电子表面封装无铅软钎料的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着公众环保意识的增强,人们已经认识到含铅钎料对环境和人体健康的威胁,表面组装技术的开展,使得研制新型、实用的无铅软钎料以替代传统的Sn-Pb系钎料合金成为近年来研究的热点。本文便是基于这一出发点,研制在一定程度上能满足实用要求的无铅钎料。
     对钎料的研制是按照从实用化的角度出发,兼顾成本和钎焊性能,运用合金化原则和数学设计方法(均匀设计),基于现存的Sn-Zn二元钎料近共晶成分进行多元钎料合金设计和性能改善。并通过实验加以验证、逐步优化合金成分。实验中采用溶剂覆盖法制备钎料试样合金,并从理论上讨论了溶剂对熔融液态金属的覆盖、分离、精炼性能,指出了这些工艺性能与溶剂表面性能的关系,摸索并实践了制备无铅钎料的工艺。
     论文从制备的钎料合金的润湿性能、超电势问题、钎料电阻、熔点和钎料断裂等方面,对钎料的性能进行分析,进而优化钎料的成分。钎料的钎焊性能在很大程度上决定于钎料的润湿性,文中采用铺展面积法来测定钎料的润湿性能,通过测定钎料润湿性能随温度变化的曲线来预测钎料实用化焊接的可行性工艺温度范围。研究中发现Sn-Zn系钎料在富氧环境中的钎焊性能劣于传统钎料,但是通过改善钎剂表面性能可以使钎料钎焊性能大幅度改善。研究中发现Bi的加入可很大程度地降低钎料的熔点,同时Bi还可以改善钎料的润湿性能,Bi质量百分含量在5%左右时,Sn-Zn-Bi系润湿性能较好。在酸性溶液中,阴极Sn-Zn系钎料的超电势比传统钎料超电势低,合金元素Bi的添加会适当提高钎料的超电势,Bi含量在<5%(wt)时Sn-Zn-Bi系钎料的超电势随Bi含量增加而
    
    四川人学硕上毕业论文
    升高,同时随zn含量的增加,也会使超电势有一定程度升高。通过对钎料密
    度的测定,粗算无铅钎料的使用成本,同时测定出无铅钎料的电阻率比传统钎
    料低。通过对钎料接头断口形貌的初步研究,推测钎焊接头的主要断裂形式。
     最后,通过对实验数据的分析,对实验的钎料合金成分进行了优化,提出
    了具有良好实用前景的Sn一Zn基多元合金钎料,其合金成分范围为含Zn:4一
    6.5%,Bi:1~3%,Ag:0.5一1.0%,或Cu:0.3%,余量为Sn。
In viewing of increasing environmental and health concerns of lead and lead containing solders, especially the recent development of surface mount technology(SMT), the lead-free alternatives need to be considered and become the focus of research. This scientific research and development project bases on this starting point, develops the novel lead-free solders, which can meet the requirements of practicability.
    The development is aimed at the practicability, giving some consideration to the cost and solderability. With the method of uniform and experiment design, the solder component essential design is on the basis of binary eutectic and near-eutectic Sn-Zn solder alloy systems. The properties of the lead-free solders are predicted and improved by the means of alloying method and experiments, then the solder components get optimized. The sample solder alloys are prepared and refined by the flux to the molten metals on the covering, separation and purify are also discussed in the paper. It also points out the relationship between the flux processing properties and the flux surface properties.
    The component design and optimization proceeds from the respects of wettability, overpotential, resistance, melting point, melting range and so on. It shows that the solderability is up to the wettability to a certain degree, and it also analyses the feasibility of applying the method of spreading area to the wettability. Besides, it explains the relationship between the wetting angle and the spreading area. The wettability of Sn-Pb solders is better than that of Sn-Zn family solder alloys, and
    
    
    
    reduces surface tension solder to improve the wettability. The additive Bi can decreas the melting point of the solders, and improve the wettability, and it will get the best wettability when the weight percentage of Bi reaches to 5%. The over-potential of the Sn-Zn solders is much lower than the Sn-Pb solder alloys. The additive Bi will change the over-potential of the solders, near the weight percentage of 5%, the over-potential has maximum value. And value the cost of solders through the density.
    From the analysis of experimental data, the Sn-(4~6.5)Zn- (1~3) Bi-(0.5~ 1.0)Ag/0.3Cu solder system has been proposed.
引文
1. An analysis of the current status of Lead-Free soldering, NPL&ITRL Report., Apr 1999
    2. An analysis of the current status of Lead-Free soldering-update, NPL&ITRL Report., 2000
    3.况延香,迈向新世纪的微电子封装技术,电子工艺技术,2001(1),1-6
    4.贾松良,集成电路的现状和发展趋势,97电子封装会议论文集,12-16
    5. The current status of lead-free soldering, Katsuaki Suganuma, NPL&ITRL Technology Report.,2001
    6. Lead-Free Solder Project, NCMS Report 0401RE96., 1997
    7. M.R.Harrison and J.H.Vincent, Proc.12th European Microelectronics & Packaging Conference, IMAPS Europe, P.98-104., 1999
    8.薛松柏,钱乙余等,创新、环保.21世纪我国钎焊与扩散焊的发展方向,焊接,2000(1),1-9
    9. Draft of the WEEE Directive, European Commission, DGXI., 1997
    10. R.P.Prasad, Surface Mount Technology Principles and practice, Van Nastrand Reinhold, 1989,215-228
    11.张文典,21世纪SMT发展趋势和对策,电子工艺技术,200l(1),1-9
    12. E.P.Wood and K.L.Nimmo, Lead-Free solders for electronic packaging, J. Eloctron., 1994,23(8),709-714
    13. Results of Investigative research on lead-free solder (00-ki-17) Japan Electronic Industry Development Association., 2000
    14. JIEP Project symposium presentation, "Practical application of Sn-Zn lead-free solder," Low-temperature solder mounting technology development project of the Japan Institute of Electronics Packaging
    15. C.E.Homer, H.C.Watkins, Metal Ind., P.364-366, 1992
    16. Katsuaki Suganuma, Lead-free soldering technology, Kogyo Chosakai Publishing Co, Ltd., 2001
    17.张虹,白书欣等,无铅软钎料的研究与开发,材料导报,1998,12(2),20-23
    18.金德宣编,微电子焊接技术,电子工业出版社,1990,116-120
    
    
    19.周德俭主编,表面组装工艺技术,国防工业出版社,2000,23-50
    20. Miller C M, Anderson I E, Smith J F.A viable tin-lead solder substitute :Sn-Ag-Cu, J. Electron Materials., 1994,23(7),595-601
    21. J.Glazer, Metallurgy of low temperature Pb-free solders for electronic assembly, Int. Mater. Rev., 1995,40,65-98
    22.朱建国,国外无铝钎料软钎料实用化现献,有色金属与稀土应用,2002(4),1-7
    23. Judith Glazer, Microstructure and mechanical proper of Pb-free alloys for low-cost electronic assembly: a review, J. Electron .Eater., 1994,23(8),693-700
    24. Hisaak Takao, Effect of Au coating on the wettability of Cu substrate by Sn-Ag eutectic solder, J.Japan, Inst.Matals, 1999,65(5),566-568
    25. M.McCormack, Dispersoid addition to a Pb-free solder for suppressing microstructure coating, J. Electron. Mater, 1994,23(8),735-740
    26.史耀武等,电子组装钎料研究的新发展,电子工艺技术,2001(7),139-143
    27. H.Ohtani and K.Ishida, A thermodynamic study of the phase equilibra in the Bi-Sn-Ab system, J.Electron Mater.,1994,23(8),747-756
    28. Wenge Y, Microstructure evolutions of eutectic Sn-Ag solder joints, J.Electron. Mater., 1994,23(8),765-772
    29. M.E.Loomans, Investigation of multi-component lead-free solder, J. Electron. Mater., 1994,23(8),741-746
    30.张玉奎等,无铅软钎料的开发,有色金属与稀土应用,2000(4),1-9
    31.马鑫等,无铅钎料开发现状,电子工艺技术,2002(3),47-51
    32. Kwang-Lung Lin, Wetting interactions of Pb-Free Sn-Zn-AI solders on metal plated substrate, J.Electron. Mater., 1998,27(11), 1215-1210
    33. S.P.Yu et al, Composition and heat-treatment effects on the adhesion strength of Sn-Zn-Al solders on Cu substrate, JOM, 2000,(6),253-258
    34. Kwang-Lung lin, The microstructure of the Sn-Zn-AI solders, J. Electron. Mater., 1998,27(3),97-105
    35.(美)R.W.卡恩等,材料的相变,科学出版社 1998,54-59
    36. Katayama Naoki,Mechanical properties and joint strength of Sn-3.5Ag-3In-XBi solders, Symp." Microjoing Assem. Technol. Electron." 1995,5th,341-346
    
    
    37.王阳,Sn-Bi系低温无铅钎料的研究进展,材料导报,1996,13(3)23-25
    38. Y.Xie and Z. Qiao, Thermodynamic reoptimization of the Sn-Ag system, J. Phase Equilibria,1996,17(3),208-250
    39. P.T. Vianco and J.A.Rejent, Properties of ternary Sn-Bi-Ag alloys, J. Electron. Mater, 1992,28(10),1127-1137
    40. T.B. Massalski ed., Binary Alloy Phase Diagram, 2nd, ASM International, Metals, Park, Ohio, 1997,3, 4-17
    41. M.McCormack and Sjin, New lead-free,Sn-Zn-ln solder alloy solders system, J. Electron. Mater, 1993,23(7), 687-690
    42.路琼华,工科无机化学,上海,华东化工学院出版社,1998,27-32
    43.易文质等,二元合金状态图集,上海科学技术出版社,1987,568
    44. Yoshitada lsono, Evaluation of mechanical and thermal properties of cubic boron by Ab-inito calculation, Material Science Research Internationals, 1998,4(11),39-44
    45.毛崇慈等,节锡钎料的研究及应用,焊接,1992,2,12-15
    46. C.M.Chuang, The characteristics of Vibration Fracture of Pb-Sn and Lead-free Sn-Zn eutectic solders, J. Electron. Mater., 2001,30(9), 1232-1240
    47.方开泰,均匀设计与均匀设计表,科学出版社,1994,51-72
    48.孙培梅,均匀设计在有色金属冶金研究中应用的探讨,稀有金属与硬度合金,2002,9(3),22-25
    49.高强,均匀设计在碳-铜复合材料电阻率研究中的应用,机械工程材料,2001,25(11),8-10
    50.方开泰、王元,数论方法在统计中的应用,北京,科学出版社,1996,91-134
    51.熊远钦等,混料均匀设计实验书记的回归模拟,陶瓷工程,2000(12),20-22
    52.茆诗松,回归分析及其实验设计,上海,华东师范大学出版社,1981,85-162
    53.朱志昂等,物理化学教程,湖南教育出版社,1991,315-325
    54.陆文华,铸造合金及其熔炼,机械工业出版社,1996,315-319
    55.马今朝,无铅钎料可焊性镀层及其在电子工业中的应用,电子工艺技术,2000(5),98-100
    56. Vasantha V S, Pushpavanam M, A non-cyanide bath for the Electron deposition of Sn-Zn alloy, J. Metal. Finishing, 1996,86(11),60-69
    
    
    57.周融等,微量元素Bi和Pb的含量对焊锡可焊性的影响,中国有色金属学报,1998(8).192-196
    58. Chen Kang-hua, Wettingability between metals and cerams (the last part), J. Materials Science and Engineering, 1997,15(4),27-34
    59.张凯锋,扩散焊的界面反应,中国有色金属学报,2000,10(1),17-19
    60.包崇玺,金属/陶瓷的润湿性(下),材料科学与工程,1997,15(4),28-35
    61.龚代涛等,zn对Sn-Ag-Bi系软钎料钎焊性能影响的研究,四川大学学报(工程科学版),2003,35(4),49-52
    62.GB11364-89,钎料铺展性及填缝性实验方法
    63.唐嗣,概率论与数理统计,成都科技大学出版社,1995,95-102
    64.梁英教,物理化学,高等教育出版社,1983,284-333
    65.蔡显鄂,物理化学实验,高等教育出版社,2001,101-111
    66.GB/T 351-1995,金属材料电阻系数测量方法
    67.崔约贤等,金属断口分析,北京,机械工业出版社,2002,21-27
    68.黄继华,软钎焊接头热循环力学性能与寿命研究,哈工大博士学位论文
    69.G.亨利,D.壕斯特曼合著,宏观断口学及显微断口学,北京,机械工业出版社,1990,107-127
    70.L.思格,H.克林格著,金属损伤图谱,北京,机械工业出版社,1990,54-57