多光谱红外成像系统性能表征方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着新技术、新工艺以及新结构的不断应用,多光谱成像技术已成为目前红外成像系统领域的重要发展方向。新技术的引入在改善系统性能的同时,也使影响系统性能的因素发生了明显变化,非常有必要改进传统的系统性能表征方法以适应这种新型红外成像系统的性能表征和评价。
     本论文主要在以下几方面进行了研究工作:
     (1)针对三角方向鉴别(TOD)度量方法,以红外成像系统虚拟样机生成的三角形靶标仿真图像为基础,通过设计理论计算与实际测量相结合的实验方法,对人眼正确鉴别概率与视觉阈值信噪比之间的关系进行了研究,获得了一定显示亮度下,针对不同尺寸三角形的人眼正确鉴别概率与视觉阈值信噪比之间的定量对应关系。研究结果不仅可以修正单波段红外成像系统的TOD性能理论模型,而且为多光谱红外成像系统性能模型的建立提供了基础数据。
     (2)根据多光谱成像系统的工作原理,以人眼视觉可感知信噪比为基础,建立了基于方程的多光谱红外成像系统TOD性能理论模型,给出了基于二维可鉴别阈值与目标角空间频率关系的系统级性能表征方法,研究了不同融合结构和策略对各通道输出信息的关联作用以及对系统性能的影响。利用此模型,提出了一种表征多光谱红外成像系统温差鉴别性能的阈值尺度,探讨了系统空间分辨性能、光谱分辨性能以及温差鉴别性能之间的相互制约关系。对计算结果进行分析获得的结论与文献中通过实验获得的结论一致,验证了模型的合理性。
     (3)根据多光谱成像系统与单波段成像系统在鉴别现场目标过程中存在的差异,以所建立的系统TOD性能模型为基础,提出了一种预测多光谱红外成像系统作用距离的方法。并通过理论预测与基于仿真图像的测试实验结果进行对比表明了该方法的有效性。
     (4)就多光谱图像背景杂波量化及其对系统探测性能的影响进行了初步研究。利用所构建的多光谱测试图像和主观目标获取性能实验统计结果,研究了不同杂波量化尺度的波段适用性;探讨了背景杂波与成像系统探测性能的关系,指出了多光谱系统探测性能模型的修正思路,为后续工作提供了条件。
With the increasing application of new technologies, processes and structures,multispectral imaging technology has become one of the most important developmenttrends in infrared imaging field. The utilization of new technologies leads to not onlyimprovement of system performance, but also the change of factors which affect thesystem performance. Hence, it is necessary to improve the traditional performancecharacterization method to satisfy the performance characterization and evaluation ofthe novel infrared imaging system (IRIS).
     This paper mainly involves research in the following several aspects:
     (1) For the requirement of triangle orientation discrimination (TOD) measurement,the relationship between correct discrimination probability of the human eye and visualthreshold signal-to-noise ratio (SNR) is studied through combing theoreticalcalculation with practical experiment. Based on the simulation images of trianglepatterns generated by an IRIS simulation model, relationship curves between these twovariables are yielded for different triangle angular subtenses (or sizes) with specifiedluminance, which is helpful not only to modify the existed single-band IRISperformance model but also to provide the basic data for the building of themultispectral IRIS performance model.
     (2) According to the working mechanism of multispectral imaging system, basedon the visually perceivable SNR, a TOD performance theoretical model of amultispectral staring IRIS with human vision is developed. Specifically, themathematical equations for predicting the TOD threshold of the system with differentfusion architecture are derived, with emphasis on the impacts of fusion on thethreshold. It yields a two-dimensional threshold surface in a three-dimensional graphwith the reciprocal angular subtense, the spectral difference, and the temperaturedifference as ordinates. Furthermore, a figure of merit Q related to the TODtemperature differential thresholds is introduced to analyze the relation of thediscrimination performance of multispectral IRIS to the size and the spectral differenceof test pattern. The preliminary validation with the experiment results suggests that thismodel can provide a reasonable prediction of the performance for a multispectral IRIS.
     (3) According to the difference between a multispectral IRIS and a single-bandIRIS in discrimining a field target, a new method for predicting the operating range of a multispectral IRIS is proposed by utilizing TOD performance model. The validationwith the experimental results with simulation images suggests that this approach canpredict the operating range of a multispectral IRIS efficiently.
     (4) Background clutter characterization for multispectral images and the effect ofbackground clutters on the detection performance of a multispectral IRIS are studiedpreliminarily. The application range of existed background clutter metrics isinvestigated through using multispectral images and statistical results of targetacquisition experiments. Then, the relationship between background clutter and thedetection performance of an IRIS is discussed. And the train of thought is proposed onhow to modify the detection performance prediction model of a multispectral IRIS byclutter metrics.
引文
[1]张敬贤,李玉丹,金伟其.微光与红外成像技术.第一版.北京:北京理工大学出版社.1995:1-8.
    [2]赵景媛,王黎明,刘宾.铸件内部缺陷红外无损检测的有限元模拟及分析.红外技术.2008,30(7):429-432.
    [3]徐惠荣,应义斌.红外热成像在树上柑桔识别中的应用研究.红外与毫米波学报,2004,23(5):353-355.
    [4]丁金伟,张葆,李永刚.气象测云红外成像系统的设计与分析.光学精密工程,2008,16(12):2424-2434.
    [5]余世根,丁静泽,邢保国.综合地质预报技术在隧道施工中的应用.工程地球物理学报.2010,7(4):495-499.
    [6]杨争,周伟,徐惠忠.红外成像系统在军事领域的应用前景.红外与激光工程.2008,37(6):691-694.
    [7]唐先武,丁海曙,腾轶超.用于显示乳房局部病灶组织红外热图像的伪彩色方法.光谱学与光谱分析.2009,29(3):611-615.
    [8]童庆禧,张兵,郑兰芬.高光谱遥感——原理、技术与应用.第一版,北京:高等教育出版社,2006:1-10.
    [9] Xu Hong, Wang Xiangjun, Yu Yanan. Research on infrared multispectralimaging detection technology. Proc.SPIE.2009,7384:29-36.
    [10]黄士科,张天序,李丽娟等.空空导弹多光谱红外成像制导技术研究.红外与激光工程.2006,35(1):16-20.
    [11]屈平.发展中的航空航天照相技术.影像技术.2006,(5):42-45.
    [12]王彦磊,江海英,赵中军等.多光谱卫星云图降水区域与强度估计的模糊推理模型.解放军理工大学学报.2007,8(2):198-204.
    [13]夏俊士,杜培军,逄云峰等.基于高光谱数据的城市不透水层提取与分析.中国矿业大学学报.2011,40(4):660-666.
    [14]浦瑞良,宫鹏,高光谱遥感及其应用.第一版.北京:高等教育出版社,2000:48-52.
    [15]陈煜.图像融合技术及其应用研究.南京航空航天大学硕士学位论文.2004.
    [16]高国龙编译.美国研制可切换滤光片的多光谱成像系统.红外.2011,32(9):48.
    [17]范永杰,金伟其,刘崇亮.前视红外成像系统的新进展.红外与激光工程.2010,39(2):189-194.
    [18] Rogalski A, Antoszewski J, Faraone L. Third generation infrared photodetectorarrays. Journal of Applied Physics,2009,105(9):091101-1-44.
    [19]刘武,叶振华.国外红外光电探测器发展动态.激光与红外.2011,41(4):365-370.
    [20] Münzberg M, Breiter R, Cabanski W, et al. Multi spectral IR detection modulesand applications. Proc. of SPIE.2006,6206,620627-1-13.
    [21] Gunapala S D, Bandara S V, Liu J K, et al. Demonstration of megapixeldual-band QWIP focal plane arrary. IEEE journal of quantum electronics.2010,46:285-293.
    [22]徐向晏,叶振华,李志锋等.中波双色光伏型HgCdTe红外探测器模拟研究.红外与毫米波学报.2007,26(3):164-170.
    [23]种明,马文全,苏艳梅等.双色量子阱红外探测器大面阵芯片的研制.红外与激光工程.2007,36(6):782-786.
    [24]何友,王国宏等.多传感器信息融合及应用.第二版.北京:电子工业出版社,2007.
    [25]王晓蕊.红外焦平面成像系统建模及TOD性能表征方法研究.西安电子科技大学博士论文,2005.
    [26] Scott L, Agostino J D. NVEOD FLIR92thermal imaging systems performancemodel. Proc.SPIE.1992,1689:194-203.
    [27] Vollmerhausen R, Driggers R G. NVTherm: next generation night vision model.Proceeding of IRIS Passive Sensors.1999,11:121-134.
    [28] Vollmerhausen R H, Jacobs E, Driggers R G. New metric for predicting targetacquisition performance. Optical Engineering.2004,43(11):2806-2818.
    [29] Wittenstein W. Thermal range model TRM3, Proc.SPIE.1998,3436:413-424.
    [30] Bijl P, Valeton J M. Triangle orientation discrimination: the alternative tominimum resolvable temperature difference and minimum resolvable contrast.Optical Engineering,1998,37(7):1976-1983.
    [31] Vizgaitis J N. Third generation infrared optics. Proc. SPIE,2008,6940:69400S-1-10.
    [32] Vizgaitis J N, Miller J, Hall J, et al.3rd generation FLIR demonstrator. Proc.SPIE,2008,6940:69400U-1-10.
    [33]郑玉权,禹秉熙.成像光谱仪分光技术概览.遥感学报.2002,6(1):75-80.
    [34] Holst G C. Testing and Evaluation of Infrared Imaging Systems. second edition.America: JCD Publishing and SPIE Optical Engineering Press,2000.
    [35] Army Electronic Command. Night vision laboratory performance model forthermal viewing system, AD/A-011212,1975.
    [36] Ratches J A, Vollmerhausen R H, Driggers R G. Target acquisition performancemodeling of infrared imaging systems: past, present, and future. IEEE sensorsjournal.2001,1(1):31-40.
    [37] Maurer T, Driggers R G, Richard Vollmerhausen, and Melvin Freidman.2002NVTherm Improvements. Proc. SPIE.2002,4719:15-23.
    [38] Webb C M, Halford C E. Dynamic minimum resolvable temperature testing forstaring array imagers. Optical Engineering.1999,38(5):845-851.
    [39] Jacobs E, Jae Cha, Edwards T, er al. Dynamic MRTD simulation. Proc.SPIE.2000,4030:70-76.
    [40] St-Germain D, Chevrette P. Automatic MRTD objective measurement for IRsystem. Proc. SPIE.1998,3377:175-181.
    [41] Wittenstein W. Performance prediction and experimental assessment ofadvanced thermal imagers. Proc. SPIE.1994,2269:563-574.
    [42] Vollmerhausen R H, Jacobs E L, Hixson J, et al. The targeting task performance(TTP) metric: a new model for predicting target acquisition performance. Tech.Rep.2004,4.
    [43] Driggers R G, Jacobs E L, Vollmerhausen R H, et al. Current infrared targetacquisition approach for military sensor design and wargaming. Proc.SPIE.2006,6207:620709-1-17.
    [44]陈翼男,金伟其,赵琳等.基于目标任务性能的红外系统评价新方法.光学技术.2008,34(4):555-559.
    [45] Driggers R G, Taylor J J S, Krapels K. Probability of identification cyclecriterion (N50/N90) for underwater mine target acquisition. OpticalEngineering,2007,46(3):033201-1-6.
    [46] Vollmerhausen R H, Driggers R G, Wilson D L. Predicting range performa-nce of sampled imagers by treating aliased signal as target-dependent noise.Journal of the Optical Society of America A,2008,25(8):2055-2065.
    [47] Hixson J G, Jacobs E L, Vollmerhausen R H. Target detection cycle criteriawhen using the Targeting Task Performance Metric. Proc.SPIE,2004,5612:275-282.
    [48] Bijl P, Hogervorst M A. NVThermIP vs TOD: matching the target acquisitionrange criteria. Proc. SPIE.2007,6543:65430C-1-12.
    [49] Bijl P, Valeton J M. TOD, A new method to characterize electro-optical systemperformance. Proc. SPIE.1998,3377:182-193.
    [50] Bijl P, Valeton J M, de Jong A N. TOD predicts target acquisition performanceand scanning thermal imager, Proc. SPIE.2000,4030:96-103.
    [51] de Lange D-J, Valeton J M, Bijl P. Automatic characterization electro-opticalsensor with image-processing, using the Triangle Orientation Discrimination(TOD) method, Proc. SPIE.2000,4030:104-111.
    [52] Bijl P, Valeton J M. Guidelines for accurate TOD measurement. Proc. SPIE.1999,3701:14-25.
    [53] Bijl P, Valeton J M. Validation of the new triangle orientation discriminationmethod and ACQUIRE model predictions using observerperformance date forship targets. Optical.Engineering.1998,37(07):1984-1994.
    [54] Bijl P, Valeton J M, Hogervorst M A. A critical evaluation of test patterns forEO system performance characterization. Proc.SPIE.2001,4372:27-38.
    [55] Bijl P, Schutte K, Hogervorsta M A. Applicability of TOD, MTDP, MRT andDMRT for dynamic image enhancement techniques. Proc. SPIE,2008,6207:6207OE-1-12.
    [56] Desaulniers P, Thibault S. Performance evaluation of panoramic electro-opticimagers using the TOD method. Proc. SPIE,2011,8014:801409-1-7.
    [57] Lettington A H, Fairhurst A M, Murphy K S. Study of the human recognition ofimages to evaluate current performance measures. Proc. SPIE.1995,2470:190-199.
    [58] Driggers R G, Hodgkin V, Vollmerhausen R, et al. Minimum resolvabletemperature difference measurements on undersampled imagers. Proc. SPIE.2003,5076:179-189.
    [59] Bijl P, Hogervorst M A, Valeton J M. TOD, NVTherm, and TRM3modelcalculations: a comparison. Proc. SPIE.2002,4719:51-62.
    [60] Bijl P, Reynolds J P, Vos W K, et al. TOD to TTP calibration. Proc. SPIE,2011,8014:80140L-1-12.
    [61] Wang Xiaorui, Zhang Jianqi, Feng Zhuoxiang, et al. Equation-based triangleorientation discrimination sensor performance model based on sampling effects.Applied Optics,2005,44(4):498-505.
    [62] Teaney B P, Reynolds J P, Connor J O. Guidance on methods and parametersfor army target acquisition models. Proc. SPIE,2007,6543:65430L-1-12.
    [63] Kerekes J P, Baum J E. Spectral imaging system analytical model for subpixelobject detection. IEEE Trans. Geosci. Remote Sens.2002,40(5):1088-1101.
    [64] Kerekes J P, Baum J E. Full-spectrum spectral imaging system analytical model.IEEE Trans. Geosci. Remote Sens.2005,43(3):571-580.
    [65] Bernhardt M, Clare P, Cowell C, et al. A hyperspectral model for targetdetection. Proc. SPIE2007,6565:65650F-1-9.
    [66] Messinger D W, Schott J R. Annual report on the activities of the DigitalImaging and Remote Laboratory.2005-2009.
    [67] Fanning J, Halford C, Jacobs E, et al. Multispectral imager modeling. Proc.SPIE.2005,5784:136-145.
    [68] Bijl P, Hogervorst M A. A test method for multi-band imaging sensors. Proc.SPIE,2003,5076:208-219.
    [69] Barnell M D, Wynne D, Rahn B. Fusion processor simulation (FPSim). Proc.SPIE,1998,3374:119-128.
    [70]金伟其,高稚允等.一代通用组件热像仪静态性能计算机软件包SPTIS.光学技术(增刊)1995:49-53.
    [71]周燕,金伟其,刘广荣等.基于人眼视觉的光电成像系统性能评价方法研究.兵工学报.2002,23(4):504-507.
    [72]金伟其,高稚允,苏学刚等.光电成像系统与人眼视觉的匹配问题.红外技术.2000,22(5):40-44.
    [73]彭新红,吴常泳,陈雨良.采样成像系统性能评估.红外与毫米波学报.2001,20(6):477-480.
    [74]王晓蕊,张建奇,李朝晖.通过外场试验确定三角形方向鉴别阈值准则.西安电子科技大学学报.2006,33(6):876-880.
    [75] Wang Xiao-rui, Zhang Jian-qi, Feng Zhuo-xiang, Hu Fang-ming. TODperformance theoretical model for staring thermal imagers. InternationalJournal of Infrared and Millimeter Waves,2004,25(11):1645-1656.
    [76]王晓蕊,张建奇,冯卓祥等.凝视红外成像系统的三角方向鉴别与之曲线预测.光学学报.2005,25(8):1036-1041.
    [77] Zhang Jianqi, Wang xiao-rui, Hu Fang-ming. TOD performance theoreticalmodel for scanning infrared imagers. Infrared physics&technology.2006,48(1):32-38..
    [78] Wang Xiaorui, Liu Xin, Zhang Jianqi. Field performance prediction methodbased on contrast metric of target sub regions. International Journal of Infraredand Millimeter Waves,2007,28(7):587-593.
    [79]刘兆军,周峰,满益云等.光学遥感像质预估与评价技术研究.全国光电技术学术交流会议论文集.2006.
    [80]陈翼男,金伟其,赵琳等.基于发现任务的红外遥感系统性能预测进展.红外技术.2007,29(7):392-397.
    [81]迟学芬,韩昌元,易志栋.基于信息理论的采样成像系统匹配设计.光学学报.2003,.23(3):278-283.
    [82]禹秉熙,向阳,金锡哲.三角共路型干涉成像光谱仪样机研制.第十二届全国遥感技术学术交流会,2000.
    [83]吴航行,华建文,王模昌.新型红外空间遥感用傅里叶变换光谱仪.红外与激光工程.2004,33(4):397-400.
    [84]赵葆常,杨建峰,薛彬等.嫦娥一号干涉成像光谱仪的定标.光子学报.2010,39(5):769-775.
    [85]张兴德,李荣刚,刘琳等.红外双波段成像系统的研究与发展.激光与红外.2010,40(8):801-804.
    [86]李丽亚,卢涛.一种双/多波段红外目标融合检测方法.激光与红外.2011,41(6):687-690.
    [87]杨贵军,柳钦火,黄华国等.基于场景模型的热红外遥感成像模拟方法.红外与毫米波学报.2007,26(1):15-21.
    [88]张光明,盛卫东,樊士伟等.基于多传感器融合的红外图像序列检测性能分析.红外与毫米波学报.2009,28(1):16-19.
    [89]贾海涛,张伟,张顺生等.多传感器战场监控系统仿真设计与实现.现代雷达.2011,33(12):79-83.
    [90]杨俊鹏,祝小平,袁智荣.被动雷达/红外成像制导数据融合系统仿真.计算机仿真.2010,27(2):14-17.
    [91] Wang Xiao-rui, Bai Hong-gang, Zhang Jian-qi. Theoretical model for theperformance of a multi-spectral imaging sensor. Chinese optics letters2010,8(2):1-4.
    [92]石俊生,金伟其,王岭雪.视觉评价夜视彩色融合图像质量的实验研究.红外与毫米波学报.2005,24(3):236-240.
    [93] Biberman L M ed.. Electro-optical imaging: system performance and modeling.Washington:SPIE press,2000:chp12-chp28.
    [94] Rosell F A, Wilson R H. Recent psychophysical experiments and the displaysignal-to-noise ratio concept. In Perception of displayed information, L. M.Biberman. ed., Plenum, New York,1973:167-177.
    [95] Salem, Jacobs E, Moore R, et al. Effect of band-limit noise on human observerperformance. Proc. SPIE.2007,6543:65430G-1-8.
    [96] Vollmerhausen R, Driggers R G., O’Kane B L. Influence of sampling on targetrecognition and identification. Optical. Engineer.1999,38(5):763-772.
    [97] Agostino J D, Webb C. Three-dimensional analysis framework and measureme-nt methodology for imaging system noise. Proc. SPIE.1991,1488:110–121.
    [98]许洪.多光谱、超光谱成像探测关键技术研究.天津:天津大学博士学位论文,2008:12-28.
    [99] Agullere R A. Advanced IR imaging seeker program. Proc. SPIE,1980,253:58-64.
    [100] Rogalski A. New material systems for third generation infrared detectors. Proc.SPIE,2009,7388: P73880J-1-12.
    [101]叶振华.双色探测器的集成焦平面技术.红外.2002,(5):1-9.
    [102]叶振华,尹文婷,黄建等.128×128短波/中波双色红外焦平面探测器.红外与毫米波学报.2010,29(6):415-418.
    [103]霍永恒,马文全,张艳华等.两端叠层结构的中长波量子阱红外探测器.物理学报.2011,60(09):098401-1-6.
    [104]敬忠良,肖刚,李振华.图像融合——理论与应用.第一版.北京:高等教育出版社,2007:3-10.
    [105]杨翠.图像融合与配准方法研究.西安电子科技大学博士论文.2008:11-20.
    [106]康耀红.数据融合理论与应用.第一版.西安:西安电子科技大学出版社.1997:1-27.
    [107] Klein L A. A boolean algebra approach to multiple sensor voting fusion. IEEETransaction on Aerospace and Electronic Systems.1993,29(2):317-327.
    [108] Chair Z, Varshney P K. Optimal data fusion in multiple sensor detectionsystems. IEEE Transaction on Aerospace and Electronic Systems.1986,22(1):98-101.
    [109] Holst G C. Electro-optical imaging system performance.2nd edition, SPIEpress,2000:386-397.
    [110]李润顺,袁祥岩,范志刚等.红外成像系统作用距离的估算.红外与激光工程.2001,30(1):1-3.
    [111]王刚,禹秉熙.基于对比度的空中红外点目标探测距离估计方法.光学精密工程.2002,10(3):276-280.
    [112]王卫华,牛照东,陈曾平.海空背景凝视红外成像系统作用距离研究.红外与毫米波学报.2006,25(2):150-152.
    [113]金伟其,高绍姝,王吉晖等.基于光电成像系统最小可分辨对比度的扩展源目标作用距离模型.光学学报.2009,29(6):1552-1556.
    [114] Scott L, Tomkinson D. An update to the CENVEO FLIR90and ACQUIREsensor performance models. Proc.SPIE.1991,1488:99-109.
    [115]李士钊,王晓蕊,张建奇等.基于三角形靶标的目标传递概率函数确定方法.红外与激光工程,2006,35(5):405-409.
    [116]张建奇,方小平.红外物理.第二版.西安:西安电子科技大学出版社,2004:36-40.
    [117]常洪花.光电图像背景杂波的定量表征及其对成像系统目标获取性能的影响.西安电子科技大学博士论文,2006:21-71.
    [118] Retches J A, Walters C P, Buser R G, et al. Aided and automatic targetrecognition based upon sensory inputs from image forming systems. IEEEtransactions on pattern analysis and machine intelligence.1997,19(9):1004-1019.
    [119] Gillian K, Groves, Kim M, et al. Quantification of clutter in EO trackingsystems. Proc. SPIE.1994,2221:287-295.
    [120]张建奇,王晓蕊.光电成像系统建模及性能评估理论.第一版.西安:西安电子科技大学出版社.2010,305-343.
    [121]张建奇,何国经,刘德连等.背景杂波对红外成像系统性能的影响.红外与激光工程,2008,37(4):565-568.
    [122] Tidhar G, Reiter G, Avital Z, et al. Modeling human search and targetacquisition performance:IV. detection probability in the cluttered environment.Optical Engineer.1994,33(3):801-808.
    [123] Mcglynn J D, Sofianos D J. Parametric model-based characterization of IRclutter. Proc.SPIE,1995,2470:236-244.
    [124] Schmieder D E, Weathersby M R. Detection performance in clutter withvariable resolution. IEEE Trans on Aerospace and Electronic Systems.1983,19(4):622-630.
    [125] Yang Cui, Zhang Jian-qi, Xu Xing, et al. Quaternion phase-correlation-basedclutter metric for color images. Optical Engineer.2007,46(12):127008-1-7.
    [126] David L W. Image-based contrast-to-clutter modeling of detection. OpticalEngineer.2001,40(9):1852-1857.
    [127] Chang Hong-hua, Zhang Jian-qi. New metrics for clutter affecting human targetacquisition. IEEE Trans on Aerospace and Electronic Systems.2006,42(1):361-368.
    [128] Rotman S R. Evaluating human target acquisition using infrared sensortechnology. Proc. SPIE.1995,2426:104-114.
    [129] Aviram G, Rotman S R. Modeling human false target detection decisionbehavior in infrared images, using a statistical texture image metric. IEEEconvention of the electrical and electronic engineers.2000:393-397.
    [130] Rotman S R, Kowalczyk M L. Modeling human search and target acquisitionperformance: fixation-point analysis. Optical Engineering.1994,33(11):3803-3809.
    [131] Avital Z, Hadar Y, Reiter G, et al. The influence of clutter on human targetacquisition. Proc. SPIE,1992,1971:436-446.
    [132]胡方明,王晓蕊,张建奇等.运动效应和背景杂波对红外成像系统性能评估的修正.红外与毫米波学报.2004,23(1):59-63.
    [133] Agostino J D, Lawson W, Wilson D. Concepts for search and detection modelimprovements. Proc. SPIE.1997,3063:14-22.
    [134] Chang Hong-hua, Zhang jian-qi. Detection probability and detection time usingTSSIM clutter metrics. Infrared physics&technology,2007,51(2):83-90.
    [135] Meitzler T J, Karlsen R E, Gerhart G. R, et al. Wavelet transforms of clutteredmages and their application to computing the probability of detection. OpticalEngineering.1996,35(10):3019-3025.
    [136]常洪花,张建奇,李勇.背景杂波对经典人眼目标获取性能模型的修正.红外与毫米波学报.2005,24(6):450-454.