ChIFN-γ基因的植物表达及其生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干扰素(IFN)作为一种动物细胞产生的细胞因子,具有广谱抗病毒活性和免疫保护作用。随着养鸡业集约化和商品化方向的发展,对病毒性疾病的有效预防与治疗,需要大量的干扰素。目前,IFN的生产主要以原核表达系统为主,后处理工艺繁琐,导致IFN活性低,生产成本高。而应用植物生物反应器生产IFN可以克服上述缺点,同时具有生产量大、可作为植物疫苗佐剂直接口服等优势。因此,研究IFN在植物中的表达特性及其生物学活性具有重要的理论价值和实践意义。
     研究利用GenBank数据库登录的ChIFN-γ基因序列,依据油菜密码子最高使用频率优化并设计了ChIFN-γ基因,人工合成长度614bp,包含有油菜Napin信号肽序列、Kozak序列和内质网滞留信号肽SEKDEL序列的ChIFN-γ融合基因。
     采用特异性引物,PCR扩增得到1158bp的Napin油菜种子特异性启动子。分析表明,Napin启动子中含有启动子基本元件及特异性元件ABREs和RY基序。应用同尾酶连接法构建了pSH-NGN、pSH-NGNL、pSH-IFNG植物表达载体用于遗传转化烟草和油菜。
     为了验证植物表达载体设计与构建是否正确,将含有质粒pSH-NGN、pSH-NGNL和pSH-IFNG的根癌农杆菌,以生菜为受体材料,采用真空渗透法进行瞬时表达研究。结果表明,三种植物表达载体在生菜中瞬时表达ChIFN-γ蛋白的平均含量分别为675.7pg/g、665.7pg/g及519.5pg/g。为简化蛋白提取方法,降低目的蛋白降解速度,采用不同的蛋白缓冲液提取ChIFN-γ蛋白。ELISA检测结果显示,以组成为50mM PBS,pH7.5、1%SDS、0.25MNaCl、1%β-巯基乙醇和0.05%Tween-20的缓冲液提取目的蛋白的效率最高,每克叶片最高达到1.2μg。Western blot检测表明,表达的蛋白分子量大小约30kDa。
     将含有质粒pSH-IFNG和pSH-NGNL的根癌农杆菌EHA105遗传转化烟草,获得24株转ChIFN-γ基因烟草。经PCR、RT-PCR、GUS组织化学染色和ELISA检测表明,ChIFN-γ基因已整合到烟草的染色体中,并能正确转录与表达。ChIFN-γ蛋白在转基因烟草植株中的表达量最高达到20μg/g,高出已报道的转基因烟草表达外源基因的通常水平(0.000017%-0.001%)。经Western blot检测,目的蛋白为30kDa和40kDa,分析为糖基化程度不同所致。对转基因烟草T_0代完整生长期的农艺性状观察发现,除虫害较少、叶片粘性增加、花苞较小、种子籽粒数少及色泽稍浅外,其它性状与野生型差异不显著。
     将质粒pSH-IFNG、pSH-NGNL以根癌农杆菌介导法遗传转化油菜,筛选出25株转ChIFN-γ油菜。其中Napin启动子驱动表达的ChIFN-γ蛋白最高表达量达到58μg/g,比35S启动子驱动的转化植株总体平均高出2.64倍,最高达5.17倍。表明在油菜中由Napin启动子及其信号肽组成的ChIFN-γ基因的表达盒,ChIFN-γ蛋白表达量明显高于组成型启动子35S。Napin启动子的‘渗漏'现象与其含有启动子元件有关。
     以转ChIFN-γ基因烟草T_0代叶片粗提总蛋白进行鸡胚成纤维细胞病变试验确定ChIFN-γ的活性效价。鸡胚成纤维细胞培养约24h呈单层时,采刚VSV(TCID_(50)=10~(-5))病毒攻毒,在22h和42h时分别观察细胞形态,计算得到每毫克转基因烟草中ChIFN-γ蛋白效价为5.12x10~3U。
     机械摩擦法接种易感型TMV病毒,6天内,转基因烟草组对病毒抑制率为100%,随着时间延长抑制率平缓下降,16天后抑制率稳定在约32%,接毒植株的生长并未表现出受到抑制的现象。对照组一周后开始出现不同程度的花叶和枯斑,感染率达到95%。说明转ChIFN-γ基因烟草植株对TMV的浸染具有显著抑制作用。
     采用漂浮板快速育苗,获取大量的转基因植株叶片。将转基因烟草叶片匀浆后添加至饲料中,以每克饲料添加50U ChIFN-γ蛋白和每只鸡20g饲料/天的喂养量,分组隔离喂养1-10天后,采用NDV强毒株病毒进行攻毒,20天后捕杀。结果显示,ChIFN-γ蛋白具有增加雏鸡体重的作用;血清凝集试验显示,饲喂ChIFN-γ蛋白组NDV抗体效价高于对照组;喂食300UChIFN-γ蛋白对雏鸡的保护率可达80%。表明ChIFN-γ蛋白可通过口服喂养途径显著地提高鸡体抗病毒能力。
     自然接种烟草蚜虫和离体利用转基因烟叶饲喂野生斜纹夜蛾幼虫及烟青虫,转ChIFN-γ基因烟叶表现出显著的抗虫效果。通过测定烟草烟碱含量、饲喂烟叶后烟青虫蛋白酶活性变化、烟草中挥发性物质和对烟草组织进行切片染色观察。发现烟碱含量与对照无显著差异;12h时,饲喂转基因烟草组的虫体蛋白酶活性较对照组低5.4%;转基因烟草叶片增厚,细胞致密,细胞壁增厚,表皮腺毛数量增加可能是导致其抗虫的直接因素之一;转基因组与野生型烟草挥发性成分存在一定的差异,转基因烟草中黑松三烯和西柏三烯二醇含量的提高与其抗虫性直接相关,ChIFN-γ基因激活的多种转录因子可能结合了腺毛发育相关基因的cis调节元件,上调了腺毛发育基因的表达,导致腺毛的数量增加,分泌的萜烯化合物增加从而具有显著地抗虫性。
     综上所述,植物能表达出有生物活性的ChIFN-γ蛋白,转ChIFN-γ基因植物具有一定的抗动、植病毒和抗虫作用。研究为应用植物生物反应器生产ChIFN-γ蛋白及其开发和应用奠定了基础;同时,通过直接口服饲喂转基因植物方式,对禽类疾病的预防与治疗提供了新的方向。
As an animal cells cytokines, interferon (IFN) possesses broad-spectrum antiviral activity and the role of immune protection. With the intensification and commercialization of poultry industry, large amounts of interferon were needed for effective prevention against viral diseases. Conventionally, expression of recombinant IFN-γrelies mainly on microbial and mammalian cell expression systems in which the post-treatment process brings about cumbersome problem, resulting in susceptibility to proteolysis, shorter survival times and high production costs. However, plant bioreactor expression systems have demonstrated an advantage over other in vitro expression systems because it may provide an attractive and large production capacity, and inexpensive alternative to conventional production system in terms of low costs. In addition, plant-based vaccines can be directly used as direct oral advantages. Therefore, elucidation of the IFN expression characteristics and biological activity in plants may be highly important for both theoretical and practical benefits.
     Based on the sequence of the ChIFN-γgene from GenBank, a coding sequence for this gene was optimized by modification of codon usage of Brassica napus. The synthetic ChIFN-γgene is about 614bp along with a Napin signal peptide, Kozak sequence and an endoplasmic reticulum retention signal (SEKDEL).
     With the utility of specific primers a specific promoter about 1,158 bp of Napin rape seeds and NOS terminator (around 220 bp) were obtained from Brassica napus genome via PCR amplification. Sequence analysis of napin gene showed that it contain promoter basic element, specific element of ABREs and RY motif. Using isocaudamer enzyme ligation method, plant expression vector pSH-NGN, pSH-NGNL and pSH-IFNG are constructed for the genetic transformation of tobacco, lettuce and rape, respectively.
     In order to verify the correctness of design and construction about plant expression vector, transient expression system was employed to detect lettuce (Lactuca sativa L.) vacuum-infiltrated with Agrobacterium tumefaciens containing plasmid pSH-NGN, pSH-NGNL or pSH-IFNG The ELISA detection showed that three expression levels of ChIFN-7 in lettuce were 0.6757, 0.6761 and 0.5195μg.g~(-1) fresh leaf weight (FLW), respectively. To simplify the method for extracting protein, and decrease the degradation rate of target protein, different protein extract buffers were used to extract ChIFN-γprotein. Extract solution (pH7.5) containing 50 mM PBS, 1% SDS, 0.25 M NaCl, 1%β-mercaptoethanol, and 0.05% Tween-20 demonstrated the highest extraction efficiency of ChIFN-γprotein via ELISA test, whose yield was as high as 1.2μg.g~(-1) FLW. The result of western blot tests showed that the molecular weight of the protein was approximately 30 kDa.
     Agrobacterium tumefaciens strain EHA105 harboring pSH-IFNG and pSH-NGNL were used to carry out the genetic transformation in tobacco herein. A total of 24 transgenic ChIFN-γtobacco clones were obtained. Evidences from PCR, RT-PCR, GUS histochemical staining and ELISA quantitative tests had substantially proved that ChIFN-γgene had been integrated in the genome of tobacco, and it could transcribe and express correctly. The expression level of ChIFN-γin tobacco leaves was up to 20μg.g~(-1) FLW, which is much higher than the common level (0.000017% to 0.001%). Bands of approximately 30 kDa and 40 kDa were detected by Western analysis in transgenic tobacco leaves using an anti-chicken IFN-γantibody. The molecular weight of ChIFN-γby SDS-PAGE was higher than the predicted molecular weight, possibly duo to the different glycosylation among the lines. According to the observation of agronomic traits in the transgenic tobacco, it has been found that the character differences between the transgenes and wild type are not significant, except for the more leaves stickiness, smaller flower bud, less kernal number as well as shallower colors of the seed in the the former.
     Also Agrobacterium tumefaciens strain EHA105 harboring pSH-IFNG and pSH-NGNL were genetically transformed into Brassica napus. A total of 25 transgenic rape lines integrated with ChIFN-γwere obtained by screening. Plants transformed with the napin promoter targeting ChIFN-γto the nucleus, the expression content of ChIFN-γprotein could reach to 58μg.g~(-1) FLW, which was around 2.46 times higher than that of transgenic plants using the constitutive cauliflower mosaic virus 35S promoter. It showed that the startup ability of in leaves of Brassica napus with the expression box containing napin promoters, and its signal peptide was obviously higher than the ones with constitutive promoters 35S. Napin promoter of 'leakage' phenomenon is propably related to it's promoter elements.
     An experiment about cytopathic effect of the chicken embryo fibroblasts had been undertaken using total crude protein extract from T_0 leaves of the transgenic ChIFN-γtobacco to determine the ChIFN-γbioactivity. Activate the passage monolayer chicken fibroblast cell when the cells culture 24 hours was infected with TCID_(50) of vesicular stomatitis virus (VSV). The ChIFN-γprotein titer per milligram transgenic tobacco was 5.12×103 U as calculated by morphological observation on cells at 22h and 42 h.
     Using mechanical friction method, the phenotype susceptive Tobacco Mosaic Virus (TMV) was inoculated. During the initial six days, the inhibiting rate of transgenic tobacco lines to virus was 100%. Unfortunately, this rate dropped gradually, and the inhibiting rate got stable at 32% after 16 day's treatment. Moreover, significant inhibited effect to this virus had been investigated in the transgenic lines. After one week, diverse mosaic and necrotic lesion were obtained from the control group, and the, infection rates reached 95%. All stated above had proved that the transgenic tobacco enhanced the inhibiting effects to TMV.
     With rapid seeding on floating plates, a large number of leaves were obtained from the transgenic plants . Basis on the data that per gram feedstuff contains 50U ChIFN-γprotein and one chick feeds on 20 g feedstuff every day, the leaf homogenate of transgenic tobacco was then added to the feedstuff. Subsequently, animal feeding experiments were proceed with five groups, in whichs 10 chickens were used for each one. The tested chickens were subjected to virulent strain Newcastle Disease Virus (NDV) for 1-10 days, and then killed after 10 days. The results showed that feeding with ChIFN-γprotein group had higher weight growth rate than that of the control (feeding-free). Therefore, ChIFN-γprotein demonstrated the ability to add up weight of chicken. Meanwhile, the results of serum agglutination proved that NDV antibody titer of feeding ChIFN-γgroups was higher than that of the control; suggestting ChIFN-γprotein could improve the ability of antivirus in chicken. In addition, the immunoprotection ratio to virus infection reached to 80% by feeding 300U ChIFN-γprotein, thus this protein might significantly increase chicken anti-viral capacity via oral feeding mode.
     Natural inoculation of tobacco aphids as well as feeding wild perfect insects of Spodoptera litura or tobacco budworm with in vitro transgenic tobacco leaves sustantially verified that the, transgenic tobacco leaves showed significantly a positive effects on the resistance to insect. In tobaccos, the nicotine content, self-protease activity, volatile substances were quantified, and plant tissue was further investigated by means of slice staining. Compared with the control, no significant difference in nicotine content was obtained from the transgenic lines, and insertean protease activity was lower by 5.4% in the feeding transgenic group after 12 hours. The leaf thickness, cell density, cell wall thickening, glandular hairs increase demonstrated a positive trend toward the insect resistance in transgenic tobacco. In addition,Some differences in volatile components were investigated from the transgenic tobacco, e.g. the contents duvatriendiol and 4,8,13-Duvatriene-1,3-diol, which are closely related to the insect resistance increased directly. ChIFN-γgene activation of several transcription factors may be binding the cis-regulatory elements of trichome development-related genes, increases the expression of genes of the trichome development, leading to increase in the number of trichomes, the secretion of terpenoid, which may be linked to the main mechanisms of the transgenic ChIFN-γgene tobaccos.
     In conclusion, we substantially created the transgenic lines expressing active ChIFN-γprotein. Transgenic ChIFN-γgene plants may have a certain role in enhancement the resistance to animal and plant virus, as well as to insect. Our findings may provide a foundation for the application of plant bioreactor in ChIFN-γprotein production. Rather, it also demonstrates a new clue to prevent or/and recover avian disease via direct oral feeding with transgenic plants.
引文
1. Allen PC. Nitric oxide production during Eimeria tenella infections in chickens [J]. Poultry Science. 1997, 76(6):810-813.
    
    2. Argyle DJ., Harris M., Lawrence C., McBride K., Barron R., McGillivray C. & Onions DE.Expression of feline recombinant interferon-gamma in baculovirus and demonstration of biological activity [J]. Vet Immunol Immunopathol. 1998, 8(64):97-105.
    
    3. Arora D. & Khanna N. Method for increasing the yield of properly folded recombinant human gamma interferon from inclusion bodies [J]. J Biotechnol.1996, 52:127-133.
    
    4. Artsaenko O., Kettig B., Fiedler U., Conrad U. & During K. Potato tubers as a biofactory for recombinant antibodies [J]. Mol Breed. 1998,4:313-319.
    
    5. Azzoni AR., Kusnadi AR., Miranda EA. & Nikolov ZL. Recombinant aprotinin produced in transgenic corn seed: extraction and purification studies [J]. Biotechnol Bioeng. 2002,80:268-276.
    
    6. Bakker H., Bardor M., Molthof JW., Gomord V., Elbers I., Stevens LH., Jordi W.,Lommen A., Faye L., Lerouge P. & Bosch D. Galactose-extended glycans of antibodies produced by transgenic plants[J]. Proe Natl Acad Sci USA. 2001, 98(5):2899-2904.
    
    7. Barta A., Sommergruber K., Thompson D., Hartmuth K., Matzke MA. & Matzke AJM. The expression of a nopaline synthase human growth hormone chimaeric gene in transformed tobacco and sunflower callus tissue [J]. Plant Mol Biol. 1986, 6:347-357.
    
    8. Biron CA., Nguyen KB., Pien GC, Cousens LP. & Salazar-Mather TP. Natural killer cells in antiviral defense: function and regulation by innate cytokines [J]. Annu Rev Immunol.1999, 17:189-220.
    
    9. Borisjuk NV., Borisjuk LG., Logendra F. Petersen Y., Gleba & Raskiu I. Production of recombinant proteins in plant root exudates [J]. Nat Biotechnol. 1999, 17:466-469.
    
    10. Bosch D., Smal J. & Krebber EA. Trout growth hormone is expressed correctly folded and partially glycosylated in the leaves but not the seed of transgenic plants[J]. Transgenic Res.1994,3:304-310.
    
    11. Bryant J. & Leather S. Removal of selectable marker genes from transgenic plants: needless sophistication or social necessity [J]. Trends in Biotechnology. 1992,10:274-275.
    
    12. Bussis D., Heineke D., Sonnewald U., Willmitizer L., Raschke K. & Heldt H. Solute accumulation and decreased photosynthesis in leaves of potato plants expressing yeast-derived invertase either in the apoplast, vacuole or cytosol [J]. Planta. 1997,202(1):126-136.
    
    13. Chatthai M., Forward BS., Yevtushenko D., Stefanov I., Osuska L., Osuaky M. & Misra S 2S storage protein gene of douglas-fir: characterization and activity of promoter in transgenic tobacco seeds [J]. Plant Physiol Biochem. 2004,42:417-423.
    
    14. Chatthai M., Forward BS., Yevtushenko D., Stefanov I., Osuska L., Osuaky M. & Misra S 2S storage protein gene of douglas-fir: characterization and activity of promoter in transgenic tobacco seeds [J]. Plant Physiol Biochem. 2004,42:417-423.
    
    15. Chen TL., Lin YL., Lee YL., Yang NS. & Chan MT. Expression of bioactive human interferon-gamma in transgenic rice cell suspension cultures [J]. Transgenic Res. 2004,13:499-510.
    
    16. Chen TL., Lin YL., Lee YL., Yang NS. & Chan MT. Expression of bioactive human interferon-gamma in transgenic rice cell suspension cultures [J]. Transgenic Res. 2004,13:499-510.
    
    17. Cramer CL., Weissenborn DL., Oishi KK., Grabau EA., Bennett S., Ponce E., Grabowski GA. & Radin DN. Bioproduction of human enzymes in transgenic tobacco [J]. Ann NY Acad Sci. 1996,792:62-71.
    
    18. Cummins JM., Krakowka GS. & Thompson CG. Systemic effects of interferons after oral administration in animals and humans [J]. Am J Vet Res. 2005, 66:164-176.
    
    19. Dawson WO. Mechanism of resistance to virus infection and selection for resistance at the cellular level [J]. Acta hort (ISHS). 1985,164:355-364.
    
    20. De Zoeten GA., Penswick JR., Horisberger MA., Ahl P., Schultze M. & Hohn T. The Expression, localization, and effect of a human interferon in plants [J]. Virology.1989,172:213-222.
    
    21. Dieryck W., Pagnier J., Poyart C, Marden MC, Gruber V., Bournat P., Baudino S. & Merot B. Human haemoglobin from transgenic tobacco [J]. Nature. 1997, 386(6620):29-30.
    
    22. Digby MR. & Lowenthal JW. Cloning and expression of the chicken interferon-gamma gene [J]. Interferon Cytokine Res. 1995, 15:939-945
    
    23. Dimier-poisson IH., Soundouss Z., Naciri M., Bout DT. & Quere P. Mechanism of the Eimeria tenalla growth inhibitory activity induced by concanavalian A and recyiculo endotheliosis virus supematants with interferon gamma activity in chicken macrophages and fibroblasts [J]. Avian Dis.1999,43:65-74.
    
    24. Dong JZ., Yang MZ., jia SR. & Chua NH. Transformation of melon and expression from the cauliflower mosaic virus 35S promoter in transgenic melon plant. Biotechnology [J]. 1991,9: 2858-2863.
    
    25. Edelbaum O., Ilan N., Grafi G., Sher N., Stram Y., Novick D., Tal N., Sela I., Rubinstein M.Purification and characterization of two antivirally active proteins from tobacco by monoclonal antibodies to human beta interferon [J]. Proc Natl Acad Sci. 1990, 87:588-592.
    
    26. Edelbaum O., Stein D., Holland N., Gafni Y, Livneh O., Novick D., Rubinstein M. & Sela I.Expression of active human interferon-beta in transgenic plants [J]. J Interferon Res. 1992,12:449-453.
    
    27. Ellerstrom M., Stalberg K., Ezcurra I. & Rask L. Functional dissection of a napin gene promoter: identification of promoter elements required for embryo and endosperm-specific transcription [J]. Plant Mol Biol. 1996, 32(6):1019-1027.
    
    28. Ericson ML., Muren E., Gustavsson HO., Josefsson LG. & Rask L. Analysis of the promoter region of napin genes from Brassica napus demonstrates binding of nuclear protein in vitro to a conserved sequence motif [J]. Eur J Biochem. 1991,197:741-746.
    
    29. Ezcurra I., Ellerstrom M., Wycliffe P., Stalberg K. & Rask L. Interaction between composite elements in the napA promoter: both the B-box ABA-responsive complex and the RY/G complex are necessary for seed-specific expression [J]. Plant Mol Biol 1999,40:699-709.
    
    30. Fagard M., Vaucheret H. (Trans) Gene silencing in plants: How many mechanisms? Annu.Rev. Plant Physiol [J]. Plant Mol Biol. 2000, 51:167-194.
    
    31. Farran I., Sanchez-Serrano JJ., Medina JF., Prieto J. & Mingo-castel AM. Targeted expression of human serum albumin to potato tubers [J]. Transgenic Res. 2002,11(4):337-346.
    
    32. Fischer R. & Emans N. Molecular farming of pharmaceutical proteins [J]. Transgenic Research. 2000,9:279-299.
    33. Fischer R., Liao YC. & Drossard J. Affinity-purification of a TMV-specific recombinant full-size antibody from a transgenic tobacco suspension culture [J]. J Immunol Meth. 1999,226:1-10.
    
    34. Frese M., Prins M., Ponten A., Goldbach RW., Haller O. & Zeltz P. Constitutive Expression of Interferon-Induced Human MxA Protein in Transgenic Tobacco Plants Does not Confer Resistance to a Variety of RNA Viruses [J]. Transgenic Res. 2000, 9(6):429-438.
    
    35. Gabriele L. & Ozato K. The role of the interferon regulatory factor (IRF)family in dendritic cell development and function [J]. Cytokine Growth Factor Rev. 2007, 18:503-510.
    
    36. Giddings G., Allison G., Books D. & Carter A. Transgenic plants as factories for biopharmaceuticals [J]. Nat Biotechnol. 2000,18(11):1151-1155.
    
    37. Gomord V. & Faye L. Posttranslational modification of therapeutic proteins in plants [J].Curr Opin Plant Biol. 2004, 7(2): 171-181.
    
    38. Gray PW., Leung DW., Pennica D., Yelverton E., Najarian R., Simmonsen CC., Derynck R,Shenvood PJ., Wallace DM., Berger SL., Levison AD. & Goeddel DV. Expression of human immune interferon cDNA in E. coli and monkey cells [J]. Nature. 1982, 295:503-508.
    
    39. Greer E. & Nieslen MT. Leaf trichomes in tobacco: insect relationship: 1. resistance to tobacco homworms, Manduca sexta L [J]. Tab Int. 1988, 190(13):57-61.
    
    40. Gutierrez-alcala G, Calo L., Gros F., Caissard JC., Gotor C. & Romero LC. A versatile promoter for the expression of proteins in glandular and non-glandular trichomes from a variety of plants [J]. J Exp Bot. 2005, 56:2487-2494.
    
    41. Hamilton RI. Defense triggered by previous invaders: Viruses, New York: Academic Press. 1980, 279-303.
    
    42. Higo K., Saito Y. & Higo H. Expression of a chemically synthesized gene for human epidermal growth factor under the control of cauliflower mosaic virus 35S promoter in transgenic tobacco [J]. Biosci Biotech Biochem. 1993, 57:1477-1481.
    
    43. Hu QY., Chee PP. & Miller PD. Intrinsic GUS-like activity in soybean [J]. Soybean Sci. 1991,10:200-204.
    
    44. Imajuku Y., Ohashi Y., Aoyama T., Goto K. & Oka A. An upstream region of the Arabidopsis thaliana CDKA;1 (CDC2aAt) gene directs transcription during trichome development[J]. Plant Mol Biol. 2001, 46:205-213.
    45. Ioan N., Stefan H., Danielle C, Wichai C, Gokarna GC. & Michel J. Plant protoplasts as genetic tool: selectable markers for developmental studies [J]. Int J Dev Biol. 1992,36:873-841.
    
    46. Isaacs A. & Lindenmann J. Virus interference I. The interferon [J]. Proc R Soc Lond B Biol Sci. 1957, 147(927):258-267.
    
    47. Jimenez-Bremont JF., Ordonez Acevedo LG. & De Leon Rodriguez A. Periplasmic expression and recovery of human interferon gamma in Escherichia coli [J]. Protein Expres Purif.2008,59:169-174.
    
    48. Johson AW. & Severn RF. Physical and chemical leaf surface characteristics of aphid and susceptible tobacco [J]. Tab Int. 1982,184(17):49-53.
    
    49. Johson AW. Evaluation of several Nicotiana tabacum entires resistance to two tobacco insect pests [J]. Tab Sci. 1978,22:41-43.
    
    50. Joseph S. & David W. Russell.Molecular Cloning: A Laboratory Manual (3-Volume Set) [M]. Beijing, Science Press. 2002(in Chinese).
    
    51. Kaiser P., Sonnemans D. & Smith LM. Avian IFN-γ genes:sequence analysis suggests probable cross-species reactivity among galliforms [J]. J Interferon and Cytokine Res. 1998,18:711-719.
    
    52. Keene CK. & Wangner GJ. Direct demonstration of duvatriendiol biosynthesis in glandular heads of tobacco trichomes [J]. Plant Physiol. 1985, (7):1026-1032.
    
    53. Khan SM. & Maliga P. Fluorescent antibiotic resistance marker to trace plastid transformation in higher plants [J]. Nat Biotechnol. 1999, 17:910-915.
    
    54. Ko K., Tekoah Y., Rudd PM., Harvey DJ., Dwek RA., Spitsin S., Hanlon CA., Rupprecht C.,Dietzschold B., Golovkin M & Koprowski H. Function and glycosylation of plant-derived antiviral monoclonal antibody [J]. Proc Natl Acad Sci USA, 2003, 100:8013-8018.
    
    55. Kohase M., Moriya H., Sato TA., Kohno H. & Yamazaki S. Purification and characterization of chick interferon induced by virus [J]. J gen virol. 1986, 67:215-218.
    
    56. Kosugi S., Ohashi Y., Nakajima K. & Arai Y. An improved assay for β-glucuronidase in transformed cells: Methanol almost completely suppresses a putative endogenous β-glucuronidase [J]. Physiol. 2003, 131:1270-1282.
    
    57. Kusnadi A., Nikolov ZL. & Howard JA. Production of recombinant proteins in transgenic plants: practical considerations. Biotechnol Bioeng. 1997,56:473-484.
    
    58. Le Bon A. & Tough DF. Links between innate and adaptive immunity via type I interferon.Curr [J]. Opin Immunol. 2002, 14:432-436.
    
    59. Lee JS., Choi SJ., Kang HS., Oh WG, Cho KH., Kwon TH., Kim KH., Jang YS. & Yang MS. Establishment of a transgenic tobacco cell suspension culture system for producing murine granulocyte-macrophage colony stimulating factor [J]. Mol Cell. 1997,7:783-787.
    
    60. Leelavathi S. & Reddy VS. Chloroplast expression of His-tagged GUS-fusions: a general strategy to overproduce and purify foreign proteins using transplastomic plants as bioreactors [J]. Mol Breed. 2003, 11:49-58.
    
    61. Leite A., Kemper E., Silva M., Luchessi A., Siloto R., Bonaccorsi E., El-Dorry H. & Arruda P. Expression of correctly processed human growth hormone in seeds of transgenic tobacco plants [J]. Mol Breeding. 2000, 6:47-53.
    
    62. Lerouge P., Bardor M., Pagny S., Gomord V. & Faye L. N-Glyeosylation of Recombinant Pharmaceutical Glycoproteins Produced in Transgenic Plants:Towardsan Humanisation of Plant N-Glyeans [J]. Curr Pharm Biotechno. 2000, 1:347-354.
    
    63. Lillehoj HS. & Choi KD. Recombinant chicken interferon-gamma-mediated inhibition of Eimeria tenella development in vitro and reduction of oocyst production and body weight loss following Eimeria acervulina challenge infection [J]. Avian Dis. 1998, 42:307-314.
    
    64. Lillehoj HS. Role of T lymphocytes and cytokines in coccidiosis [J]. In J Parasitol. 1998,28(7):1071-1081.
    
    65. Liu J., Xia KF., Zhu JC., Deng YG., Huang XL., Hu BL., Xu XP. & Xu ZF. The nightshade proteinase inhibitor IIb gene is constitutively expressed in glandular trichomes [J]. Plant Cell Physiol. 2006, 47:1274-1284.
    
    66. Lowenthal JW., Digby MR. & York JJ. Production of interferon-γ by chiekenT cells [J]. J Interferon Cytokine Res.1995, 15:933-938.
    
    67. Lowenthal JW., York JJ., O'Neil TE., Rhodes S., Prowse SJ., Strom DG. & Digby MR. In vivo effects of chicken interferon-gamma during infection with Eimeria [J]. J Interferon Cytokine Res. 1997, 17:551-558.
    
    68. Lowenthal JW., York JJ., O'Neil TE., Rhodes S., Prowse SJ., Strom DG. & Digby MR. In vivo effects of chicken interferon-gamma during infection with Eimeria [J]. J Interferon Cytokine Res. 1997, 17:551-558.
    
    69. Magnuson NS., Linzmaier PM., Reeves R., An G, HayGlass K. & Lee JM. Secretion of biologically active human interleukin-2 and interleukin-4 from genetically modified tobacco cells in suspension culture [J]. Protein Expr Purif. 1998, 13:45-52.
    
    70. Manuel GC., Soren B., Gunnar von H. Prediction of N-terminal protein sorting signals [J].Curr Opin Struc Bio. 1997, 7:394-398.
    
    71. Marcus PL, Heide LVD. & Sekellick MJ. Interferon Action on Avian Viruses.I. Oral Administration of chicken interferon-α ameliorates Newcastle disease [J]. J Interferon CytokineRes. 1999, 19:881-885.
    
    72. Masao I., Hiromi H., Kenichi H. Strong expression of the rice catalase gene CatB promoter in protoplasts and roots of both a monocot and dicots [J]. Plant Physiol Bioch. 2004,42:241-249.
    
    73. Mason HS., Lam DM. & Arntzen CJ. Expression of hepatitis B surface antigen in transgenic plants [J]. Proc Natl Acad Sci USA. 1992, 89 (24): 11745-11749.
    
    74. Matsumoto S., Ikura K., Ueda M. & Sasaki R. Characterisation of a human glycoprotein (erythropoetin) produced in cultured tobacco cells [J]. Plant Mol Biol. 1995, 27:1163-1172.
    
    75. Metz TD., Dixit R. & Earle ED. Agrobacterium tumefaciens-mediated transformation of broccoli ( Brassica oleracea van italica) and cabbage (B.oleracea var.capitata) [J]. Plant Cell Rep. 1995, 15:287-292.
    
    76. Michalski WP., Shiell BJ., O'Neil TE., Beddome G. & Lowenthal JW. Recombinant Chicken IFN-gamma Expressed in Escherichia coli: Analysis of C-Terminal Truncation and Effect on Biologic Activity [J]. J Interferon Cytokine Res. 1999, 19:383-392.
    
    77. Min W., Lillehoj HS., Burnside J., Weining KC., Staeheli P. & Zhu JJ. Adjuvant effects of IL-lbeta, IL-2, IL-8, IL-15, IFNalpha, IFN-gamma TGF-beta4 and lymphotactin on DNA vaccination against Eimeria acervulina [J]. Vaccine. 2001, 20, 267-274.
    
    78. Molhoj M., Jorgensen B., Ulvskov P., Borkhardt B. Two Arabidopsis thaliana genes, KOR2 and KOR3, which encode membrane-anchored endo-1,4- β-D-glucanases, are differentially expressed in developing leaf trichomes and their support cells [J]. Plant Mol Biol. 2001,46:263-275.
    
    79. Moloney MM. & Holbrook LA. Subcellular targeting and purification of recombinant proteins in plant production systems [J]. Biotechnol Genet Eng Rev. 1997, 14:321-336.
    
    80. Moloney MM., Walker JM. & Sharma KK. High efficiency transformation of Brassica napus using Agrobacterium vectors [J]. Plant cell Rep. 1989, 8:238-242.
    
    81. Morten J. & Okkels FT. A novel principle for selection of transgenic plant cells: positive selection [J]. Plant Cell Rep. 1996, 16(3-4):219-221.
    
    82. Murase JK., Murase M., Ichikawa H. & Imamura J. Effects of an antisense napin gene on seed storage compounds in transgenic Brassica napus seeds [J]. Plant Mol Biol. 1994,26:1115-11241.
    
    83. Murphy KF., Baldzsi G. & Collins JJ. Combinatorial promoter design for engineering noisy gene expression [J]. Proc Natl Acad Sci U S A. 2007, 104(31): 12726-12731.
    
    84. Naka T., Narazaki M., Hirata M., Matsumoto T., Minamoto S., Aono A., Nishimoto N.,Kajita T., Taga T., Yoshizaki K., Akira S. & Kishimoto T. Structure and function of a new STAT-induced STAT inhibitor [J]. Nature. 1997, 387:924-929.
    
    85. Nakamura S., Taira H., Yamauchi N & Ehara. Y. Resistance to virus infection in transgenic tobaccos plant introduced a human interferon-induced, double stranded RNA-dependent protein kinase gene [J]. Tohoku J Agri res (Japan).1997,48(l-2):l-6.
    
    86. Narasimhulu SB., Kirti PB., Mohapatra T., Prakash S & Chopra V L. Shoot regeneration in stem expiants and its amenability to Agrobacterium tumefaciens mediated gene transfer in Brassica carinata [J]. Plant Cell Rep. 1992, 11(7): 359-362.
    
    87. Negrouk V., Eisner G., Lee H., Han K., Taylor D., Wong H.C. Highly efficient transient expression of functional recombinant antibodies in lettuce [J]. Plant Sci. 2005, 169:433-438.
    
    88. Obermeyer G., Gehwolf R., Sebesta W., Hamilton N., Gadermaier G., Ferreira F.,Commandeur U., Fisher R. & Bentrup FW.Over-expression and production of plant allergens by molecular fanning strategies [J]. Methods. 2004, 32(3):235-240.
    
    89. Ohya K., Matsumura T., Ohashi K., Onuma M. & Suqimoto C. Expression of two subtypes of human IFN-alpha in transgenic potato plants [J]. Interferon Cytokine Res. 2001,21:595-602.
    
    90. Ooms G, Bains A., Burrell M., Karp A., Twell D. & Wilcox E. Genetic manipulation in cultivars of oilseed rape using Agrobacterium. Theor Appl Genet. 1985,71:325-329.
    
    91. Oritani K., incade PW., Zhang C, Tomiyama Y., Matsuzawa Y. Type I interferons and limitin: a comparison of structures, receptors, and functions [J]. Cytokine Growth Factor Rev. 2001, 12(4):337-348.
    
    92. Parmenter DL., Boothe JG, van Rooijen GJ. & Yeung EC. Moloney MM. Production of biologically active hirudin in plant seeds using oleosin partitioning [J]. Plant Mol Biol. 1995,29:1167-1180.
    
    93. Plegt L. & Bino RJ. p-Glucuronidase activity during development of the male gametophyte from transgenic and non-transgenic plants [J]. Mol Gen Genet. 1989, 216: 321-327.
    
    94. Radke SE., Andrews BM., Moloney MM., crouch ML., Kridl JC. & Knauf VC.transformation of Brassica napus L.using Agrobacterium tumefaciens:developmentally regulated expression of a reintuoduced napin gene [J]. Theor Appl Genet. 1988,75:685-694.
    
    95. Rasaratnam B., Kaye D., Jennings G., Dudley F. & Chin-Dusting J. The effect of selective intestinal decontamination on the hyperdynamic circulatory state in cirrhosis. A randomized trial [J]. Ann Intern Med. 2003, 139:186-193.
    
    96. Reddy PG, McVey DS., Chengappa MM., Blecha F, minocha HC. & Baker PE. Bovine recombinant granulocyte-macrophage colony-stimulating factor enhancement of bovine neutrophil functions in vitro [J]. Am J Vet Res. 1990, 51(9): 1395-1359.
    
    97. Richter LJ., Thanavala Y., Arntzen CJ. & Mason HS. Production of hepatitis B surface antigen in transgenic plants for oral immunization [J]. Nat Biotechnol. 2000, 18:1167-1171.
    
    98. Rose AB. The effect of intron location on intron-mediated enhancement of gene expression in Arabidopsis [J]. Plant J. 2004,40(5):744-751.
    
    99. Rupa P., Monedero V. & Wilkie BN. Expression of bioactive porcine interferon-gamma by recombinant Lactococcus lactis [J]. Vet Microbial. 2008, 129:197-202.
    
    100. Sandhu JS., Osadjan MD., Krasnyanski SF., Domier LL., Korban SS. & Buetow DE.Enhanced expression of the human respiratory syncytial virus: F gene in apple leaf protoplast [J]. Plant Cell Rep. 1999, 18:394-397.
    
    101.Schouten A., Roosien J., Van Engelen FA., Dejong GAM., Borstvrenssen AWM.,Zilverentant JF., Bosch D., Stiekema WJ., Gommers FJ., Schots A. & Bakker J. The C-terminal KDEL sequence increases the expression level of a single-chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco [J]. Plant Mol Biol. 1996, 30:781-793.
    
    102. Sch(?)nmann PHD., Coia G. & Waterhouse PM. Biopharming the Sim-pliRED (tm) HIV diagnostic reagent in barley, potato and tobacco [J]. Mol Breeding. 2002,9:113-121.
    
    103. Sekellick MJ. & Marcus PI. Induction of high titer chicken interferon [J]. Method Enzymol.1986,119:115-125.
    
    104. Sekellick MJ., Ferrandino AF., Hopkins DA. & Marcus PI. Chicken interferon gene: cloning,expression, and analysis [J]. J Interferon Res. 1994,14:71-79.
    
    105. Sen GC. Viruses and interferons [J]. Annu Rev Microbiol. 2001, 55(1):255-281.
    
    106. Sijmons PC, Dekker BM., Schrammeijer B., Verwoerd TC, van den Elzen PJ. & Hoekema A. Production of correctly processed human serum albumin in transgenic plants [J].BioTechnol. 1990,8:217-221.
    
    107. Smigocki AC. & Owens LD. Cytokinin gene fused with a strong promoter enhances shoot organogenesis and zeatin levels in transformed plant cells [J]. Proc Natl Acad Sci USA,1988, 85(14):5131-5135.
    
    108. Song KD., Lillehoj HS., Choi KD., Zarlenga D. & Han JY. Expression and functional characterization of recombinant chicken interferon-gamma. Vet [J]. Immunol Immunopathol.1997,58:321-333.
    
    109. Soryu N. Transformation of cucumber plant using Agmbacterium tumefaciens and regeneration from hypocotyl explants [J]. Plant cell Rep. 1996,15:809-814.
    
    110. Stalberg K, EllerstrmM, Ezcurra I, Ablov S, RaskL. Disruption of an overlapping E box/ABREmotif abolished high transcription of the napA storage protein promoter in transgenic Brassica napusseeds [J]. Planta. 1996, 199: 515-519.
    
    111. Staub J., Garcia B., Graves J., Hajdukiewicz P., Nehran P., & Schlittler M. High-yield production of a human therapeutic protein in tobacco chloroplasts [J]. Nat Biotechnol. 2000,18: 333-338.
    
    112. Streber WR. & Willmtzer L. Transgenic tobacco plant expressing a bacterial detoxifying enzyme are resistance to 2,4-D [J]. Nat Biotechnol. 1989, 7:811-816.
    
    113. Sullivan J. & Lagrimini LM. Transformation of liquidambar styraciflua using Agmbacterium tumefaciens [J]. Plant cell. Rep. 1993, 12:303-306.
    
    114. Sun YK., Wang YE, Zhi HD., Liu SW., Wang M. & Tong GZ. Construction and characterization of a recombinant Fowlpox virus expressing chicken type II interferon [J].Chin J Agr Biotechnol. 2005,2:143-148.
    
    115. Sutton DW., Havstad PK. & Kemp JD. Synthetic cryIIIA gene from Bacillus thuringiensis improved for high expression in plants [J].Transgenic Res. 1992, 1:228-236
    
    116. Takehara K., Kamikawa M., Ohnuki N., Nagata T., Nakano A., Amaguchi D., Yokomizo Y.& Nakamura M. High level expression of C-terminal truncated recombinant chicken interferon-Y in Baculovirus vector system [J]. J Vet Med Sci. 2002, 64(2):95-100.
    
    117. Takehara K., Kamikawa M., Ohnuki N., Nagata T., Nakano A., Amaguchi D., Yokomizo Y.& Nakamura M. High level expression of C-terminal truncated recombinant chicken interferon-γ in Baculovirus vector system[J]. J Vet Med Sci. 2002, 2:95-100.
    
    118. Takehara K., Kobayashi K., Ruttanapumma R., Kamikawa M., Nagata T., Yokomizo Y. &Nakamura M. Adjuvant effect of chicken interferon-gamma for inactivated Salmonella Enteritidis antigen [J]. J Vet Med Sci. 2003, 65:1337-1341.
    
    119. Taylor C. & Green P. Identification and characterization of genes with unstable transcripts (GUTS) in tobacco [J]. Plant Mol Biol. 1995, 28:27-38.
    
    120. Terashima M., Murai Y., Kawamura M., Nakanishi S., Stoltz T, Chen L., Drohan W.,Rodriquez RL. & Katoh S. Production of functional human alpha 1-antitrypsin by plant cell culture [J]. Appl Microbiol Biotechnol. 1999, 52:516-523.
    
    121.Twyman RM., Stoger E., Schillberg S., Christou P. & Fischer R. Molecular farming in plants: host systems and expression technology [J]. Trends Biotechnol. 2003, 21(12):570-578.
    
    122. Van der Geest A.H.M. & Hall TC. The P-phaseolin 5/ matrix attachment region acts as an enhancer facilitator [J]. Plant Mol Biol. 1997, 33:553-557.
    
    123. Walmsley AM. & Arntzen CJ. Plants for delivery of edible vaccines [J]. Curr Opin Biotechnol. 2000, 11 (2):126-129.
    
    124. Wang E., Gan S. & Wagner GJ. Isolation and characterization of the CYP71D16 trichome-specific promoter from Nicotiana tabacum L [J]. J Exp Bot. 2002,53:1891-1897.
    
    125. Watanabe S. &Aiai K. Roles of theJAK-STATsystem in singal transduetion via cytokine receptors [J]. Curr Opin Genet Dev. 1996, 6:587-596.
    
    126. Weinin KC., Schultz U., M(?)nster U., Kaspers B. & Staeheli P. Biological properties of recombinant chicken interferon-gamma[J].Eur J Immunol.1996,26:2440-2447.
    127.Woodard SL.,Mayor JM.,Bailey MR.,Barker DK.,Love RT.,Lane JR.,Delaney DE.,McComas-Wagner JM.,Mallubhotla HD.,Hood EE.,Dangott LJ.,Tichy SE.& Howard JA..Maize(Zea mays)-derived bovine trypsin:Characterization of the first large-scale commercial protein product from transgenic plants[J].Biotechnol Appl Biochem.2003,38:123-130.
    128.Wu AM.,Lv SY.& Liu JY.Functional analysis of a cotton glucuronosyltransferase promoter in transgenic tobaccos[J].Cell Res.2007,17:174-183.
    129.Wu D.,Murakami K.,Liu N.,Inoshima Y.,Yokoyama T.,Kokuho T.,Inumaru S.,Matsumura T.,Kondo T.,Nakano K.& Sentsui H.expression of biologically active recombinant equine interferon-γ by two different baculovirus gene expression systems using insect cells and silkworm larvae[J].Cytokine.2002,2:63-69.
    130.Yang MZ.,Jia SR.& Pua EC.High frequency of plant regeneration from hypocotyl explants of Brassica carinata A.Br[J].Plant Cell Tiss Org.1991,24:79-82.
    131.Yashiro K.,Lowenthal JW.,O'Neil TE.,Ebisu S.,Takagi H.&.Moore RJ.High-level production of recombinant chicken interferon-γ by Brevibacillus choshinensis[J].Protein Expres Purif.2001,23:113-120.
    132.Zhou ZS.,Chen ZP.& Xu ZF.Niches of Spodoptera litura(Fabricius) and Helicoverpa assulta(Guenee) in tobacco plants[J].Acta Ecologica Sinica,2006,26(10):3245-3249.
    133.Neil SD.,潘洪波.用牛γ-干扰素实验检测皮内试验阴性牛的牛分杆菌感染[J].国外兽医学:畜禽传染病,1995,15(2):43-44.
    134.鲍鸣,仲大莲,许发芝,余为一,李槿年.鸡γ-干扰素基因的克隆与原核表达[J].安徽农业大学学报,2004,31(1):92-95.
    135.蔡梅红,曹瑞兵,周斌,谈国蕾,杨松,陈溥言.鸡γ干扰素成熟蛋白基因的表达及其产物抗病毒活性测定[J].中国病毒学,2004,19(1):32-35.
    136.蔡梅红,张素芳,曹瑞兵,郭伟玲,陈溥言.重组酵母鸡γ干扰素的抗病毒活性测定及临床初步应用[J].微生物学报,2006,46(1):115-119.
    137.柴玉波,陈苏民,赵忠良,陈南春,高辉.新型表达载体pEC34试用于人γ-干扰素基因的高表达[J].生物工程学报,1997,13(4):406-409.
    138.陈芳,孙红立,李震,曹祥荣.细胞因子的应刚研究进展[J].上海畜牧兽医通讯,2003, 5:6-8.
    139.陈军,工兰岚,刘澄清,方荣祥,宋桂英,徐正平,刘桂珍,张丽华,陈正华.用激光微束穿刺法转化甘蓝型油菜小孢子的研究[J].激光生物学报,1998,7(2):103-108.
    140.陈淑珍,高致明,马长力,闫晓毛.烟草叶片腺毛发育及其分泌活动对烟叶品质的影响[J].烟芋科技,1993,(4):32-36.
    141.陈晓萍,徐飞.JAK-STAT信号通路研究进展[J].自然杂志,2003,25(3):149-152.
    142.程坚,吴艳涛,彭大新,刘秀梵,张如宽.鸡γ-干扰素基因的克隆与鉴定[J].农业生物技术学报,2000,8(3):236-239.
    143.戴建华,秦爱建,许金俊,刘岳龙,金文杰.鸡γ-干扰素基因的克隆及其在原核和真核系统中的表达[J].中国预防兽医学报,2003,25(4):249-253.
    144.丁群星,谢友菊,戴景瑞,米景九,李太元,田颖川,乔利亚,莽克强,刘宝兰,王音,冯平章.用子房注射法将Bt毒蛋白基因导入玉米的研究[J].中国科学,1993,23(7):707-713.
    145.丁忠庆,刘胜旺,孔宪刚,宋铭忻.鸡γ-干扰素基因在大肠杆菌中的高效表达及多克隆抗体的制备[J].中国兽医学报,2004,24(3):255-257.
    146.董建宝,黄溢泓,谢芝勋,孙建华,刘加波,庞耀珊,邓显文,谢丽基.鸡IFN-γ基因的原核表达及其表达产物的抗NDV活性[J].中国兽医科学,2007,37(10):887-891.
    147.窦永喜,景志忠,才学鹏.细胞因子及其应用的研究进展[J].中国兽医科技,2005,35(3):233-238.
    148.杜娟,季静,王呈,胡汉桥.基因枪在植物遗传转化中的应用[J].吉林农业科学,2000,25(2):38-40.
    149.方仲达.植病研究方法(第三版)[M].北京:中国农业出版社,1996:250-304.
    150.甘燕,石佑恩.细胞因子类基因佐剂研究进展[J].国外医学寄生虫病分册,2004,31(1):6-11.
    151.高明尉,颜启传,舒庆尧,梁竹青,崔海瑞,成雄鹰,Altosaar Ⅰ.抗烟青虫转基因烟草的培育[J].生物工程学报,1999,15(3):388-392.
    152.高山,杨国庆,郭英,陈永福,张沅,张勤.鸡γ-干扰素cDNA的克隆和在大肠杆菌中的温度诱导型表达[J].农业生物技术学报,2003,11(4):394-398.
    153.高武军,王景雪,卢龙斗,孙毅.根癌农杆菌介导的油菜基因转化研究进展[J].生物学通报,2002,37(6):10-12.
    154.耿立召,刘传亮,李付广.农杆菌介导法与基因枪轰击法结合在植物遗传转化上的应用[J].西北植物学报,2005,25(1):205-210.
    155.龚非力主编.医学免疫学[M].北京:科学出版社,1998.
    156.龚小卫,魏洁,李煜生,程蔚蔚,邓鹏,姜勇.p38MAPK信号通路参与受体介导的细胞内吞的调控[J].中国病理生理杂志,2007,23(7):1388-1391.
    157.韩春来,吴志光,史喜菊,张灿,柏亚铎,汪明.惠阳胡须鸡Ⅱ型干扰素基因在毕赤酵母中的表达及其产物活性分析[J].中国兽医科学,2006,36(4):311-314.
    158.何云,万光龙,唐桂香,许玲,周伟军.提高甘蓝型油菜下胚轴外植体植株再生的研究[J].浙江大学学报(农业与生命科学版),2006,32(1):46-50.
    159.洪源,成军.乙型肝炎病毒表面抗原基因启动子结合蛋白Ⅰ的基因克隆化研究[J].World Chin J Digestol 2004,12(1):47-50.
    160.金伯泉.细胞和分子免疫学[M].北京:科学出版社,2001:131-239.
    161.孔桂美,许金俊,秦爱建,金文杰,刘岳龙.重组鸡γ-干扰素在昆虫细胞中的高效表达[J].微生物学报,2005,45(5):697-701.
    162.蓝海燕,王长海,张丽华,刘桂珍,王岚兰,陈正华,田颖川.导入β-1,3-葡聚糖酶及几丁质酶基因的转基因可育油菜及其抗菌核病的研究[J].生物工程学报,2000,16(2):143-146.
    163.郎春秀,胡张华,刘智宏,黄锐之,陈锦清.油菜农杆菌转基因体系的建立及转PEP 反义基因油菜的获得[J].浙江农业学报,1999,11(2):55-58.
    164.冷虹,李加纳,陆合,柴友荣,殷家明.△~6-脂肪酸脱饱和酶基因种子特异表达载体的构建[J].农业生物技术科学,2006,22(4):66-70.
    165.李丽,张景昱,杜桂森,宋艳茹.种子特异性启动子(napinB promoter)分离、表达载体构建及转基因植物获得[J].植物学通报,2001,18(2):216-220.
    166.李鹏飞,周冀衡,邵岩,杨虹琦,李永平,朱列书,马文广.不同烤烟品种成熟过程中各类腺毛密度的变化[J].湖南农业大学学报(自然科学版),2005,31(2):133-137.
    167.李全义,王金山,姚笙等.人a干扰素对烟草花叶病毒在植物体内症状的抑制作用[J].病毒学报,1989,5(3):274-276.
    168.林澄涛,姜燕芳,阴彬,董敏,何湘云,王恒.同尾酶技术再构建疟疾多价重组DNA疫苗中的应用[J].中国生物化学与分子生物学报,1999,15(6):974-977.
    169.林良斌,官春云,李询,周小云,陈信波.Bt毒蛋白基因导入甘监型油菜获得转基因植 株[J].湖南农业大学报,1999,25(5):357-361.
    170.林良斌,官春云,李恂,周小云,何业华.子房注射法与农杆菌介导法转化甘蓝型油菜的比较研究[J].生命科学研究,2000,4(3):231-236.。
    171.刘胜旺,陈洪岩,孔宪剐,张宝山,马云燕,童光志,卢景良.鸡γ-干扰素基因的分子克隆与序列测定[J].中国兽医学报,2000,20(3):228-230.
    172.娄芳,朱文平,赵小燕,陈茹强.烟草蚜虫危害及防治措施[J].植物医生,2003,16(5):9-10.
    173.陆万香,李名扬,裴炎,金治平,罗小英.玉米几丁质酶基因导入甘蓝型油菜的研究[J].西南农业大学学报,2001,23(2):130-133.
    174.吕英姿,毕英佐,曹永长.石歧杂鸡γ-干扰素基因的克隆与序列分析[J].华南农业大学学报(自然科学版),2002,23(4):61-63.
    175.彭大新,刘秀梵,程坚,周春红,陈素娟.共表达MDV糖蛋白B和鸡γ干扰素基因的重组鸡痘病毒的构建[J].微生物学报,2002,42(5):611-615.
    176.石东乔,周奕华,张丽华,刘桂珍,陈正华.农杆菌介导的油菜脂肪酸调控基因工程研究[J].高技术通讯,2001,(2):1-7.
    177.石淑稳,周永明,孙学成,张献龙.甘蓝型油菜遗传转化体系的研究[J].华中农业大学学报,1998,17(3):205-210.
    178.石淑稳,周永明.甘蓝型油菜下胚轴培养和高频率芽再生技术的研究[J].中国油料作物学报,1998,20(2):1-6.
    179.史宏志,刘国顺.烟草香味学[M].北京:中国农业出版社,1998.
    180.史耀旭,关贵全,高金亮,党志胜,刘志杰,刘爱红,马米玲,任巧云,罗建勋,殷宏,曾巧英.鸡γ-干扰素基因的克隆及原核表达[J].中国兽药杂志,2006,40(7):12-16.
    181.孙卫民,王惠琴.细胞因子方法学[M].人民卫生出版社,1999.
    182.孙永科,王云峰,智海东,刘胜旺,王玫,童光志.表达鸡Ⅱ型干扰素重组鸡痘病毒的构建及其特性分析[J].农业生物技术学报,2005,13(1):81-85.
    183.谭小力,张志燕,伍娟,李家洋.油菜种子特异表达启动子NAPIN的功能鉴定[J].中国油料作物学报,2005,27(4):85-88.
    184.万萌,王敬乔,寸守铣,邱仕芳,李根泽,曾黎琼,和江明.甘监型油菜雄性不育基因转化体系的探索[J].西南农业学报,1999,12(1):45-50.
    185.王长海,蓝海燕,王兆术,孙卫琳.芥菜型油菜再生体系的影响因素[J].西北农业学报, 1999,8(4):57-59.
    186.王关林,方宏筠.植物基因工程原理与技术[M].北京:科学出版社,1998.
    187.王立红,高春萍,邢克智,王红英,郭永军.鸡IFN-γ基因在大肠杆菌中的表达及表达产物对鸡的免疫保护[J].中国兽医科学,2008,38(9):777-781.
    188.王瑞新,韩富根,杨素勤,侯文华.烟草化学品质分析[M].河南科学技术出版社,1990,80-82.
    189.王文桥,刘金朵,张文渊,王红刚,张小风,马志强,韩秀英,康立娟,李红霞.植物抗生活性及植物源农药研究进展.河北农业科学,2005,9(4):74-79.
    190.王彦勤.浅析新城疫的症状及防治[J].农业科技与信息,2009,(1):49-50.
    191.吴红波,金道超.贵州省烟田蚜虫的种类和田间定殖情况.植物保护,2007,33(6)121-123.
    192.吴志光,夏春,汪明,蒋金书.QIAexpress系统高效表达鸡γ-干扰素cDNA的研究[J].中国农业大学学报,2002,7(3):89-93.
    193.熊兴华,官春云,李徇,江巨鳌,邬克彬,王学军,周小云.基因枪法向甘蓝型油菜转移反义FAD2基因的研究[J].湖南农业大学学报,2003,29(3):188-192.
    194.熊兴华,官春云,李恂,谭小力,李家洋.油菜种子特异表达napin基因启动子的克隆及序列分析[J].生物技术,2003,13(3)::4-5.
    195.许万祥.细胞因子在牛病防治上的应用前景[J].甘肃畜牧兽医,1996,(6):27-30.
    196.闫新甫.转基因植物[M].北京:科学出版社,2003,354-377.
    197.杨洪强,梁小娥.蛋白激酶与植物逆境信号传递途径[J].植物生理学通讯,2001,37(3):185-191.
    198.杨仲毅,王兰岚,刘志岩,张铁汉,刘桂珍,陈正华.利用微束激光穿刺法将菜豆几丁质酶基因导入油菜的研究[J].激光生物学报,1998,1(1):1-5.
    199.姚玲玲,王家宁,黄永章,郭凌郧.利用同尾酶技术构建pET15b-PEP-1-CAT重组质粒[J].郧阳医学院学报,2006,25(1):1-6.
    200.叶秀华,蔡建平,吴志光,汪明.重组鸡γ干扰素的抗球虫作用[J].中国兽医杂志,2004,40(7):3-5.
    201.余炳生,张仪.生物显微技术[M].北京:农业大学出版社,1989,80-82.
    202.张春杰,程相朝,李银聚,吴庭才.鸡新城疫Ⅰ系疫苗诱导鸡胚IFN-γ基因转录及cDNA克隆的研究[J].中国兽医科技,2004,34(6):12-15.
    203.张根义徐武.人的β干扰素基因在烟草中整合及表达[J].农业生物技术学报,1996,4(4):335-340.
    204.张海燕,党本元,周奕华,王兰岚,刘桂珍,张丽华,陈正华.用激光微束穿刺法将PAP cDNA油菜获得抗病毒转基冈植株[J].中国激光,1999,26(11):1043-1047.
    205.张海燕,陈正华.获得病毒抗性的植物基因工程策略及其抗病机理研究进展[J].武汉植物学研究,1999,17(增刊):15-24.
    206.张君,于三科.IFN-γ介导的抗弓形虫作用及其作用机理[J].动物医学进展,2000,21(1):25-27.
    207.张瑞越,徐兆师,李连城,陈明,马有志.一个新的小麦非生物胁迫诱导基因的克隆及表达特性[J].中国农业科学,2007,40(5):875-881.
    208.周光宇,龚纂纂,王自芬.远缘杂交的分子基础-DNA片段假说的一个论证[J].遗传学报,1979,6(4):405-413。
    209.周庆丰,毕英佐,马静云,陈峰,曹永长.鸡γ干扰素基因在毕赤酵母中的分泌表达[J].华南农业大学学报,2004,25(3):105-108.
    210.周伟,颜合洪.影响烤烟烟碱含量因素的研究进展[J].作物研究,2007,21(5)715-718.
    211.周小梅,李君剑,赵军良,梁爱华.抗生素对农杆菌的抑制和对油菜外植体分化的影响[J].西北植物学报,2005,25(1):52-56.
    212.周延清,张国荣.甘蓝型油菜快速再生的研究[J].河南师范大学报(自然科学版),1994,22(1):105-107.
    213.朱蕾.SOCS细胞因子信号传导的负反馈抑制因子[J].国外医学免疫学分册,2003,26(1):1-4。
    214.朱贤朝,王彦亭,王智发.中国烟草病虫害防治手册[M].北京:中国农业出版社,2002.104-105.