球栅阵列尺寸封装的有限元法模拟及焊点的寿命预测分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前微电子球栅阵列尺寸封装(BGA/CSP)正成为高端IC封装的主流技术。而焊点可靠性问题是发展BGA/CSP技术需解决的关键问题之一。实践证明热作用是芯片封装组件失效破坏的主导因素,因此热循环条件下的焊点可靠性研究有着非常重要的意义。为此,本文基于大型商用有限元软件ANSYS,对BGA/CSP形式的封装进行模拟,并在此基础上对多种情况进行对比分析,以此来评价各种因素对其可靠性的影响,从而来提高该封装的可靠性。本文又在焊点本构模型的构建方面作了一个尝试,以此为能对焊球找到一种更好的描述奠定基础。
     本文首先对芯片封装及其可靠性分析方法及现状进行了概述,并对相关理论方法作了介绍。随后,通过参数化编程建立典型结构的BGA/CSP形式封装的三维模型,对此进行了应力、应变分析,并作了寿命预测。接着,又在上述分析的基础上,比较了同种封装的不同模型(如条形模型,1/4模型,1/8模型)、相同焊球材料的不同本构模型、不同寿命预测模型、不同焊球尺寸及网格密度等方面对寿命预测的影响。最后本文综合了两种典型的焊球本构方程构建了新的本构模型,再通过不同算法(如最小二乘法、遗传算法、试凑法)对焊球材料进行了曲线拟合,并对此作了比较分析。
     本文针对相关问题,通过FORTRAN语言和ANSYS软件自带的程序设计语言(APDL)作了二次开发,编写了相关程序,从而能够更方便、更高效地利用ANSYS有限元软件来实现芯片封装的模拟分析。
At present, BGA/CSP is becoming the mainstream of the advanced IC package technology. Its development is based upon the solution of the reliability of solder ball, which is one of the key problems. It is proved that thermal fatigue is the main cause of the invalidity of the package. Therefore, it is significant to research the reliability of solder ball under the thermal cycle. In this paper, BGA/CSP is simulated and analyzed as implemented in the ANSYS finite element simulation software tool to evaluate the affect on its reliability; the constitutive model of the solder ball is constructed tentatively to find a better description for the solder ball.
    First, the paper discusses briefly the IC package technology, the reliability analysis methodologies and the current situation of the IC package. Second, it eonstructs a typical BGA/CSP 3D model by programming the APDL code, then analyzes its life prediction. Third, it analyzes different influences upon the life predication by comparing different models of the same package, different constitutive models of the same solder ball's materials, different life prediction models, different solder ball dimensions, different mesh density etc. Finally, it compares some popular constitutive models of the solder ball materials, and constructs an integrated constitutive model by different curve fits.
    The paper makes a "second exploitation" of ANSYS for solving certain problems through FORTRAN and APDL programming in order to apply the ANSYS finite element simulation software tool more conveniently and effectively to the simulation analysis of the IC package.
引文
[1] 周德俭,吴兆华.当代先进电子电路组装与精密制造技术.电子机械工程,1998(3):15~19
    [2] 沈长生.电子组件表面组装技术.机械工业出版社,1995
    [3] 金德宣等.微电子焊接与封装.电子科技大学出版社,1994
    [4] 赵英.电子组件表面组装技术.机械工业出版社,1993
    [5] 李兴.超大规模集成电路技术基础.电子工业出版社,1996
    [6] 刘胜.微电子装配及封装技术存在的障碍和需求.机械与电子,1998(6):38~41
    [7] 本多进.芯片规模封装的开发动向.微电子技术,1996,24(5):52~58
    [8] 赵刚.板上芯片技术封装问题的探讨.天津理工学院学报,1994,10(3):35~37
    [9] 王正,刘之景.封装技术评述.半导体技术,1999,24(6):7~9
    [10] 孙再吉.集成电路芯片尺寸封装技术.微电子学,1997,27(6):403~407
    [11] 周德俭,吴兆华.芯片尺寸封装(CSP)技术.电子工艺技术,1997,18(3):104~107
    [12] Keichirp Kata, Shuichi Matsuda.Technology, Trend on CSP(Chip Size Package).SHM, 1996,11(5): 9~14
    [13] Shnichi Wakabgashi, Tetsaga Koyarna.Chip Size Package.SHM,1996, 11(5): 3~8
    [14] Wakabayashi, S. Distefano T. The uBGA as a Chip Size Package. Proceedings of SEMI Technology Symposiun, 1994, TODYO(1999)
    [15] Yasunaga M. Baba S., Matsuo Metal. Chip Scale Package(CSP) A Lightly Dressed LSI Chip. Proceedings 1998 IEMT Symposium, 1994, 169~176
    [16] Shinji Baba, Naoto Ueda, Ossmu Nakagawa. Develop of the Chip Scale Package. SHM, 1996, 11(5): 15~19
    [17] Kimure T. CSP Packaging and Mounting Technologies for Mobile Apparatus. International Symposium Microelectronics.Philadelphia, 1997, 256~261
    [18] Crums. Trends in Advanced Component Technologies. Electronic Packaging, 1998, 38(1): 48~53
    [19] Julian P. Partridge, Curtis Hart, Paul Boysan, Bob Surratt, Richard Foehringer. High Reliability Assembly of Chip Scale Packages. Proceeedings of IEEE/CPMT Int'l Electronics Manufacturing Technology Symposium, 1997, 274~283
    [20] Lau John J. Ball Grig Array Technology. McGraw-Hill, Inc., 1995
    [21] Derman, Glenda. Area-Array Package Delivers IC Benefits. Electronic Engineering Times, 1999, 103~107
    [22] 王毅.世纪之交的半导体IC封装技术.电子工业专用设备,1997,26(10):1~11
    [23] 况延香,马莒生.迈向新世纪的微电子封装技术.电子工艺技术,2000,21(1):1~6
    [24] 高尚通.美日封装技术考察及思考.半导体情报,1996,33(1):38~42
    [25] 高尚通,毕克允.现代电子封装技术.半导体情报,1998,35(2):9~13
    [26] 齐学参多芯片组件——封装技术的现状与未来.半导体情报,1994,31(1):63~65
    [27] 鲜飞.微电子封装技术的发展趋势.微电子技术,2000,30(4):11~14
    
    
    [28] 李牧.微电子封装技术的发展与展望.电子工艺技术,2001,22(3):15~18
    [29] Garfalo F. Fundamental of Creep and Creep-Rupture in Metals. The Macmillan Company, New York, N.Y.,1995
    [30] Weber G. G., Lush A. M., Zavaliangos A., Anand L. An Objective Time-Integration Procedure for lnsotropic Rate-Independent Elastic-Plastic Constitutive Equations. International Journal of Plasticity,1990(6): 701~749
    [31] Anand L. Constitutive Equations for the Rate-Dependent Deformation of Metals at Elevated Temperature. Transaction of the ASME, 1982(104): 12~17
    [32] Brown S. B., Kim K. H., Anand L. An internal Variable Constitutive Model for Hot Working of Metals.International Journal of Plasticity, 1989(5):95~130
    [33] Anand L. Constitutive Equations for Hot-Working of Metals. International Journal of Plasticity, 1985(1): 213~231
    [34] Masazumi Amagai. Characterization of Chip Scale Package Materials. Microelectronics Reliability, 1999(39):1365~1377
    [35] Jung W., Lau J. H., Pao Y. H. Nonlinear Analysis of Full-matrix and Perimeter Plastic Ball Grid Array Solder Joints. Nepcon West'97, 1997, 1076~1095
    [36] 王国忠,程兆年.SnPb钎料合金的粘塑性Anand本构方程.应用力学学报,2000,17(3):133~140
    [37] 钱乙余,马寨,吉田综仔.表面组装焊点内部应力—应变场的数值模拟(Ⅱ)——焊点失效的主控力学因素.中国有色金属学报,2000,10(3):411~415
    [38] 王春青,梁旭文,王金铭,钱乙余.SMT焊点形态对热应力分布影响的有限元分析.电子工艺技术,1996(6):14~17
    [39] 黄春跃,周德俭,李春泉.CCGA焊点热循环加载条件下应力应变有限元分析.桂林电于工业学院学报,2001.21(3):22~28
    [40] Amagai M. Chip Scale Package (CSP) Solder Joint Reliability and Modeling. Mieroelectronics Reliability,1999(39): 463~477
    [41] Cemal Basaran, Rumpa Chandaroy. Using Finite Element Analysis for Simulation of Reliability Tests on Solder Joints in Microelectronic Package. Computer and Structures, 2000(74)
    [42] Wang J., Qian z., Liu S. Process Induced Stress of a Flip-Chip Packaging by Sequential Processing Modeling Technology. Journal of Electronic Packaging, ASME, 1998(120): 309~313
    [43] ANSYS User's Manual Volume Ⅰ Procedures 2nd Revision, September 30, 1994
    [44] ANSYS User's Manual Volume IV Theory 1st Revision, September 30,1994
    [45] S, R. Bondner, Y. H. Pao. A Fracture Mechanics Approach to Thermal Fatigue Life Prediction of Solder Joints. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1992,15(4):559~570
    [46] V. Sarihan, A. G. Klopfenstein. Microelectronics Packaging Handbook, Part Ⅱ. Semiconductor Packaging, Chapman & Hall, 1996, 12
    [47] 刘常康,周德俭,潘开林,罩匡宇.PBGA焊点的热疲劳寿命分析.桂林电子工业学院学报,1999,18(3):44~48
    [48] 贺思军,孙学伟.封装结构的热疲劳寿命预估研究进展.力学进展,1996,26(1):107~113
    
    
    [49] S. Knecht, Yuan, S. W. K. Experimental and Predicted Performance of the BEI Minilinear Cooler, in the Proc. of the 9th International Cryocooler Conference, edited by R.G. Ross, Jr., Plenum, New York, 1997,119~125
    [50] Lee W. W., Nguyen L. T., Selvaduray G. S. Solder Joint Fatigue Models: Review and Applicability to Chip Scale Package. Microelectronics Reliability, 2000(40)
    [51] 朱奇农,王国忠.复合SnPb焊点的形态与可靠性预测.金属学报,2000,36(1):93~98
    [52] 刘常康,周德俭,潘开林,罩匡宇.PBGA焊点形态参数对热疲劳寿命的影响.桂林电子工业学院学报,1998,18(3):44~48
    [53] T. J. Kitinski. Solder Joint Reliability: Theory and Applications, edited by J H Lau, Van Nostrand Reinhold, 1991
    [54] Liang J., Gollhardt N., Lee PS, Heinrick S., Schroeder S. An Integrated Fatigue Life Prediction Methodology for Optimum Design and Reliability Assessment of Solder Interconnections. Proceedings of the Pacific Rim/ASME International Intersociety Electronic and Photon Packaging Conference INTER pack, 1997(2): 1583~1592
    [55] 李云卿,唐祥云.62Sn—36Pb—2Ag焊点的可靠性及热疲劳位错亚结构的演化分析.电子学报,1994,22(11):32~36
    [56] A. K. Miller. Structural Dynamics Research Corp. I-DEAS Master Series, 1987(8): 83~88
    [57] 王谦,ShiweiRickvLISE.电子封装中的焊点及其可靠性.Electronic Components & Materials,1999,19(2):24~26
    [58] 李民.焊点的质量与可靠性.电子工艺技术,2000,21(2):70~73
    [59] 张礼季,王莉,高霞,谢晓明.塑料封装球栅阵列器件焊点的可靠性.中国有色金属学报,2002,12(1):34~38
    [60] 魏健.用环境应力筛选试验研究SMT焊点可靠性.电子工艺技术,2000,21(1):13~16
    [61] J Sauber, Fracture properties of molding compound materials for IC plastic packaging. Microelectronics and Reliability, 1996, 36(3)
    [62] Tsai D.Y., Shen G.S., Chen S.K. On-Board Reliability of SOC-BGA Package. SEMICON China 2000 Technical Symposium, 1999
    [63] Masato Sumikawa, Yasuyuki Saza, Tomotoshi Sato, Chiyoshi Yoshioka, Akiteru Rai, Takashi Nukii. Reliability of Soldered Joints in CSPs of Various Designs and Mounting Conditions. IEMT/IMC Proceedings, 1998
    [64] Nagaraj B., Mahalingam M. Package-to-Board Attach Reliability-Methodology and Case Study on OMPAC Package. Transactions of the ASME, Journal of Electronic Package, 1998(120): 290~295
    [65] Darveaux R. Crack Initiation and Growth in Surface Mount Solder Joints. Proc. ISHM International Symposium on Microelectronics, 1993, 86~97
    [66] Wu SX, Chin J., Grigorich T., Wu X., Mui G., Yeh C. Reliability Analysis for Fine Pitch BGA Package. Proceedings of Electronic Components and Technology Conference, 1998,737~741
    [67] Lee Teck Kheng, Teo Yong Chua, Lim Thiam Beng. Reliability Assessment of Transfer Mold CSP. Proceedings of IEEE/CPMP Electronic Packaging Technology Conference, 1998, 274~278
    [68] Lau John H. Solder Joint Reliability. Van Nostrand Reinhold, 1991
    
    
    [69] 吕建刚.用云纹干涉法研究金属焊点的热变形问题.实验力学,1997,12(2):242~247
    [70] 王卫宁,梁镜明.表面安装技术(SMT)可靠性问题研究的实验测试方法及其研究现状与进展.首都师范大学学报,1997(18):99~103
    [71] 刘常康,周德俭.PBGA焊点热疲劳寿命的正交试验及回归分析.电子工艺技术,1999,20(3):90~93
    [72] Darveaux R. Effect of Simulation Methodology on Solder Joint Crack Growth Correlations. Proceedings of 50th Electronic Components & Technology Conference, 2000, 1048~1058
    [73] Wong B., Helling D., Clark RW. A Creep-Rupture Model for Two-Phase Eutectic Solder [J]. IEEECHMT, 1988, 11(3): 284~290
    [74] Pao Y. H. A Fracture Mechanics Approach to Thermal Fatigue Life Prediction of Solder Joints [J].IEEECHMT, 1992,15(4): 559~570
    [75] Yamada S. E. A Fracture Mechanics Approach to Solder Joint Cracking [J]. IEEECHMT, 1989, 12(1): 99~104
    [76] Zahn Bret A. Finite Element Based Solder Joint Fatigue Life Predictions for a Same Die Size-Stacked-Chip Scale-Ball Grid Array Package. Proceedings of the IEEE/CPMT International Electronics Manufacturing Technology (IEMT) Symposium, 2002, 274~284
    [77] Anand L. Constitutive Equations for the Rate-Dependent Deformation of Metals at Elevated Temperatures[J]. Trans. ASME J Eng Matl's and Tech, 104(1):12~17
    [78] Darveaux R. Effect of Simulation Methodology on Solder Joint Crack Growth Correlations. Proceedings of 5Oth Electronic Components & Technology Conference, 2000, 1048~1058
    [79] Barrett J. Electronic Systems Package: Future Reliability Challenges. Microelectronics Reliability,1998(38): 1277~1286
    [80] E.,Baker. J. Materials Science and Engineering, 1979(38): 247~253
    [81] S. W. Zehr, C. W. Seetoh, Z. P. Wang. CBGA Solder Joint Reliability Evaluation Based on Elastic-Plastic-Creep Analysis. ASME J. Electron. Package, 1986(122):255~261
    [82] E. P. Busso, Guy W. Lynott, Frank E. Bader. Surface Mount Assembly Failure Statistics And Failure Free Time. Electronic Components and Technology Conference, 1994, 487~497
    [83] F.G. Yang. J. Materials Science and Engineering, A201 1995,40~49
    [84] B. P. Kashyap. Solder Joint Fatigue Models: Review and Applicability to chip scale packages, Microelectronics Reliability, 1992(40): 231~244
    [85] P., K. Govila, Z. F. Shi. Thermo-Mechanical Modeling of a PBGA Assembly-Effect of FE Mesh Density. An International Conference on Advances in Packaging, 1981
    [86] J. H. Lau, Wood, J. G. Performance Comparison of M77 Stirling Cryocooler and Proposed Pulse Tube Cryocooler, in the Proc. of Advances in Cryogenic Engineering Conference, edited by Quan-Sheng Shu, KA/PP, New York, 1999, 539~544
    [87] D Stone. in Proc. 36th Electronic Component and Technology Conf.(Mexico), 1986,225~231