基因修饰的NK-92细胞对erbB2阳性乳腺癌细胞的特异性杀伤
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:1.合成嵌合受体anti-erbB2 scFv-CD28-ξ的基因,并建立其真核表达载体;2.用嵌合受体anti-erbB2 scFv-CD28-ξ基因修饰NK-92细胞;3.建立荷人乳腺癌细胞MDA-MB453(erbB2阳性)、MDA-MB231(erbB2阴性)裸鼠皮下移植瘤模型;4.通过体外及体内实验研究基因修饰的NK-92细胞对erbB2阳性乳腺癌细胞的特异性杀伤。
     方法:1.设计嵌合抗原受体的基因序列,由抗erbB2抗体单链可变区(scFv)、c-myc tag、CD8a(ENST00000283635)、CD28(ENST00000374478)及CD3ξ链(ENST00000392122)连接而成,化学合成长度为50-70bp的单链oligo,利用PCR将合成的oligo拼接成完整的序列,将完整的序列经HindⅢ和EcoRI酶切后连接至目的载体PCDNA3.1(+)中。2.用Amaxa Nucleofector技术将嵌合受体anti-erbB2scFv-CD28-ξ基因转入NK-92细胞。3.RT-PCR法检测抗原受体mRNA表达;免疫荧光法检测抗原受体在NK-92细胞表面的表达。4.流式细胞仪检测NK-92-scFv-erbB2-CD28-ξ和NK-92细胞表面CD27、CD158d、NKG2D和CD85j的表达变化。5.用CCK8法检测基因修饰的NK-92细胞对肿瘤细胞的特异性杀伤。6.体内抗瘤试验:第1个模型,MDA-MB453细胞或MDA-MB231细胞接种于BALB/C裸鼠背部皮下,同时尾静脉注射NK-92-scFv-erbB2-CD28-ξ细胞或未转染的NK-92细胞,比较各组成瘤率。第2个模型,MDA-MB453细胞或MDA-MB231细胞接种于BALB/C裸鼠背部皮下建立裸鼠皮下移植瘤模型。荷瘤小鼠随机分为4组,于第1、8天经尾静脉注射NK-92-scFv-erbB2-CD28-ξ细胞或未转染的NK-92细胞。第2、9天分别取小鼠静脉血用ELISA方法检测其中γ-干扰素(IFN-γ)水平。7.实验动物死后取出皮下移植瘤包块和肺脏,福尔马林固定,石蜡包埋,切片常规H&E染色,免疫组化检测CD3、NKG2D、CD56、CD16的表达。
     结果:1.成功合成嵌合抗原受体基因并构建其真核表达载体PCDNA3.1(+)-anti-erbB2 scFv-CD28-ξ。2. RT-PCR结果证实了anti-erbB2 scFv-CD28-ξmRNA在NK-92细胞中的表达;流式细胞术检测结果提示NK-92细胞表面嵌合抗原受体anti-erbB2 scFv-CD28-ξ的表达率为18.89%。3.流式细胞术结果显示两种NK-92细胞表面CD27、NKG2D、CD158d、CD85j的表达没有差异。4. anti-erbB2-NK-92细胞对erbB2阳性的MDA-MB453细胞的杀伤率较亲本NK-92细胞至少提高了3倍,这种杀伤作用的增强是抗原特异性的,因为两种NK-92细胞对erbB2阴性的MBA-MD231细胞的杀伤效应没有显著差异。我们还证实Anti-erbB2-NK-92和亲本NK-92细胞对NK细胞敏感的K562细胞的杀伤率同样很高,说明嵌合受体的表达对NK-92细胞的固有细胞毒活性没有影响。5.在体内抗瘤第1种模型里,接种MDA-MB453细胞的裸鼠注射基因修饰的NK-92细胞后成瘤率(第10天)较注射亲本NK-92细胞低,但接种MDA-MB231细胞的裸鼠注射这两种NK-92细胞的成瘤率没有明显差异。在第2种模型里,接受anti-erbB2基因修饰NK-92细胞治疗的荷MDA-MB453肿瘤小鼠的血清IFN-γ水平高于接受亲本NK-92细胞治疗的荷MDA-MB453肿瘤小鼠。而且,与接受亲本NK-92细胞治疗的荷MDA-MB453肿瘤小鼠相比,接受anti-erbB2基因修饰NK-92细胞治疗的荷MDA-MB453肿瘤小鼠的肿瘤体积明显缩小、生存期明显延长、肺转移发生率低、肿瘤组织中有较多淋巴样细胞浸润,经免疫组化证实是NK-92细胞。
     结论:1.成功合成嵌合受体anti-erbB2 scFv-CD28-ξ基因并构建其真核表达载体;2.通过Amaxa Nucleofector技术实现嵌合受体anti-erbB2 scFv-CD28-ξ在NK-92细胞的高表达;3.嵌合受体anti-erbB2 scFv-CD28-ξ在NK-92细胞的表达不影响NK-92细胞的表型特征和固有抗瘤活性;4.在体外,基因修饰的NK-92细胞对erbB2阳性乳腺癌细胞有特异性杀伤;5.在体内,基因修饰的NK-92细胞可以特异性抑制erbB2阳性乳腺癌的生长
Objectives:We designed this study to:1. Synthesize the full length gene of recombinants chimeric receptor anti-erbB2 scFv-CD28-ζby means of oligo chemic synthesis and PCR amplification, and construct its eukaryotic expression vector; 2. Genetically engineer NK-92 cells with the scFv anti-erbB2-CD28-ζchimeric recep-tor; 3. Establish models in which subcutaneous xenografts were induced in nude mice using human breast cancer cells MDA-MB453 (erbB2-expressing) and MDA-MB231 (erbB2 negative); 4. Investigate the specific killing of gene modified NK-92 cell to erbB2 expressing breast cancer cell in vitrol and vivo.
     Methods:1. The gene sequence of the chimeric antigen receptor comprised anti-erbB2 antibody single-chain variable fragment (scFv), c-myc tag, CD8a (ENST00000283635), CD28 (ENST00000374478) and CD3ζchain, and the restriction sites HindⅢand EcoRⅠwere inducted into this chimeric gene. The single chain oligo with the length of 50-70bp were synthesized chemically according to gene sequencing, and then were ligated into full length gene. The recombinant plasmid PMD-18T-anti-erbB2 scFv-CD28-ζwas digested with HindⅢand EcoRⅠ, then the target gene was inserted to the corresponding restriction site on eukaryotic expression vector PCDNA3.1(+).2. NK-92 cells were gene modified with the scFv anti-erbB2-CD28-ζchimeric receptor by optimized electroporation using the Amaxa Nucleofector system.3. RT-PCR was performed to investigate the expression of scFv-erbB2-CD28-ζmRNA; Immunofluorescence was performed to detect the expression of scFv-erbB2-CD28-ζon NK-92 cell surface.4. Phenotyping of cell surface marker expression on NK-92-scFv-erbB2-CD28-ζand NK-92 cells was determined using FASCan by staining cells with PE-labled Abs specific for CD27, CD158d, NKG2D, and Alexa Fluor647-conjugated Ab specific for CD85j (BioLegend, American).5. The ability of gene-modified NK-92 cells specifically kill tumor targets was assessed in a CCK8 assay.6. In vivo antitumor activity:The ability of gene-modified NK-92 cells expressing the anti erbB2-CD28-ζreceptor to enhance the inhibition of tumor in mice was investigated in the following 2 models. In the first one, MDA-MB453 or MDA-MB231 cells were injected into the flanks of BALB/C mice, NK-92-scFv-erbB2-CD28-ζor parental NK-92 cells (E/T ratio of 5:1) were injected into caudal vein simultaneously. In the second one, MDA-MB453 and MDA-MB231 cells were injected into the flanks of BALB/C mice to establish the mice models bearing transplantation tumor. Mice bearing tumor were then divided into 4 groups randomly and treated on days 1,8 with NK-92-scFv-erbB2-CD28-ζor parental NK-92 cells delivered i.v (caudal vein). Serum levels of IFN-γon day2,9 were determined by ELISA. Forty days after the adoptive transfer, all animals were sacrificed.7. For each animal, upon euthanasia, the hypodermic transplantation block and lung were excised, fixed in formalin, embedded in paraffin, and serially sectioned at 2-μm thickness. Routine H&E staining was done at an interval of every 10 sections. Immunohistochemisty (Dako REAL EnVision Detection System, K8010, American) assay was used to stain tissues with CD3 (F7.2.38, SANTA CRUZ)、NKG2D (14F-2, SANTA CRUZ)、CD56 (IS628, clone 123C3, Dako)、CD16(2Q1240, SANTA CRUZ), for analysis of the infiltration of NK-92 cells in tumor at the unstained paraffin sections.
     Results:1. A 1803bp-longed chimeric receptor anti-erbB2 scFv-CD28-ζwas generated by oligo chemic synthesis and PCR amplification, and the eukaryotic expression vector PCDNA3.1(+)-anti-erbB2 scFv-CD28-ζwas constructed. We determined that the output gene was same as target gene in sequence by gene sequencing.2. The expression of anti-erbB2 scFv-CD28-ζmRNA was confirmed by RT-PCR. High level (18.89%) expression of the anti-erbB2 receptor was achieved in NK-92 cells following staining with a c-myc tag mAb specifically recognizing a c-myc tag epitope incorporated into the extracellular domain of the chimeric receptor. 3. We used flow cytometry to compare expression of a number of molecules expressed by anti-erbB2-NK-92 cells and parental NK-92 cells, including activation and inhibition receptors. In three independently performed experiments, we observed no difference in the expression of NK-92 cell markers CD27, NKG2D, CD158d or CD85j between parental NK-92 and anti-erbB2-NK-92 cells. These data indicated that transfection of NK-92 cells with the scFv chimeric receptor had not phenotypically altered expression of a number of important NK-92 cell-associated markers.4. To investigate whether our gene-modified NK-92 cells expressing the anti-erbB2 chimeric receptor could augment cell killing activity to erbB2 expressing targets, we tested two human breast cancer cell lines expressing erbB2 or not in cytotoxiciyt assays with anti-erbB2-NK-92 cells or parental NK-92 cells. We demonstrated at least a three fold increase in the level of killing of erbB2 expressing MDA-MB453 cells by anti-erbB2-NK-92 cells compared with control parental NK-92 cells. This enhanced killing was erbB2 Ag-specific because anti-erbB2-NK-92 and parental NK-92 cells mediated comparable lysis of erbB2 negative MDA-MB231 cells. We also demonstrated that expression of the scFv receptor had no impact on the endogenous cytotoxic ability of NK-92 cells. The cytotoxicity of anti-erbB2-NK-92 and parental NK-92 cells to a NK cell-sensitive target cell line K562 were comparable.5. In the first model, the tumor formation rate of mice in MDA-MB453 & transduced NK-92 cell group was lower than that in MDA-MB453 & parental NK-92 cell group on day 10, whereas similar between MDA-MB231 & transduced NK-92 cell group and MDA-MB231 & parental NK-92 cell group. In the second model, serum IFN-γlevels of mice with MDA-MB453 tumor that received anti-erbB2 gene-modified NK-92 cells were higher than that received parental NK-92 cells. We also demonstrated significantly decreased tumor volume and lung metastasis and increased survival of mice bearing MDA-MB453 tumor that received anti-erbB2 gene-modified NK-92 cells, compared to receiving parental NK-92 cells. In mice bearing MDA-MB453 tumor, there were more lymphocytes infiltrating into tumor tissues when received anti-erbB2 gene-modified NK-92 cells, which were demonstrated as NK-92 cells by immunohistochemisty. These effects were Ag-specific because there were no such significant differences in mice bearing MDA-MB231 tumor.
     Conclusions:1. The full length gene of recombinants chimeric receptor anti-erbB2 scFv-CD28-ζwas synthesized, and the construction of its eukaryotic expression vector might provide basis for the study of anti-tumor immunotherapy induced by NK cells.2. High level expression of the anti-erbB2 receptor was achieved in NK-92 cells using Amaxa Nucleofector system.3. Expression of the scFv receptor had no impact on the phenotyping character and endogenous cytotoxic ability of NK-92 cells.4. In vitro, gene-modified NK-92 cells showed Ag-specific cytotoxicity against erbB2-expressing breast cancer cells.5. In vivo, gene-modified NK-92 cells specifically inhibited erbB2-expressing breast cancer growth.
引文
1. Arai S, Klingemann HG. Natural killer cells:can they be useful as adoptive immunotherapy for cancer?[J] Expert Opin Biol Ther,2005,5(2):163-172.
    2. Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, Ettinghausen SE, Matory YL, Skibber JM, Shiloni E,, Vetto JT. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer[J]. N. Engl. J. Med,1985,313(23):1485-1492.
    3. Law, TM, Motzer RJ, Mazumdar M, Sell KW, Walther PJ, O'Connell M, Khan A, Vlamis V, Vogelzang NJ, Bajorin DF. Phase Ⅲ randomized trial of interleukin-2 with or without lymphokine-activated killer cells in the treatment of patients with advanced renal cell carcinoma[J]. Cancer,1995,76(5): 824-832.
    4. Gong JH, Maki G, Klingemann HG. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells[J]. Leukemia,1994,8(4):652-658.
    5. Burshtyn DN, Scharenberg AM, Wagtmann N, Rajagopalan S, Berrada K, Yi T, Kinet JP, Long EO. Recruitment of tyrosine phosphatase HCP by the killer cell inhibitor receptor[J]. Immunity,1996,4(1):77-85.
    6. Tonn T, Becker S, Esser R, Schwabe D, Seifried E. Adoptive cellular immunotherapy of malignancies using the clonal natural killer cell line NK-92[J]. J Hematother Stem Cell Res,2001,10(4):535-544.
    7. Klingemann HG, Wong E, Maki G. A cytotoxic NK-cell line (NK-92) for ex vivo purging of leukemia from blood[J]. Biol Blood Marrow Transplant,1996, 2(2):68-75.
    8. Yan Y, Steinherz P, Klingemann HG, Dennig D, Childs BH, McGuirk J, O'Reilly RJ. Antileukemia activity of a natural killer cell line against human leukemias[J]. Clin Cancer Res,1998,4(11):2859-2868.
    9. Maki G, Tam YK, Berkahn L, Klingemann HG Ex vivo purging with NK-92 prior to autografting for chronic myelogenous leukemia[J]. Bone Marrow Transplantation,2003,31(12):1119-1125.
    10. Tam YK, Miyagawa B, Ho VC, Klingemann HG. Immunotherapy of malignant melanoma in a SCID mouse model using the highly cytotoxic natural killer cell line NK-92[J]. J Hematother,1999,8(3):281-290.
    11. Klingemann, HG. Natural killer cell-based immunotherapeutic strategies [J]. Cytotherapy,2005,7(1):16-22.
    12 Arai S, Kindy K, Swearingen M, Meagher RC, Friend P, Maki G. Phase I study of adoptive immunotherapy using the cytotoxic natural killer (NK) cell line, NK-92, for treatment of advanced renal cell carcinoma and malignant melanoma[J]. Blood,2003,102(6):2566.
    13. Wolf P, Gierschner D, Schaber I, Katzenwaded A, Schultze-Seemann W, Wetterauer U, Tache M, Swamy M, Schamel W W A, Elsasser-Beile U. A bispecific diabody directed against prostate-specific membrane antigen and CD3 induces T-cell mediated lysis of prostate cancer cells[J]. Cancer Immunol, Immunother,2008,57(1):43-52
    14. Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA, White DE, Wunderlich JR, Canevari S, Rogers-Freezer L. A phase Ⅰ study on adoptive immunotherapy using gene-modified T cells for ovarian cancer[J]. Clin. Cancer Res,2006,12:6106-6115.
    15. Liang X, Weigand LU, Schuster IG, Eppinger E, van der Griendt JC, Schub A, Leisegang M, Sommermeyer D, Anderl F, Han Y, Ellwart J, Moosmann A, Busch DH, Uckert W, Peschel C, Krackhardt AM. A single TCR alpha-chain with dominant peptide recognition in the allorestricted HER2/neu-specific T cell repertoire[J]. J Immunol,184(3):1617-1629.
    16. Mitchell DA, Karikari I, Cui X, Xie W, Schmitting R, Sampson JH. Selective modification of antigen-specific T cells by RNA electroporation[J]. Hum Gene Ther,2008,5:511-521.
    17. Altvater B, Landmeier S, Pscherer S, Temme J, Juergens H, Pule M, Rossig C. 2B4(CD244) signaling via chimeric receptors costimulates tumor-antigen specific proliferation and in vitro expansion of human T cells[J]. Cancer Immunol Immunother,2009,58(12):1991-2001.
    18. Cheadle EJ, Gilham DE, Thistlethwaite FC, Radford JA, Hawkins RE. Killing of non-Hodgkin lymphoma cells by autologous CD 19 engineered T cells [J]. Br. J. Haematol,2005,129(3):322-332.
    19. Quinta-Cardama A, Yeh RK, Hollyman D, Stefanski J, Taylor C, Nikhamin Y, Imperato G, Sadelain M, Rivierel I, Brentjens RJ. Multifactorial optimization of grmmaretroviral gene transfer into human T lymphocytes for clinical application[J]. Hum Gene Ther,2007,18(12):1253-1260.
    20. Zhao Y, Wang QJ, Yang S, Kochenderfer JN, Zheng Z, Zhong X, Sadelain M, Eshhar Z, Rosenberg SA, Morgan RA. A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity[J]. J Immunol,2009,183(9): 5563-5574.
    21. Zhong XS, Matsushita M, Plotkin J, Riviere I, Sadelain M. Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+T cell-mediated tumor eradication[J]. Mol Ther,2010,18(2):413-420.
    22. Tammana S, Huang X, Wong M, Milone MC, Ma L, Levine BL, June CH, Wagner JE, Blazar BR, Zhou X.4-1BB and CD28 signaling plays a synergistic role in redirecting umbilical cord blood T cells against B-cell malignancies[J]. Hum Gene Ther,2010,21(1):75-86.
    23. Uherek C, Tonn T, Uherek B, Becker S, Schnierle B, Klingemann HG, Wels W. Retargeting of natural killer-cell cytolytic activity to ErbB2-expressing cancer cells results in efficient and selective tumor cell destruction[J]. Blood,2002, 100(4):1265-1273.
    24. Romanski A, Uherek C, Bug G et al. Re-targeting of an NK cell line (NK-92) with specificity for CD 19 efficiently kills human B-precursor leukemic cells[J]. Blood,2004,104(3):751a.
    25. Carton G, Dacheux L, Salles G et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor Fc-RlIIa[J]. Blood,2002,99(3):754-758.
    26. Zeng X, et al. Analysis of HER2 gene status in breast cancer with HER2 protein overexpression[J]. Zhonghua Bing Li Xue Za Zhi,2006,35(10):584-588.
    27.宋辉,沈波,徐健.人乳腺癌C-erbB2及nm23基因表达及临床意义[J].河南肿瘤学杂志,2003,16(2):119-120.
    28.李新举,梁景仁,武萌,等.EGFR和C-erbB2蛋白在非小细胞肺癌中的表达及其临床意义[J].西安交通大学学报(医学版),2003,24(2):150-153.
    29.米建强,杨石强,沈铭昌.胃癌及癌前病变组织中C-erbB-2基因产物的表达[J].新消化病学杂志,1997,5(3):152-153.
    30.谷化平,尚培中,李志刚,等.CD15、C-erbB-2、PCNA和组织蛋白酶D在食管癌中的表达和相关性研究[J].癌症,2000,19(5):453-455.
    31.林国跃,陈朝伦,吕才模,等.c-erbB-2、H-ras p21、p53及PCNA在原发性肝癌中的表达[J].实用癌症杂志,1998,13(2):98-101.
    32.张俐,袁世珍.C-erbB-2癌基因蛋白、EGFR在胰腺癌组织中的表达和意义[J].实用肿瘤杂志,1999,14(3):157-158.
    33. Kapitanovic S, Radosevic S, Kapitanovic M, Andelinovic S, Ferencic Z, Tavassoli M, Primorac D, Sonicki Z, Spaventi S, Pavelic K, Spaventi R. The expression of p185 correlates with the stage of disease and survival in colorectal cancer [J]. Gast roenterology,1997,112(4):1103-113.
    34.刘曼华,冯一中,韩枋,等.nm23-H1C-c-erbB2p53蛋白在宫颈癌组织中的表达及临床意义[J].肿瘤,2002,22(2):142-144.
    35.鲍依稀,许相儒.癌基因及其表达产物的检测在临床上的应用[J].国外医学临床生物化学与检验学分册,1998,19(1):33-35.
    36.杨光,冉宇靓,孙立新,刘军,杨治华.抗人P185erbB2单抗C25的生物活性及其可变区基因的克隆[J].癌症,2000,19(8):735-738.
    37.石燕,焦顺昌.天然免疫—肿瘤免疫治疗不容忽视的领域.现代肿瘤医学[J]2009,17(2):367-370.
    38. Nancy EH, David FS. The biology of erbB2/neu/HER2 and its role in cancer [J].Biochimicaet Biophysica Acta,1994,1198(6):165-184.
    39. Stemmer WP, Crameri A, Ha KD, Brennan TM, Heyneker HL.. Single step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides[J]. Gene,1995,164(1):49-53.
    40. Young L, Dong Q. Two-step total gene synthesis method[J]. Nucleic Acids Res, 2004,32(7):e59.
    41. Mehta RK, Singh J. Bridge overlap-extension PCR method for constructing chimeric genes[J]. Biotechniques,1999,26(6):1082-1086.
    42. Goeddel DV, Kleid DG, Bolivar F, Heyneker HL, Yansura DG, Crea R, Hirose T, Kraszewski A, Itakura K, Riggs AD. Expression in Escherichia coli of chemically synthesized genes for human insulin[J]. Proc Natl Acad Sci USA, 1979,76(1):106-110.
    43. Gao X, Yo P, Keith A, Ragan TJ, Harris TK. Thermodynamically balanced inside-out (TBIO PCR-based gene synthesis:A novel method of primer design for high fidelity assembly of longer gene sequences. Nucleic Acids Res,2003, 31(22):143.
    44. Rouillard JM, Lee W, Truan G, Gao X, Zhou X, Gulari E. Gene2Oligo: Oligonucleotide design for in vitro gene synthesis [J]. Nucleic Acids Res,2004, 32 (Web Server issue):W176-W180.
    45. Ljunggren H G, Karre K. In search of the'missing self:MHC molecules and NK cell recognition[J]. Immunol Today,1990,11(7):237-244.
    46. Hollie J. Pegram, Jacob T. Jackson, Mark J. Smyth, Kershaw MH, Darcy PK.. Adoptive Transfer of Gene-Modified Primary NK Cells Can Specifically Inhibit Tumor Progression In Vivo[J]. The Journal of Immunology,2008, 181(5):3449-3455.
    47. Wayne M, Yokoyama, Kim S, French AR. The dynamic life of natural killer cells[J]. Annu. Rev. Immunol,2004,22:405-429.
    48. McKenna Jr DH, Sumstad D, Bostrom N, Kadidlo DM, Fautsch S, McNearney S, Dewaard R, McGlave PB, Weisdorf DJ, Wagner JE, McCullough J, Miller JS. Good manufacturing practices production of natural killer cells for immunotherapy:a six-year single-institution experience[J]. Transfusion,2007, 47(3):520-528.
    49. Trinchieri G. Biology of natural killer cells[J]. Advances in Immunology,1989, 47:187-376.
    50. Smith BR, Rosenthal DS, Ault KA. Natural killer lymphocytes in hairy cell leukemia:presence of phenotypically identifiable cells with defective functional activity[J]. Exp. Hematol,1985,13(3):189-193.
    51. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants [J]. Science,2002, 295(5562):2097-2100.
    52. Gratwohl A, Brand R, Apperley J, Crawley C, Ruutu T, Corradini P, Carreras E, Devergie A, Guglielmi C, Kolb HJ, Niederwieser D. Allogeneic hematopoietic stem cell transplantation for chronic myeloid leukemia in Europe 2006: transplant activity, long-term data and current results. An analysis by the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation (EBMT)[J]. Haematologica,2006,91(4):513-521.
    53. Schirrmann T, Pecher G. Tumor-specific targeting of a cell line with natural killer cell activity by asialoglycoprotein receptor gene transfer[J]. Cancer Immunol Immunother,2001,50(10):549-556.
    54. Muller T, Uherek C, Maki G, Chow KU, Schimpf A, Klingemann HG, Tonn T, Wels WS. Expression of a CD20-specific chimeric antigen receptor enhances cytotoxic activity of NK cells and overcomes NK-resistance of lymphoma and leukemia cells[J]. Cancer Immunol Immunother,2008,57(3):411-423.
    55. Bryceson Yenan T, Carlsten Mattias, Andersson Sandra, Bjorklund Andreas, Bjorkstrom Niklas K, Baumann Bettina C, Fauriat Cyril, Alici Evren, Dilber M Sirac, Ljunggren Hans-Gustaf. NK cell-mediated targeting of human cancer and possibilities for new means of immunotherapy[J]. Cancer Immunol Immunother,2008,57(10):1541-1552.
    56. Kruschinski A, Moosmann A, Poschke I, Norell H, Chmielewski M, Seliger B, Kiessling R, Blankenstein T, Abken H, Charo J. Engineering antigen-specific primary human NK cells against HER-2 positive carcinomas[J]. Proc Natl Acad Sci USA,2008,105(45):17481-17486.
    57. Boissel L, Betancur M, Wels WS, Tuncer H, Klingemann H. Transfection with mRNA for CD 19 specific chimeric antigen receptor restores NK cell mediated killing of CLL cells[J]. Leuk Res,2009,33:1255-1259.
    58. Zhang T, Barber A, Sentman CL. Generation of antitumor responses by genetic modification of primary human T cells with a chimeric NKG2D receptor[J]. Cancer Res,2006,66(11):5927-5933.
    59. Uemura A, Takehara T, Miyagi T, Suzuki T, Tatsumi T, Ohkawa K, Kanto T, Hiramatsu N, Hayashi N. Natural killer cell is a major producer of interferon-y that is critical for the IL-12-induced anti-tumor effect in mice[J]. Cancer Immunol, Immunother,2010,59(3):453-463.
    60. Hallett WHD, Murphy WJ. Positive and negative regulation of Natural Killer cells:Therapeutic implications [J]. Seminars in Cancer Biology,2006,16(5): 367-382
    61. Imai C, Iwamoto S, Campana D. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells[J]. Blood,2005,106(1):376-383.
    62. Tran AC, Zhang D, Byrn R, Roberts MR. Chimeric zeta-receptors direct human natural killer (NK) effector function to permit killing of NK-resistant tumor cells and HIV-infected T lymphocytes [J]. J. Immunol,1995,155(2): 1000-1009.
    63. Roberts MR, Cooke KS, Tran AC, Smith KA, Lin WY, Wang M, Dull TJ, Farson D, Zsebo KM, Finer MH. Antigen-specific cytolysis by neutrophils and NK cells expressing chimeric immune receptors bearing ζ or γ signaling domains[J]. J. Immunol,1998,161(1):375-384.
    1. Arai S, Klingemann HG. Natural killer cells:can they be useful as adoptive immunotherapy for cancer? Expert Opin Biol Ther,2005,5(2):163-172.
    2. Karre K. Express yourself or die:peptides, MHC molecules and NK cells. Science,1995,267(5200):978-979.
    3. Chang, C.C., Campoli, M.& Ferrone, S. Classical and nonclassical HLA class I antigen and NK cell-activating ligand changes in malignant cells:current challenges and future directions. Adv. Cancer Res,2005,93(1):189-234.
    4. Gasser, S., Orsulic, S., Brown, E.J.& Raulet, D.H. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature,2005, 436(7054):1186-1190.
    5. Ferlazzo, G. et al. Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J. Exp. Med,2002,195(3):343-351.
    6. Sivori, S. et al. Involvement of natural cytotoxicity receptors in human natural killer cell-mediated lysis of neuroblastoma and glioblastoma cell lines. J. Neuroimmunol,2000,107(2):220-225.
    7. Fauriat, C. et al. Deficient expression of NCR in NK cells from acute myeloid leukemia:evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction. Blood,2007,109(1):323-330.
    8. Miller, J.S. et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood,2005,105(8): 3051-3057.
    9. Cooley, S. et al. KIR reconstitution is altered by T cells in the graft and correlates with clinical outcomes after unrelated donor transplantation. Blood, 2005,106(13):4370-4376.
    10. Aversa, F. et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N. Engl. J.Med,1998,339(17):1186-1193.
    11. Klingemann, H.G. Natural killer cell-based immunotherapeutic strategies. Cytotherapy,2005,7(1):16-22.
    12. Uherek C, Tonn T, Uherek B, Becker S, Schnierle B, Klingemann HG, Wels W. Retargeting of natural killer-cell cytolytic activity to ErbB2-expressing cancer cells results in efficient and selective tumor cell destruction. Blood,2002, 100(4):1265-1273.
    13. Romanski A, Uherek C, Bug G et al. Re-targeting of an NK cell line (NK-92) with specificity for CD 19 efficiently kills human B-precursor leukemic cells. Blood,2004,104(3):751a
    14. Carton G, Dacheux L, Salles G et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor Fc-RIIIa. Blood,2002,99(3):754-758
    15. Carter, P.J. Potent antibody therapeutics by design. Nat. Rev. Immunol,2006, 6(5):343-357.
    16. Treon SP, Hansen M, Branagan AR. Polymorphisms in Fc-RⅢA (CD 16) receptor expression are associated with clinical response to rituximab in Waldenstrom's Macroglobulinemia. J Clin Onc,2005; 23:474-481
    17. Smyth, M.J. et al. Nature's TRAlL-on a path to cancer immunotherapy. Immunity,2003,18(1):1-6.
    18. Daniel, D. et al. Cooperation of the proapoptotic receptor agonist
    rhApo2L/TRAIL with the CD20 antibody rituximab against non-Hodgkin lymphoma xenografts. Blood,2007,110(12):4037-4046.
    19. Taieb, J. et al. A novel dendritic cell subset involved in tumor immunosurveillance. Nat. Med,2006,12(2):214-219.
    20. Vosshenrich, C.A. et al. CD11cloB220+interferon-producing killer dendritic cells are activated natural killer cells. J. Exp. Med,2007,204(11): 2569-2578.
    21. Blasius, A.L., Barchet, W., Cella, M.& Colonna, M. Development and function of murine B220+CD11c+NK1.1+cells identify them as a subset of NK cells. J. Exp. Med,2007,204(11):2561-2568.
    22. Caminschi, I. et al. Putative IKDCs are functionally and developmentally similar to natural killer cells, but not to dendritic cells. J. Exp. Med,2007, 204(11):2579-2590.
    23. Chan, C.W. et al. Interferon-producing killer dendritic cells provide a link between innate and adaptive immunity. Nat. Med,2006,12(2):207-213.
    24. Bonmort, M. et al. Interferon-γ is produced by another player of innate immune responses:the interferon-producing killer dendritic cell (IKDC). Biochimie, 2007,89(6-7):872-877.
    25. Mailliard, R.B. et al. α-type-1 polarized dendritic cells:a novel immunization tool with optimized CTL-inducing activity. Cancer Res,2004,64(17): 5934-5937.
    26. Osada, T., Clay, T., Hobeika, A., Lyerly, H.K.& Morse, M.A. NK cell activation by dendritic cell vaccine:a mechanism of action for clinical activity. Cancer Immunol. Immunother,2006,55(9):1122-1131.
    27. Andre, F. et al. Exosomes as potent cell-free peptide-based vaccine. Ⅰ. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. J. Immunol,2004,172(4):2126-2136.
    28. Chaput, N. et al. Exosomes as potent cell-free peptide-based vaccine. Ⅱ. Exosomes in CpG adjuvants efficiently prime naive Tc1 lymphocytes leading to tumor rejection. J. Immunol,2004,172(4):2137-2146.
    29. Taieb, J. et al. Chemoimmunotherapy of tumors:cyclophosphamide synergizes with exosome based vaccines. J. Immunol,2006,176(5):2722-2729.
    30. Chaput, N. et al. Dendritic cell derived-exosomes:biology and clinical implementations. J. Leukoc. Biol,2006,80(3):471-478.
    31. Pilla, L. et al. A phase II trial of vaccination with autologous, tumor-derived heat-shock protein peptide complexes Gp96, in combination with GM-CSF and interferon-a in metastatic melanoma patients. Cancer Immunol. Immunother,2006,55(8):958-968.
    32. Sivori, S. et al. CpG and double-stranded RNA trigger human NK cells by Toll like receptors:induction of cytokine release and cytotoxicity against tumors and dendritic cells. Proc. Natl. Acad. Sci,2004,101(27):10116-10121.
    33. Krieg, A.M., Efler, S.M., Wittpoth, M., Al Adhami, M.J.& Davis, H.L. Induction of systemic TH1-like innate immunity in normal volunteers following subcutaneous but not intravenous administration of CPG 7909, a synthetic B-class CpG oligodeoxynucleotide TLR9 agonist. J. Immunother, 2004,27(6):460-471.
    34. Link, B.K. et al. Oligodeoxynucleotide CpG 7909 delivered as intravenous infusion demonstrates immunologic modulation in patients with previously treated non-Hodgkin lymphoma. J. Immunother,2006,29(5):558-568.
    35. Kanzler, H., Barrat, F.J., Hessel, E.M.& Coffman, R.L. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat. Med, 2007,13(5):552-559 (2007).
    36. Whiteside, T.L.& Friberg, D. Natural killer cells and natural killer cell activity in chronic fatigue syndrome. Am. J. Med,1998,105(3A):27S-34S.
    37. Davies, F.E. et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood,2001,98(1): 210-216.
    38. Brune, M. et al. Improved leukemia-free survival after postconsolidation immunotherapy with histamine dihydrochloride and interleukin-2 in acute myeloid leukemia:results of a randomized phase 3 trial. Blood,2006,108(1): 88-96.
    39. Ghiringhelli, F. et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol. Immunother,2007, 56(5):641-648.
    40. Ishikawa, A. et al. A phase Ⅰ study of a-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin. Cancer Res,2005,11(5):1910-1917.
    41. Motohashi, S. et al. A phase Ⅰ study of in vitro expanded natural killer T cells in patients with advanced and recurrent non-small cell lung cancer. Clin. Cancer Res,2006,12(20 Pt 1):6079-6086.
    42. Mazodier, K. et al. Severe imbalance of IL-18/IL-18BP in patients with secondary hemophagocytic syndrome. Blood,2005,106(10):3483-3489.
    43. Albertsson, P.A. et al. NK cells and the tumour microenvironment:implications for NK-cell function and anti-tumour activity. Trends Immunol,2003,24(11): 603-609.
    44. Kim, M.H. et al. Secreted and membrane-associated matrix metalloproteinases of IL-2-activated NK cells and their inhibitors. J. Immunol,2000,164(11): 5883-5889.