构演变和多样性
     采用两种不同的接种源,反应器A接种鄂州市某猪场排污口沉积底泥,反应器B接种武汉市某啤酒厂活性污泥,实现了反应器的快速启动。对比了不同接种源条件下,反应器的启动速率;活性污泥的生长速度以及微观结构;COD去除效率;产气率和微生物的活性。研究结果表明:两个反应器均能在36天内实现快速启动,反应器B的启动速率略高于反应器A的。反应器B的颗粒污泥的生长速度快于反应器A的。当进水浓度为3000-6000 mg L~(-1)时,反应器A和B在稳定运行期COD的去除率分别在84-88%和90-95%,产气量分别为5.5-10.5和9.0-14.0 L day~(-1),从VSS和VSS/TSS值来看,反应器B的微生物活性略高于反应器A。两个反应器的VFA值均适合微生物的生长。通过DGGE分析发现,反应器在启动前后的微生物群落结构发生了很大变化,而在稳定运行期变化并不大。反应器A和B在启动前后微生物群落结构的相似性仅为59.2%和60.0%。而在稳定期,反应器A和B在两个月稳定运行之间微生物群落结构的相似性为78.5%和74.0%。并且在启动前,两个反应器之间的微生物群落结构相差较大,而在稳定运行期差异较小。在启动前,反应器A和B的微生物群落结构相似性为62.4%,在稳定运行期,两个反应器的微生物群落结构相似性为79.9%。这种微生物群落的结构变化与其功能的转变相对应。通过ARDRA分析反应器B稳定运行期的微生物群落多样性,获得346个阳性克隆,经酶切和测序分析,划分为55个分类单元,微生物群落的组成为厚壁菌门33%,酸杆菌门23%,变形菌门19%,拟杆菌门11%,硝化螺旋菌门8%,绿弯菌门4%和其它2%。16S rDNA克隆文库分析的结果表明,养猪废水UASB厌氧处理过程中的微生物群落结构和多样性与以往的其它养猪废水处理技术,包括膜处理法和厌氧贮存式处理过程中的有较大差异。
     2.解析了养猪废水中典型难降解污染物的生物降解机理
     含氮杂环化合物是养猪废水中典型的难降解有机污染物,也是养猪废水中主要的恶臭成分之一。它们由色氨酸在动物体内分解而产生。未被完全处理的该类化合物排放于环境中,导致了土壤、地表水和地下水的污染,对人体和动物健康造成了严重的威胁。吲哚和粪臭素可以被人体和动物吸收进入血液,经生物活化后产生有毒的中间产物而影响血液中复合胺的产生,甚至产生溶血现象。有研究表明,动物体内雌激素酮浓度的升高与粪臭素含量直接相关。另外,粪臭素还是一种肺炎球菌毒素。暴露在吲哚环境下的植物组织由于蒽醌合成的影响而表现出低色素沉着。吲哚和粪臭素同样对许多微生物存在毒性效应。它们对细菌均有相当广泛的生物抑制作用,同时对瘤胃纤毛微生物也有毒性作用。本文采用传统的微生物培养技术,从USAB厌氧反应器活性污泥中,通过直接涂布法筛选到一株能有效降解吲哚和粪臭素的细菌LPC24,通过生理生化和分子水平鉴定细菌为恶臭假单胞菌,该细菌能以吲哚和粪臭素为唯一碳源生长,当吲哚和粪臭素浓度小于3.0 mM和2.5 mM时,该细菌能有效降解这两种化合物而没有滞后现象,且能分别在18天和30天之内完全降解3.0 mM吲哚和2.0mM粪臭素。而当吲哚和粪臭素浓度分别超过3.5 mM和3.0 mM时,该菌的生长速度以及降解速率明显受到抑制;当两者浓度分别大于5.0 mM和4.0 mM时,该菌几乎不能生长,也不能降解这两种化合物。另外,该菌能分别在24小时和30小时之内将10 mM的氨氧化和硝酸盐还原,并且没有亚硝酸盐的积累。GC-MS和HPLC研究结果表明,细菌LPC24降解吲哚的途径为羟吲哚-靛红-邻氨基苯甲酸,这与前人报道的相似。细菌LPC24降解粪臭素的途径为3-甲基羟吲哚-N甲酸基氨基苯乙酮-2-氨基苯乙酮,不同于以往研究中关于粪臭素生物降解途径的报道。
     纤维素是陆地环境中光合作用的初始产物,是生物圈最丰富的可再生生物资源。大量的难降解纤维素污染物存在于农业和林业废弃物以及造纸废水中。纤维素也是养猪废水中COD和SS的主要来源,是养猪废水中难降解的主要有机污染物之一。将天然纤维素水解成葡萄糖等小分子,必须依靠内切型葡聚糖酶(EG)、外切型葡聚糖酶(CBH)和纤维二糖酶(BG)三种酶协同作用才能完成。现有的研究通常着重于单个纤维素降解菌的筛选和相关酶活的分析,所筛选的细菌往往产酶类型单一,很难应用到实际废弃物及废水处理中。本文从猪场粪污中分离出26株能降解纤维素的细菌,通过初步筛选,从其中挑选出10株细菌,全面系统分析了各细菌的纤维素的三种酶活。酶活分析结果表明:十株细菌的EG酶活在7.0-16.0 IU mL~(-1)之间,其中菌株LCB12和LCD51的EG酶活最高,分别达到15.98 IU mL~(-1)和15.40 IU mL~(-1),高于文献相关报道。各菌株的CBH酶活介于EG酶和BG酶之间,为2-9 IU mL~(-1),其中菌株LCB03和LCD12酶活最高,分别达到8.53 IU mL~(-1)和10.60 IU mL~(-1)。各菌株的BG酶活与EG酶和CBH酶相比较小,在1-3 IU mL~(-1)之间,其中菌株LCB12和LCD51酶活最高,分别达到2.68 IU mL~(-1)和1.74 IU mL~(-1)。选取其中具较高各种酶活的五株细菌(LCB03,LCB12,LCB52,LCD12和LCD51)构建复合菌系协同降解天然纤维素。混合培养实验结果表明:这五株细菌两两混合培养后可以共存,不相互拮抗。降解实验表明,复合菌系能在一周之内降解0.36克稻草和0.1克滤纸,各种酶活分别在第三和第四天达到最高,EG为3.15 IU,CBH为1.12 IU,BG为0.55 IU,滤纸酶活为0.92 IU。经生理生化和分子水平鉴定,这五株细菌分别鉴定为香茅醇假单胞菌,嗜麦芽窄食单胞菌,铜绿假单胞菌,铜绿假单胞菌和水氏黄杆菌。在前人的研究中,至今没有关于嗜麦芽窄食单胞菌和水氏黄杆菌降解纤维素的报道。
     3.构建了人工强化生境中,并分析各污染物的降解效率以及微生物群落的结构变化
     人工强化生境的构建是通过投加外源微生物于处理系统中或扩大培养本土微生物,以加速和提高处理效率的一种生物处理方法。该方法将具有特殊功能效微生物个体或群落应用于实际处理系统中,以提高目标污染物的去除效率。由于处理系统的复杂性,微生物群落之间的竞争和相互抑制很难预见和调控,所以不是所有的人工强化生境都能构建成功,它在很大程度上取决于投加的微生物个体或群落在目标环境中的生存能力及其和本土微生物群落的协同能力。本文通过将所筛选的降解吲哚、粪臭素和纤维素的细菌投加到稳定运行的UASB的反应器中,构建人工强化生境,提高处理系统对典型难降解污染物,包括含氮杂环化合物和纤维素的去除效率,并通过DGGE技术解析强化生境中微生物群落的变化。结果表明:反应器的COD、吲哚、粪臭素和纤维素去除率均有不同程度的提高。在45天的运行过程中,COD去除率提高了2-7%,纤维素降解效率提高20%,吲哚和粪臭素的降解效率提高了15-20%。同时反应微生物活性的指标VSS和VSS/TSS值也有所提高。DGGE分析表明,人工强化生境的微生物群落结构变化明显。所接种的水氏黄杆菌和假单胞菌在整个微生物生态系统中形成了优势菌群,而嗜麦芽窄食单胞菌没有形成明显的优势群落。在投加细菌的影响下,出现了一些新的微生物群落,如梭菌纲,酸杆菌纲和硝化螺旋菌纲的菌群。另外,在低温培养下,微生物群落结构发生了很大程度地改变,一些优势群落优势度明显降低,三组拟杆菌纲,一组拟杆菌门和一组厚壁菌门的优势菌群消失,而新出现了另外两组拟杆菌门和厚壁菌门的菌群。这为选育低温厌氧细菌提供可供参考的依据。
In recent years, pig breeding industry has been developing rapidly in China, the biggest pig breeding country. Half of the pigs in the world are bred in China. Available data show that the environmental due to pig farming is quite serious. Its discharged waste contains highly concentrated organic matter, excessive suspended solids, large content of ammonia nitrogen and phosphorus. All of its water quality indices exceed the national discharge standards several times or even dozens of times, becoming one of the major sources of water pollution. According to statistics, the annual COD discharge of the swine wastewater is far more than the total amount of national industrial wastewater and domestic sewage. The incomplete treated pollutants discharged into lakes, rivers or other water bodies, cause serious pollution of lakes and rivers. UASB is the typical anaerobic treatment technology of swine wastewater. Previous work on swine wastewater anaerobic treatment with UASB mainly focused on technical aspects such as start-up method, rector design, and processing parameters and few efforts have been made to understand mechanisms of organic pollutant degradation and the relationship between the structure and the function of the microbial community in the reactors.
     The objective of this study is to investigate the anaerobic biodegradation mechanism of organic pollutants in swine wastewater using microbial molecular ecology methods in combination with traditional microbial methods. The results can be summarized as follows:
     Microbial community structure, dynamics and diversity analysis Two UASB reactors inoculated with different inocula sources were started up in 36 days. These two reactors operated steadily for another two months with the COD removal rate of 84-88 % and 90-95 %. The methane production of 5.5-10.5 and 9.0-14.0 L day~(-1) respectively as the influent COD was between 3000-6000 mg L~(-1). The start-up rate, COD removal rates and methane production, microbial activity characterized by VSS and VSS/TSS of reactor A were slightly lower than those of the reactor B in the same operation time. The VFAs level of the both reactors was appropriate for microorganism activities. According to the results of DGGE and ARDRA, the bacterial communities were diversified after a long time of acclimation and were similar to each other in the two reactors inoculated with different sources but changed insignificantly during the steadily operation time. This community structure shift of the reactors was in accordance with their functions. 55 operational taxonomic units (OTUs) were identified from 346 positive clones. The microbial population percentages distributions were 33 % (Firmicutes), 23 % (Acidobacteria), 19 % (Proteobacteria), 11 % (Bacteroidetes), 8 % (Nitrospira), 4 % (Chloroflexi) and 2 % (others). The analysis of 16S rRNA clone library showed that the bacterial community was quite different from those related with swine waste treatment by other technologies such as biofilter and pig slurry anaerobic storage in previous studies.
     Typical reluctant organic compounds biodegradation mechanism analysis One bacterial strain named LPC24 was isolated from the activated sludge from the USAB reactor for swine wastewater treatment by direct spreading plate method. This bacterial strain was finally identified as Psedomonas putida based on its phenotype and genotype characteristics. This isolate could utilize indole or 3-MI as the sole source of carbon source. 3.0 mM indole and 2.0 mM 3-MI could be degraded in 18 days and 30 days respectively by this bacterium. Additionally, this strain could oxidize ammonia and deoxidize nitrate effectively without nitrite accumulation. According to the results of HPLC and GC-MS, the metabolic pathways of indole by strain LPC24 was oxindole /isatin /anthranilic acid which was similar to that proposed previously. The degrading pathway of 3-MI by strain LPC24 was identified as 3-methyloxindole /formylaminoacetophenone /2-aminoacetophenone which was different from the pathways proposed so far in other studies. 26 strains were isolated from piggery sludge and manure from one big pig farm, and ten of them with larger halos were selected to further study. A composite microbial system was constructed by five bacteria named as LCB03, LCB12, LCB52, LCD12 and LCD51 with higher cellulases activities from the ten isolates. About 0.36 gram of rice straw and 0.10 gram filter paper were degraded by the composite microbial system within 1 -week individually. These five bacteria were identified as Pseudomonas citronellolis. Stenotrophomonas maltophilia, Pseudomonas aeruginosa, Pseudomonas aeruginosa and Flavobacterium mizutaii respectively according to the results of phenotype and genotype. To our best knowledge, little work has been done before on cellulose degradation using bacteria S. maltophilia and F. mizutaii.
     Bio-augmentation of recalcitrant pollutants degradation and microbial community dynamics analysis Six isolates with strong capability of degrading indole and skatole or cellulose were inoculated into an UASB reactor to strengthen the degradation capability of these recalcitrant pollutants. The results showed that the capability of degrading the recalcitrant pollutants including indole, skatole and cellulose was enhanced to different degrees in the whole process of bio-augmentation. COD removal performance was improved 2-7 %, the cellulose degrading capability of was increased more than 20 %, and the removal rates of indole and skatole increased 15-20 %. The bacteria activity characterized as the VSS and VSS/TSS was also improved; the microbial community structure analyzed by means of molecular tools PCR-DGGE was changed apparently. The inoculated bacteria Flavobacterium mizutaii and Pseudomonas dominated, and the strain Stenotrophomonas maltophilia failed to dominate in the microbial community in the bio-augmentation system. With the effect of bio-augmentation, some new bacterial community identified as Clostridia, Acidobacteria and Nitrospira appeared in the bioaugmented system. Additionally, the bacterial structure and diversity under low temperature incubation were detected. The bacterial community structure was changed dramatically. The density of all of the dominant groups of Chloroflexi and Acidobacteria, and three Bacteroidetes, one Proteobacteria and one Firmicutes group substantially decreased or even disappeared from the bacterial system incubated under the temperature of 30-35℃. Some bacterial groups which could dominant in the community under low temperature were found. These bacterial groups are of ecological significance to lower energy requirement in anaerobic digestion in cold climates which might serve as an alternative strategy for practical swine wastewater treatment.
引文
Ania B F,Isabell F (2001) Temporal variation of the microbial community associated with the mediterranean spone Aplysina aerophoba.FEMS Microbiol Ecol 38:105-113.
    Araki N,Yarnaguchi T,Yamazaki S (2004) Quantification of am oA gene abundance and their amoA mRNA levels in activated sludge by real-time PCR.Wat Sci Technol 8:1-8
    Barlaz,M A (1997) In Manual of Environmental Microbiology.Washington DC:American Society for Microbiology.
    Bryant M P (1979) Microbial methane Production-theoretieal aspects.J Animal science 1:193-201.
    Bult C J,White O,Olsen G J (1996) Complete genome sequence of the methanogenic archaeon Methanococcusjannaschii.Science 273:1058-1073.
    Dearman B,Marschner P,Bentham R H (2005) Methane production and microbial community structure in single-stage batch and sequential batch systems anaerobically co-digesting food waste and biosolids.Appl Microbiol Biotechnol 69:589-596.
    Cintoli B,Sabatino B D,Galeotti L,Bruno G (1995) UASB Ammonium uptake by zeolite and treatment in UASB reactor of piggery wastewater.Wat Sci Technol 32:73-81.
    Cook K L,Rothrock-Jr M J,Loughrin J H,Doerner K C (2007) Characterization of skatole-producing microbial populations in enriched swine lagoon slurry.FEMS Microbiol Ecol 60:329-340.
    Dabert P,Delgenes J P,Godon J J (2005) Monitoring the impact of bioaugmentation on the start up of biological phosphorus removal in a laboratory scale activated sludge ecosystem.Appl Microbiol Biotechnol 5:575-588.
    Dimitar K,Damien J,Batstone (2005) Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors.Appl and Environ Microbiol 71:331-338.
    Ferguson R L,Buckley E N,Palumbo A V (1984) Response of marine bacterioplankton to differential filtration and confinement. Appl Environ Microbiol 47: 49-55.
    Fisher S G, Lerman L S (1983) DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci (USA) 80: 1579-1583.
    Garcial J L (2000) Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe 6: 205-226.
    Griffin M E, McMahon K D, Mackie R I (1998) Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids. Biotechnol Bioeng 3: 342-355.
    Guan X. (2005) The development and application of high rate anaerobic reactors. Ocean University of China. (In Chinese, with English Abstract)
    Guo Q. (2003) Studies on rapid start-up of uasb reactor and wastewater treatment technology on high concentration organic materials by improved uasb reactor. Hunan agricultural University (In Chinese, with English Abstract)
    Ibekwe A M, Lyon S R, Leddy M, Jacobson-Meyers M (2007) Impact of plant density and microbial composition on water quality from a free water surface constructed wetland. J Appl Microbiol 102: 921-936.
    Jones J G (1985) The effect of environmental factors on estimated viable and total populations of planktonic bacteria in lakes and experimental enclosures. Freshwater Biol 7: 67-71.
    FreshwatLeclerc M, Delbes C, Moletta R, Godon J J (2001) Single strand conformation polymorphism monitoring of 16S rDNA Archaea during start-up of an anaerobic digester. FEMS Microbiol Ecol 34: 213-20.
    Lee C, Kim J, Shin S G, Hwang S (2008) Monitoring bacterial and archaeal community shifts in a mesophilic anaerobic batch reactor treating a high-strength organic wastewater. FEMS Microbiol Ecol 65: 544-554.
    Lee D H, Zo Y G, Kim S J (1996) Nonradioactive method to study genetic profiles of natural bacterial-communities by PCR-s(?)ngle strand conformation polymorphism. Appl Environ Microbiol 62: 3112-3120.
    Limpiyakorn T, Shinohara Y, Kurisu F (2004). Distribution of ammonia-oxidizing bacteria in sewage activated sludge: analysis based on 16S RDNA sequence. Water SciTechnol 8: 9-14
    Liu Y, Xu H L, Yang S F, Tay L H (2003) Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor. Wat Res 37: 661-673.
    Loughrin J H, Lovanh N, Mahmood R (2008) Equilibrium sampling used to monitor malodors in a swine waste lagoon. J Environ Qual 37: 1-6.
    Kogure K, Simidu U, Taga N (1980) A tentative direct microscopic method for counting living marine bacteria. Can J Microbiol 25: 415-420.
    Martinez A J, Acinas S G, Rodriguez-Valera F (1995) Evaluation of prokaryotic diversity by restrictase digestion of 16S rDNA directly amplified from hypersaline environments. FEMS Microbiol Ecol 17: 247-256.
    McMahon K D, Stroot P G, Mackie R I (2001) Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions-Ⅱ: microbial population dynamics. Wat Res 7: 1817-1827.
    Miambi E, Guyot J P, Ampe F (2003) Identification, isolation and quantification of representative bacteria from fermented cassava dough using an integrated approach of culture-dependent and culture-independent methods. Int J Food Microbiol 2:111-2008-9-25.
    Muyzer G, DeWaa E C (1993) Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59: 695-700.
    Najafpour GD, Zinatizadeh AAL, Mohamed AR, Hasnain M & Nasrollahzadeh IH (2006) High-rate anaerobic digestion of palm oil mill effluent in an upflow anaerobic sludge-fixed film bioreactor. Process Biochem 41: 370-379.
    Orphan V J, House C H, Hinrichs K U et al. (2001) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 5529:484-487
    Orphan V J, House C H, Hinrichs K U, McKeegan K D (2002) Multiple archaeal group s mediate methane oxidation in anoxic cold seep sediments. Microbiology 11: 7663-7668
    Smith D R, Doucette-Stamm L A, Deloughery C et al (1997) Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics. J Bacteriol 22: 7135-7155
    Tiedje J M, Asuming-Brempong S, Nusslein K et al (1999) Opening the black box of soil microbial diversity. Appl Soil Ecol 13: 109-122
    Torre A I, Jimenez J A, Carballo M, Fernandez C (2000) Ecotoxicological evaluation of pig slurry. Chemosphere 41, 1629-1635.
    Torsvik V, Goksoyr J, Daae F L (1990) High diversity' in DNA of soil bacteria. Appl Environ Microbiol 3: 782-787
    Wagner A, Blackstone N, Cartwright P et al. (1994) Surveys of gene families using polymerase chain reaction: PCR selection and PCR drift. Syst Biol 2: 250-261
    Wiwat J, Nimaradee B, Supapon C (2005) Use of an alternative Archaea-specific probe for methanogen detection. J Microbiol Meth 61: 95-104
    Xu Q, Zhu G, Xiang L (2002) Pollution from large scaled livestock and foultry breeding farms in Beijing and its control. Rual Eco-Environ 18:24-28
    Yang Z. (2002) Analysis of high concentration organic wastewater treatment technology. Hunan University. (In Chinese, with English Abstract)
    Yang K, Yu Y, Hwang S (2003) Selective optimization in thermophilic acidogenesis of cheese-whey wastewater to acetic and butyric acids: partial acidification and methanation. Water Resour 37: 2467-2477.
    Zhao Q (2004) Start-up of UASB reactors and characters of anaerobic granular sludge. Henan agricultural University (In Chinese, with English Abstract) fade out, three bands disappeared and nine bands appeared during the acclimation process. At least 18 bands were totally detected in the acclimated sludge in the two reactors from DGGE profile. The bacterial community was diversified after a long time of acclimation and was similar in the two reactors inoculated with different sources but changed insignificantly during the steady operation time. This community structure shift of the reactors was in accordance with their functions. 55 operational taxonomic units (OTUs) were identified from 346 positive clones. Their percentage of microbial population was 33 % (Firmicutes), 23 % (Acidobacteria), 19% (Proteobacteria), 11 % (Bacteroidetes), 8 % (Nitrospira), 4 % (Chloroflexi) and 2% (others). The analysis of 16S rRNA clone library showed that the bacterial community was quite different from those related with swine waste treatment by other technologies such as biofilter and pig slurry anaerobic storage in previous studies. These results demonstrated that molecular microbial methods can thus help us to better understand the development and diversity in the microbial community of UASB reactors for swine wastewater treatment.
    Akarsubasi A T, Ince O, Oz N A, Kirdar B, Ince B K (2006) Evaluation of performance, acetoclastic methanogenic activity and archaeal composition of full-scale UASB reactors treating alcohol distillery wastewaters. Process Biochem 41: 28-35.
    Alfreider A, Peters S, Tebbe C C, Rangger A, Insam H (2002) Microbial community dynamics during composting of organic matter as determined by 16S ribosomal DNA analysis. Compost Sci Util 10: 303-312.
    Anderson, G K, Yang, G, 1992. Determination of bicarbonate and total volatile acid concentration in anaerobic digesters using a simple titration. Wat Environ Res 64, 53-59.
    MEPC (1998) Standard methods for the examination of water and wastewater, 4th edn. Ministry of Environmental Protection of the People's Republic of China.
    Ariesyady H D. Ito T. Okabe S (2007) Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Res 41: 1554-1568.
    Cardinale M, Joao Muller V, Berg G, Grubel M (2008) In situ analysis of the bacterial community associated with the reindeer lichen Cladonia arbuscula reveals predominance of Alphaproteobacteria. FEMS Microbiol Ecol 65: 6663-6671.
    Castle D M, Montgomery M T, Kirchman D L (2006) Effects of naphthalene on microbial community composition in the Delaware estuary. FEMS Microbiol Ecol 56: 55-63.
    Cavicchioli R, Ostrowski M, Fegatella F, Goodchild A, Guixa-Boixereu N (2003) Life under nutrient limitation in oligotrophic marine environments: an eco/physiological perspective of sphingopyxis alaskensis (formerly sphingomonas alaskensis). Microbiol Ecol 45: 203-217.
    Chen C L, Wuc J H, Liu W T (2008) Identification of important microbial populations in the mesophilic and thermophilic phenol-degrading methanogenic consortia. Water Res 42: 1963-1976.
    Cintoli B, Sabatino B D, Galeotti L, Bruno G (1995) UASB Ammonium uptake by zeolite and treatment in UASB reactor of piggery wastewater. Wat Sci Tech 32: 73-81.
    Cook K L, Rothrock-Jr M J, Loughrin J H, Doerner K C (2007) Characterization of skatole-producing microbial populations in enriched swine lagoon slurry. FEMS Microbiol Ecol 60: 329-340.
    Danon M, Franke-Whittle I H, Insam H, Chen Y, Hadar Y (2008) Molecular analysis of bacterial community succession during prolonged compost curing. FEMS Microbiol Ecol 65: 133-144.
    D(?)az E E, Stams A J, Amils R, Sanz J L (2006) Phenotypic properties and microbial diversity of methanogenic granules from a full-scale upflow anaerobic sludge bed reactor treating brewery wastewater. Appl Environ Microbiol 72: 4942-4949.
    Fang H, Liu H, Zhang T (2002) Characterization of a hydrogen producing granular sludge. Biochem Bioeng 78: 45-51.
    Fem(?)ndez N,Diaz E E,Amils R,Sanz J L (2008) Analysis of microbial community during biofilm development in an anaerobic wastewater treatment reactor.Microbiol Ecol 56:121-132.
    Ficker M,Krastel K,Orlicky S,Edwards E (1999) Molecular characterization of a toluene-degrading methanogenic consortium.Appl Environ Microbiol 65:5576-5585.
    Guendouz J,Buffiere P,Cacho J,Carrere M,Delgenes J P (2008) High-solids anaerobic digestion:comparison of three pilot scales.War Sci Technol 58 (9):1757-1763
    Hang Q J,Yuan H L,Wang E T,Li C,Huang H Z (2008) Bacterial diversity in sediments of the eutrophic Guanting Reservoir,China,estimated by analyses of 16S rDNA sequence.Biodivers Conserv 17:1667-1683.
    Ho K L,Chung Y C,Lin Y H,Tseng C P (2008) Microbial population analysis and field application of biofilter for the removal of volatile-sulfur compounds from swine wastewater treatment system.J Hazard Mater 152:580-588.
    Ibekwe A M,Lyon S R,Leddy M,Jacobson-Meyers M (2007) Impact of plant density and microbial composition on water quality from a free water surface constructed wetland.J Appl Microbiol 102:921-936.
    Jeong H S,Kim Y H,Yeom S H,Songa B K,Lee SI (2005) Facilitated UASB granule formation using organic-inorganic hybrid polymers.Process Biochem 40:89-94.
    Juteau P,Tremblay D,Villemur R,Bisaillon J G,Beaudet R (2005) Analysis of the bacterial community inhabiting an aerobic thermophilic sequencing batch reactor (AT-SBR) treating swine Waste.Appl Microbiol Biotechnol 66:115-122.
    Kleinsteuber S,Schleinitz K M,Breiffeld J,Harms H,Richnow H H,Vogt C (2008) Molecular characterization of bacterial communitiesmineralizing benzene under sulfate-reducing conditions.FEMS Microbiol Ecol 66:143-157.
    Leclerc M,Delbes C,Moletta R,Godon J J (2001) Single strand conformation polymorphism monitoring of 16S rDNA Archaea during start-up of an anaerobic digester.FEMS Microbiol Ecol 34:213-20.
    Lee C,Kim J,Shin S G,Hwang S (2008) Monitoring bacterial and archaeal community shifts in a mesophilic anaerobic batch reactor treating a high-strength organic wastewater. FEMS Microbiol Ecol 65: 544-554.
    Lettinga G Velsen A F M. Hobma S W, Zeeuw W, Klapwijk A (1980) Use of the upflow sludge blanket (USB) reactor concept for biological waste water treatment especially for anaerobic treatment. Biotechnol Bioeng 22: 699-734.
    Liu L, Jiang C Y, Liu X Y, Wu J F, Han J G Liu S J (2007) Plant-microbe association for rhizoremediation of chloronitroaromatic pollutants with Comamonas sp. strain CNB-1. Environ Microbiol 9: 465-473.
    Liu W T, Chanb O C, Fang H (2002) Microbial community dynamics during start-up of acidogenic anaerobic reactors. Water Res 36: 3203-3210.
    Liu Y, Yao T, Jiao N, Kang S, Zeng Y, Huang S (2006) Microbial community structure in moraine lakes and glacial meltwaters, Mount Everest. FEMS Microbiol Lett 265: 98-105.
    Liu Y, Xu H L, Yang S F, Tay L H (2003) Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor. Water Res 37: 661-673.
    Macbeth T W, Cummings D E, Spring S, Petzke L M, Kent S, Sorenson K S (2004) Molecular characterization of a dechlorinating community resulting from in situ biostimulation in a trichloroethene-contaminated deep, fractured basalt aquifer and comparison to a derivative laboratory culture. Appl Environ Microbiol 70: 7329-7341.
    Mills H J, Hodges C, Wilson K, MacDonald I R, Sobecky P A (2003) Microbial diversity in sediments associated with surface-breaching gas hydrate mounds in the Gulf of Mexico. FEMS Microbiol Ecol 46: 39-52.
    Muyzer G, Waal E C, Uitterlinden A G (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59: 675-700.
    Najafpour G D, Zinatizadeh A A L, Mohamed A R, Hasnain M, Nasrollahzadeh I H (2006) High-rate anaerobic digestion of palm oil mill effluent in an upflow anaerobic sludge-fixed film bioreactor. Process Biochem 41: 370-379.
    Peu P, Brugere H, Pourcher A M, Kerouredan M, Godon J J, Delgenes J P, Dabert P (2006) Dynamics of a pig slurry microbial community during anaerobic storage and management. Appl Environ Microbiol 72: 3578-3585.
    Raul S C,Godon J J,Delgenes J P,Dabert P (2005) Characterisation of the microbial diversity in a pig manure storage pit using small subunit rDNA sequence analysis.FEMS Microbiol Ecol 52:229-242.
    Ryckeboer J,Mergaert J,Coosemans J,Deprins K,Swings J (2003) Microbiological aspects of biowaste during composting in a monitored compost bin.J Appl Microbiol 94:127-137.
    Sanchez E,Travieso L,Weiland P,Borja R,Nikolaeva S (2002) Effect of influent strength changes on the performance of a down-flow anaerobic fixed bed reactor treating piggery waste.Resour Conserv Recycl 36:73-82.
    Show K,Wang Y,Foong S,Tay J (2004) Accelerated start-up and enhanced granulation in up flow anaerobic sludge blanket reactors.Water Res 38:2294-304.
    Sugita H,Nakamura H,Shimada T (2005) Microbial communities associated with filter materials in recirculating aquaculture systems of freshwater fish.Aquaculture 24:3403-3409.
    Tang Y,Toru S,Shigeru M,Kenji K (2005) Microbial community analysis of mesophilic anaerobic protein degradation process using bovine serum albumin (BSA)-fed continuous cultivation.J Biosci Bioeng 99:150-164.
    Thompson J R,Marcelino L A,Polz M F (2002) Heteroduplexes in mixed-template amplification:formation,consequence and elimination by ‘reconditioning PCR’.Nucleic Acids Res 30:2083-2088.
    Weisburg W G,Barns S M,Pelletier D A (1991) 16S ribosomal DNA amplification for phylogenetic study.J Bacteriol 173:697-703.
    Yang K,Yu Y,Hwang S (2003) Selective optimization in thermophilic acidogenesis of cheese-whey wastewater to acetic and butyric acids:partial acidification and methanation.Water Resour 37:2467-2477.
    Yoochatchaval W,Tsushima I,Ohashi A,Harada H,Yamaguchi T,Araki N,Syutsubo K (2008) Changes in process performance and microbial characteristics of retained sludge during low-temperature operation of an EGSB reactor.J Environ Sci Health A Tox Hazard Subst Environ Eng 43:1650-1656.
    Yu H Q,Tay J H,Fang H H P (1999) Effects of Added Powdered and Granular Activated Carbons on Start-Up Performance of UASB Reactors.Environ Technol 20: 1995-1101
    Zhou J, Bruns M A, Tiedje J M (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62: 316-322.
    Imai T, Ukita M, Liu J, Sekine M, Nakanishi H, Fukagawa M (1997) Advanced start up of UASB reactors by adding of water absorbing polymer. Water Sci Technol 36: 399-406
    Satoshi F, Naomichi N, Shiro N (1995) High rate performance and characterization of granular methanogenic sludges in upflow anaerobic sludge blanket reactors fed with various defined substrates. J ferment bioeng 79 (4): 354-359.
    Wong B T, Show K Y, Wong A R, Lee D (2008) Effect of Volatile Fatty Acid Composition on Upflow Anaerobic Sludge Blanket (UASB) Performance. Energy Fuels, 22,108-112
    Zaiat M, Vieira L G T, Forestf E (1997) Spatial and temporal variations of monitoring performance parameters in horizontal-flow anaerobic immobilized sludge (hais) reactor treating synthetic substrate. Wat Res 31: 1760-1766. of these two kinds of NHCs were detected by HPLC and GC-MS. Three intermediate metabolites of indole degraded by strain LPC24 were detected and identified as anthranilic acid, isatin and oxindole respectively. The presumed metabolite pathway of indole was similar to that proposed by Berry et al. (1987) and Gu et al. (2002) (Figure3). Similarly, three metabolic compounds were detected during the skatole degradation by strain LPC24 and identified as 3-methyloxindole, formylaminoacetophenone and 2-aminoacetophenone. The potential degradation pathway of 3-MI was postulated as the following steps: firstly oxidizing at C-2; hydroxylation and the dehydroxylation at C-2 and C-3, and then decarboxylated at 2- position sequentially after the cleavage of the pyrrole ring between 2- and 3-positions. This proposed 3-MI degradation pathway by strain P. putida strain LPC24 in this study was different from the pathways proposed so far in other studies. Different from the previous similar studies on indole or skatole degradation in polluted marine sediments and human liver microsomes, this study is the first effort to understand indole and 3-M degradation in swine wastewater treatment systems.
    Babol J, Squires E J, Lundstro K (1999) Relationship between metabolism of androstenone and skatole in intact male pigs. Am Soc Anim Sci 77: 84-92.
    Beline F, Boursier H, Guiziou F, Paul E (2007) Modelling of biological nitrogen removal during treatment of piggery wastewater. Water Sci Technol 55:11-19.
    Berry D. F., Madsen L. and Bollag J. M. (1987). Conversion of indole to oxindole under methanogenic conditions. Appl Environ Microbiol 53: 180-182.
    Chen G, Cu R A, Lundstrom K, Wood J D, Doran O (2008) Regulation of CYP2A6 protein expression by skatole, indole, and testicular steroids in primary cultured pig hepatocytes. Drug Metab Dispos 36: 56-60.
    Christoph N, Gessner M, Simat T J, Hoenicke K (1999) Off-flavor compounds in wine and other food products formed by enzymatical, physical, and chemical degradation of tryptophan and its metabolites. Adv Exp Med Biol 467: 659-69.
    Claus, R., Dehnhard, M. and Herzog, A.H. (1993) Parallel measurements of indole and skatole (3-methylindole) in feces and blood plasma of pigs by HPLC. Live Prod Sci34: 115-126.
    Diaz G J, Skordos K W, Yost G S, Squires E J (1999) Identification of phase I metabolites of 3-methylindole produced by pig liver microsomes. Drug Metab Dispos 27: 1150-1156.
    Dong X, Hong Q, He L, Jiang Xin, Li S (2008) Characterization of phenol-degrading bacterial strains isolated from natural soil. Int Biodeterior Biodegrad 62: 257-262.
    Dong, X.Z. and Cai, M.Y. (2001) Manual of Identification for General Bacteriology. Scientific Press, Beijing, 162-171.
    Doukyu, N., Aono, R. (1997) Biodegradation of indole at high concentration by persolvent fermentation with Pseudomonas sp. ST-200. Extremophiles 1:100-105.
    Doukyu N, Toyoda K, Aono R (2003) Indigo production by Escherichia coli carrying the phenol hydroxylase gene from Acinetobacter sp. strain ST-550 in a water-organic solvent two-phase system. Appl Microbio Biotechnol 60:720-725.
    Gu J D, Fan Y, Shi H (2002) Relationship between structures of substituted indolic compounds and their degradation by marine anaerobic microorganisms. Mar Pollut Bull 45: 379-384.
    He L S, Liu H L, Xi B D, Zhu Y B (2006) Effects of effluent recirculation in vertical-flow constructed wetland on treatment efficiency of livestock wastewater. Water Sci Technol 54: 137-146.
    John H L, Ariel A S, Matias B (2006) Reduction of malodorous compounds from a treated swine anaerobic lagoon. J Environ Qual 35: 94-199.
    Katapodis P, Moukouli M, Christakopoulos P (2007) Biodegradation of indole at high concentration by persolvent fermentation with the thermophilic fungus Sporotrichum thermophile. Int Biodeterior Biodegrad 60: 267-272.
    Kamatht A V, Vaidyanathan C S (1990) New Pathway for the Biodegradation of Indole in Aspergillus niger. Appl Environ Microbiol 56: 275-280.
    Lanthier F, Lou Y, Terner M A, Squires E J (2006) Characterizing developmental changes in plasma and tissue skatole concentrations in the prepubescent intact male pig.J Anita Sci 84:1699-1708.
    Li P,Nahimana L,Chen S.(2006) High nitrogen removal from wastewater with several new aerobic bacteria isolated from diverse ecosystems.J Environ Sci-China 18:525-529.
    Li Y,Gu G,Zhao J,Yu H (2001) Anoxic degradation of nitrogenous heterocyclic compounds by acclimated activated sludge.Process Biochemistry 37:81-86.
    Loughrin J H,Lovanh N,Mahrnood R (2008) Equilibrium sampling used to monitor malodors in a swine waste lagoon.J Environ Qua137:1-6.
    Mogens T J,Raymond P C,Bent B J (1995) 3-Methylindole (skatole) and indole production by mixed populations of pig fecal bacteria.Appl Environ Microbiol 61:3180-3184.
    Ochiai M,Wakabayashi K,Sugimura T,Nagao M (1986) Mutagenicities of indole and 30 derivatives after nitrite treatment.Mutat Res 172:189-197.
    Oshima T,Kawai S,Egami F (1965) Oxidation of indole to indigotin by Pseudomonas indoloxidans.J Biochem 58:259-263.
    Shinohara R,Ishiguro I (1977) New formamidase having substrate specificity for o-formylaminoacetophenone in pig liver.Bioch Biophys Acta 483:409-415.
    Torre,A.I.,Jimenez,J.A.,Carballo,M.and Fernandez,C.(2000) Ecotoxicological evaluation of pig slurry.Chemosphere 41:1629-1635.
    Wang Y,Yip C,Fan Y Gu J (2003) Aerobic and anaerobic degradation pathways for N-heterocyclic aromatic compound indole.Bull Miner Petrol Geochem 22:170-173.
    Weisburg W G,Barns S M,Pelletier D A (1991) 16S ribosomal DNA amplification for phylogenetic study.J Bacteriol 173:697-703.
    William K,Nichols R M,Konstantine S (2003) 3-Methylindole-Induced toxicity to Human Bronchial Epithelial Cell Lines.Toxicol Sci 71:229-236.
    Yin B,Gu J D,Wan N (2005) Degradation of indole by enrichment culture and Pseudomonas aeruginosa Gs isolated from mangrove sediment.Int Biodeterior Biodegrad 56:243-248.
    Yin B, Gu J D (2006) Aerobic degradation of 3-methylindole by Pseudomonas aeruginosa Gs isolated from mangrove sediment. Hum Ecol Risk Assess 12:248-258.
    Yan Z Y, Easterwood L M, Maher N (2007) Metabolism and bioactivation of 3-methylindole by human liver microsomes. Chem Res Toxicol 20: 140-148.
    SEM of rice straw and filter paper was changed significantly. According to theresults of phenotype and genotype analysis, these five bacteria were identified as Pseudomonas citronellolis, Stenotrophomonas maltophilia, Pseudomonas aeruginosa, Pseudomonas aeruginosa and Flavobacterium mizutaii, respectively. To our best knowledge, there has been little work on cellulose degradation using S. maltophilia and F. mizutaii before. Each of the five bacteria could produce different types of cellobiase that co-catalyze degrading natural cellulose effectively, and the microbial system therefore has great potential in cellulose-related pollution control and waste utilization.
    Angela C R, Marcela B, Natalia S (2008) Treatment of paper pulp and paper mill wastewater by ulation-flocculation followed by heterogeneous photocatalysis. J Photochem Photobiol A: Chem, 194: 1-10.
    Bahia A, Ali G (2006) Characterization of a novel β-glucosidase from a Stachybatrys stain. Biochem Eng J 32: 191-197.
    Berner R A (2003) The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 426:323-6.
    Cassidy D P, Hudak A J (2002) Microorganism selection and performance in bioslurry reactors treating PAH-contaminated soil. Environ Technol 23:1033-1042.
    Chen Z, Deng X (2006) Progress in microbiologic utilization technology of crop rice straw. China biogas, 24: 31-35 (in Chinese with English Abstract).
    Cox P M, Belts R A, Jones C D, Spall S A, Totterdell I J (2000) Acceleration of global wanning due to carbon-cycle feedbacks in a coupled climate model. Nature 408: 184-190.
    Cui Z J, Li M D, Piao Z (2002) Selection of a composite microbial system mc1 with efficient and stability cellulose degradation bacteria and its function. Environ Sci-China 23: 36-39 (in Chinese with English Abstract).
    Dong X Z, Cai MY (2001) Manual of identification for general bacteriology.Scientific Press, Beijing, 66-191 (in Chinese with English Abstract). Dun B Q, Wu W, Wang X J (2008) Isolation and identificati on of a cellulose decomposing bacteria. J Agric Sci Technol-China, 10: 113-117 (in Chinese with English Abstract). Georgakakis D, Krintas T (2000) Optimal use of the hosoya system in composting poultry manure. Biores Technol, 72: 227- 233. Ghose T K (1987) Measurement of cellulase activities. Pure & Appl Chem, 59:257-268. Haruta S, Cui Z, Huang Z (2002) Construction of a stable microbial community with high cellulose-degradation ability. Appl Microbiol Biotechnol 59: 529-534.
    Hilden L, Johansson G. (2004) Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity. Bioteehnol Lett 26: 1683-1694.
    Isabelle B, Stephane P, Pascale BH, Martine S, Jacques B (2007) Isolation and characterization of diuron-degrading bacteria from lotic surface water. Microbial Ecol 54, 761-770.
    Jarvis M (2003) Cellulose stacks up. Science 426: 611-612.
    Kato S, Haruta S, Cui Z J, Ishii M, Igarashi Y (2008) Network Relationships of Bacteria in a Stable Mixed Culture. Microb Ecol 56: 403-411.
    Keikhosro K, Giti E, Mohammad J (2006) Ethanol production from dilute acid pretreated rice rice straw by simultaneous saeeharifieation and fermentation with Mucor indicus. Rhizopus oryzae, and Saccharomyces cerevisiae. Enzyme Microb Technol 40:138-144.
    Laura S, Diana D G, Fabio F, Claudia B (2007) Degradation of low-ethoxylated nonylphenols by a stenotrophomonas strain and development of new phylogenetic probes for Stenotrophomonas spp. detection. Current Mierobiol 52: 13-20.
    Li P, Liu D, Nahimana L (2006) High nitrogen removal from wastewater with several new aerobic bacteria isolated from diverse ecosystems. J Environ Sci-China 18: 525-529 (in Chinese with English Abstract).
    Li Y, Zhao F (2005) Advances in cellulase research. Chinese Bull Life Sci 17: 392-397 (in Chinese with English Abstract).
    Lu Y X, Chen K, Li H H (2007) Screening of cellulose-degrading bacteria and study on its cellulose-producing condition. J Anhui Agric Sci-China 35: 3631-3644 (in Chinese with English Abstract).
    Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly (lactic acid) /cellulose whiskers nanocomposite materials. Compos Sci Technol1(1): 1-28.
    Ren N Q, Ma F (2002) Microbiology of pullution control. Harbin Institute of Technology Press, Harbin, 256-328 (in Chinese with English Abstract).
    Wang D, Qu Y, Gao P (1997) Primary studies of several cellulose components with special characteristics purified from Trichoderma pseudokoningtt S38. Biotech Appl Biochem 25: 181-187.
    Wang W Y, Zhu J H, Wu S Y (1998) Research progress of cellulose science and cellulose. J Jiang Su Univ Sci Technol-China 19: 20-28 (in Chinese with English Abstract).
    Weisburg W G, Barns S M, Pelletier DA (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697-703.
    We(?) T Y, Zhang S Q, Shao L G (2004) Isolation and study of a new strain of cellulose degrading bacterium. Environ Sci Technol-China 27: 1-3 (in Chinese with English Abstract).
    Wyk V, Mohulatsi M (2003) Biodegradation of wastepaper by cellulase from Trichoderma viride. Biores Technol 86: 21-23.
    Zhang Y, Himmel M, Mielenz J (2006) Outlook for Cellulase Improvement: Screening and Selection Strategies. Biotechnol Adv 3: 1-30.
    Zhang Y H. Percival H, Michael E, Mielenz J R (2006) Outlook for cellulase improvement: Screening and selection strategies. Biotechnol Adv 24: 452-481.
    Zeng Q L (2008) Isolation and Identification of straw cellulose- biodegrading filamentous fungi. Hubei Agricultural Sciences-China, 44: 107-115 (in Chinese with English Abstract).
    Boon N, Goris J, Devos P, Verstraete W, and Top E (2000) Bioaugmentation of activated sludge by an Indigenous 3-Chloroaniline-Degrading Comamonas testosterone Strain, I2gfp. Appl Environ Microbiol 21:2906-2913. Bouchez T, Patureau D, Wagner M, Delgenes J P, Moletta R (2000) Successful and unsuccessful bioaugmentation experiments monitored by fluorescent in situ hybridization. Water Sci Technol 41: 61-69.
    Cunliffe M, Kertesz M A (2006) Effect of Sphingobium yanoikuyae Bl inoculation on bacterial community dynamics and polycyclic aromatic hydrocarbon degradation in aged and freshly PAH-contaminated soils. Environ Pollut 144: 228-237.
    Enright A M, Collins G O'Flaherty V (2007) Temporal microbial diversity changes in solvent-degrading anaerobic granular sludge from low-temperature (15 degrees C) wastewater. Syst. Appl Microbiol 30: 471-482.
    Goldstein M G, Mallory L M, Alexander M (1985) Reasons for possible failure of inoculation to enhance biodegradation. Appl Environ Microbiol 50: 977-983.
    Grabowski A, Nercessian O, Fayolle F, Blanchet D Jeanthon C (2005) Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. Ferns Microbiol Ecol, 54: 427-443.
    Guendouz J, Buffiere P, Cacho J, Carrere M, Delgenes J P (2008) High-solids anaerobic digestion: comparison of three pilot scales. Water Sci Technol 58 (9):1757-1763.
    Hajji K T, Lepine F F, Bisaillon J G, Beaudet R, Hawari J, Guiot S R (2000) Effects of bioaugmentation strategies in UASB reactors with a methanogenic consortium for removal of phenolic compounds. Bioeng Biotechnol 67:417-23.
    Heinaru E, Merimaa M, Viggor S, Lehiste M, Leito I, Truu J, Heinaru A (2005) Biodegradation efficiency of functionally important populations selected for bioaugmentation in phenol- and oil-polluted area. FEMS Microbiol Ecol 51: 363-373.
    Jarvis M. Cellulose stacks up. Science 426: 611-613.
    Jin R. Zhou J. Zhang A, Wang J (2008) Bioaugmentation of the decolorization rate of acid red GR by genetically engineered microorganism Escherichia coli JM109 (pGEX-AZR). World J Microbiol Biotechnol 24: 23-29. Kimberly L. Cook, Michael J. Rothrock Jr John H. Loughrin& Kinchel C. Doerner (2007) Characterization of skatole-producingmicrobial populations in enriched swine lagoon slurry. FEMS Microbiol Ecol 60: 329-340. Limbergen Van, Top H E M, Verstraete W (1998) Bioaugmentation in activated sludge: current features and future perspectives. Appl Microbiol Biotechnol 50:16-23.
    Loughrin J H, Szogi A A, Vanotti M B (2006) Reduction of Malodorous Compounds from a Treated Swine Anaerobic Lagoon. J Environ Qual 35: 194-199.
    Marron-Montiel E, Ruiz-Ordaz N, Rubio-Granados C, Juarez-Ramirez C, Galindez-Mayer C J (2006) 2,4-D-degrading bacterial consortium Isolation, kinetic characterization in batch and continuous culture and application for bioaugmenting an activated sludge microbial community. Process Biochem 41:1521-1528.
    Osakaa T, Shirotania K, Yoshiea S, Tsuneda S (2008) Effects of carbon source on denitrification efficiency and microbial community structure in a saline wastewater treatment process. Water Res 42 : 3709-3718.
    Quan X C, Shi H C, Liu H, Lv P P, Qian Y (2004) Enhancement of 2,4-dichlorophenol degradation in conventional activated sludge systems bioaugmented with mixes special culture. Water Res 38: 245-253.
    Salamon J A, Zaitsev A G, Wolters S V (2008) Soil macrofaunal response to forest conversion from pure coniferous stands into semi-natural montane forests. Appl Soil Ecol 40: 491-498.
    Sandoval Lozano C J, Mendoza M V, Arango M C, Castillo Monroy E F (2009) Microbiological characterization and specific methanogenic activity of anaerobe sludges used in urban solid waste treatment. Waste Manage 29: 704-711.
    Stackebrandt E, Goebel B M (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44: 846-849.
    Yu Z T, Mohn W W (2001) Bioaugmentation with resin-acid-degrading bacteria enhances resin acid removal in sequencing batch reactors treating pulp mill effluents. Water Res 35: 883-890.
    Xiong S M, Zuo X F, Zhu Y Y (2005) Determination of cellulose, hemi-cellulose and liginin rice hull. Cereal Feed Industry-China 40: 1003-6202. (in Chinese with English Abstract)