咪唑离子液体在辉光放电等离子体金属离子还原中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子体还原是一种有效的绿色还原过程,相对于常规的化学还原方法,等离子体还原时可避免使用化学还原剂,由此制备得到的负载型催化剂具有分散好,活性高等诸多优点。近年来等离子体技术开始出现一种新的研究方向,即将等离子应用在溶液中,制备纳米颗粒或促进化学反应。离子液体由于不可挥发性、较宽的电化学窗口和热稳定性等优异的物理化学性质,在化学反应和电化学沉积过程中有越来越重要的作用,已被称为“绿色溶剂”。本文将等离子体和离子液体相结合发展离子液体等离子体技术,尝试在离子液体中用等离子还原制备纳米颗粒,得到和常规还原不同的实验结果。由此进一步制备负载离子液体的高分散催化剂并将其应用到Suzuki反应中。
     由于离子液体发展较晚,有很多性质还不太清楚,我们首次对等离子体条件下离子液体的稳定性进行了考察。利用液体核磁共振和红外光谱,对等离子体处理前后三种离子液体[bmim]Cl、[bmim][BF4]、[bmim][PF6]的特征出峰情况进行了对比,核磁共振结果表明只有[bmim]Cl略有变化,进一步的红外吸收光谱表明三种离子液体都非常稳定,红外照相的结果表明整个处理过程都是在室温范围内进行。随后在[bmim][BF4]中用辉光放电等离子体还原PdCl2和HAuCl4得到纳米尺度的Pd和Au颗粒。还原得到的Pd为分散均匀的球形颗粒,平均粒径为4.9 nm左右,而金颗粒较大,平均粒径超过30 nm,且有轻微的团聚现象。
     论文进一步采用了次大气压辉光放电在离子液体液体[bmim][BF4]中还原贵金属盐,采用了间距更小的大平行板电极,经过放大之后可具有更高的处理效率。处理过程中观测到辉光放电对玻璃片的表面改性作用,经过等离子体处理的玻璃片,和离子液体的浸润作用大大增强。同时采用红外光谱对等离子体处理前后纯离子液体和溶解有Pd(NO3)2的离子液体的稳定性进行了考察,从红外出峰情况来看离子液体依然保持稳定。由此等离子体还原得到分散非常均匀的球形颗粒,平均粒径为5 nm左右。
     论文还引入稳定剂聚乙烯吡咯烷酮(PVP)来控制在离子液体中等离子体还原得到的纳米金颗粒,在不同的处理时间下得到的颗粒大小和形状均明显不同。在1分钟和5分钟还原时得到分散很好的单个颗粒,形状多样。延长时间用间歇法处理时,可明显看到大量花生状金颗粒和不规则金纳米线的出现。通过HRTEM观测,这些纳米结构是通过Au(111)面之间的作用连接起来的,Au(111)面之间的夹角在0到180o的范围内变化。这种结构的形成,是由于线性PVP分子和Au之间的相互作用,使得还原得到的Au团簇沿着PVP排列,还原得到的颗粒之间的接触机会大大增多,于是连接成长度不等的线式结构。XRD的结果表明这些不规则金颗粒的体相结构是典型的面心立方。改变稳定剂的浓度,也会对颗粒的形貌有很大影响。在一定的浓度下,可以得到很均一的颗粒。
     在SBA-15负载Au、Pd的催化剂上加上离子液体[bmim][PF6]制备负载离子液体催化剂。和不加离子液体相比,等离子体还原得到的金颗粒不再沿着SBA15孔道内生长成纳米线,而是形成分散很好的单个颗粒。金颗粒的大小随着担载量的提高逐步增大,0.5%的Au载量时为6.6 nm,载量提高到5%时颗粒大小也仅略大于孔道直径。负载离子液体后,等离子体还原得到的Pd颗粒也比不负载离子液体时要小3 nm左右。XRD结果表明还原得到的Au和Pd颗粒都是面心立方结构。负载Pd和离子液体的催化剂应用在Suzuki反应中显示出良好的活性,改变不同的前驱体和离子液体浸渍顺序,发现先浸渍Pd(NO3)2后浸渍离子液体[bmim][PF6]得到的催化剂效果最好。
Plasma reduction is an effective green chemistry reduction process. Comparing to conventional chemical reduction,plasma reduction requires no hazardous reducing agents. The supported catalysts after plasma reduction have higher dispersions and show better catalytic activities. Ionic liquids, be composed of entire organic ionics and in liquid state in room temperature, are playing a more and more important role in chemical reactions or electrochemical depositions. Because of some unique properties, such as invotalizability, wide electrochemical windows and high thermal stability, ionic liquids were called green solvents. In this paper we combine plasma technology with ionic liquids to develop liquid plasma techniques. We intended to synthesize nanoparticles in ionic liquids via plasma reduction, and prepare highly dispersive supported ionic liquid catalysts.
     As ionic liquids have been developed for a relatively short time, people are not familiar with all of their properties. We investigated the stability of ionic liquids under glow discharge plasma for the first time. Three imidazolium based ionic liquids, [bmim]Cl, [bmim][BF4] and [bmim][PF6] showed their characteristic peaks in 1H NMR and FTIR. Only chemical shifts of [bmim]Cl in NMR changed a little but that was not an evidence of structure change. FTIR results confirmed that three ionic liquids were stable. All processes were at room temperature according to Infrared images. [bmim][BF4] was used as solvent, in which glow discharge reduced HAuCl4 and PdCl2 to prepare nanosized Au and Pd particles. Au nanoparticles formed in this process were little aggregated. The average particle size was 32.7 nm. The prepared Pd particles were well dispersed spherical particles in TEM results. The average size was 4.9 nm.
     Further more, Hypo-atmospheric pressure glow discharge (HAPGD) was used to reduce Pd(NO3)2 in [bmim][BF4]. The surface modification of plasma to the glass was observed during this process. [bmim][BF4] keep unchanged after HAPGD treatment, according to FTIR results. Pd nanoparticles reduced in ionic liquids were uniform and spherical, with an average size around 5 nm.
     Poly(vinyl pyrrolidone) (PVP) was imported into ionic liquids to control the Au nanoparticles formed after plasma reduction. The sizes and shapes were quite different with different reduction time. The products were mainly separate particles with various shapes after 1 minute or 5 minutes plasma reduction. In the processes with longer reduction time, peanut-like structures and irregular nanowires were formed. These nanostructures are connected through Au (111) planes, according to HRTEM results. The angles between two Au (111) planes varied from 0o to 180o. The action between PVP and Au clusters made these reduced Au clusters array along linear PVP molecules. Thus Au clusters had more chances to contact with each other to form linear shapes. XRD results showed that these irregular shapes were typical face-centered cubic structure. The concentration of surfactant was another important influencing factor to the Au particle sizes and shapes. We can reduce Au particles with uniform size through adjusting the PVP concentration.
     We produced supported ionic liquid catalysts on SBA-15 with plasma reduction for the first time. Dispersive Au nanoparticles on SBA-15 were formed after plasma reduction with [bmim][PF6] impregnated on the support. The particle sizes increased along with higher Au loading, up to 5%. Very few short nanowires could be found on the support. This was quite different from that without [bmim][PF6]. The Pd nanoparticles in supported ionic liquid catalysts produced after plasma reduction was also smaller than that without supported ionic liquid. XRD results confirmed that these nanoparticles were all face-centered cubic structures. Pd-[bmim][PF6]/SBA-15 catalysts showed good catalytic activities in Suzuki reactions. A series of catalysts were prepared with different precursors and ionic liquids impregnating sequences. Impregnating Pd(NO3)2 before ionic liquid [bmim][PF6], the catalyst prepared in this way showed the best activity.
引文
[1]罗思J R,工业等离子体工程基本原理(第一卷),北京:科学出版社,1998
    [2]程党国,等离子体法制备甲烷转化高效催化剂的表征:[博士学位论文],天津:天津大学,2006
    [3]陈杰瑢,低温等离子体化学及其应用,北京:科学出版社,2001
    [4]许根慧,姜恩永,盛京等,等离子体技术与应用,北京:化学工业出版社,2006
    [5] Grundmeier G, Stratmann M. Influence of oxygen and argon plasma treatments on the chemical structure and redox state of oxide covered iron. Appl. Surf. Sci., 1999, 141: 43~56
    [6] Ye F, Xie E Q, Duan H G, et al. The influence of H2 plasma treatment on the field emission of amorphous GaN film. Appl. Surf. Sci., 2006, 253: 859~862
    [7] Hu W P, Matsumura M, Furukawa K, et al. Oxygen plasma generated copper/copper oxides nanoparticles. J. Phys. Chem. B 2004, 108: 13116~13118
    [8] Godfrey S P, Kinmond E J, Badyal J P S. Plasmachemical functionalization of porous polystyrene beads. Chem. Mater., 2001, 13: 513~518
    [9] Zhou L M, Xue B, Kogelschatz U, et al Nonequilibrium plasma reforming of greenhouse gases to synthesis gas. Energy Fuels.1998, 12: 1191~1999
    [10] Tao X M, Qi F W, Yin Y P, et al. CO2 reforming of CH4 by combination of thermal plasma and catalyst. Int. J. Hydro. Energy, 2008, 33: 1262~1265
    [11] Liu C J, Xu G H, Wang T M. Non-thermal plasma approaches in CO utilization. Fuel Process. Technol., 1999, 58: 119~134
    [12] Zou J J, Zhang Y P, Liu C J. Hydrogen production from dimethyl ether using corona discharge plasma. J. Power Sources, 2007, 163: 653~657
    [13] Salhi A, Bell A T, Soong D S. Plasma polymerization of fluorocarbon monomers. Thin Solid Films, 1981, 84: 399~400
    [14] Jiang T, Li Y, Liu C J, et al. Plasma methane conversion using dielectric-barrier discharges with zeolite A. Catal. Today, 2002, 72: 229~235
    [15] Okada K. Plasma-enhanced chemical vapor deposition of nanocrystalline diamond. Sci. Tech. Adv. Mater., 2007, 8: 624~634
    [16] Sharma R, Holcomb E, Trigwell S, et al. Stability of atmospheric-pressure plasma induced changes on polycarbonate surfaces. J Electrostatics, 2007, 65: 269~273
    [17] Tanizaki H, Otsuka A, Niiyama M, et al. Production of Ti-Al2O3 composite ultrafine particles by radio-frequency plasma and their characterization. Mater. Sci. Eng. A 1996, 215: 157~163
    [18] Chen Y K, Zheng X B, Xie Y T, et al. Anti-bacterial and cytotoxic properties of plasma sprayed silver-containing HA coatings. J. Mater. Sci., 2008, 19: 3603~3609
    [19] Inaba T, Watanbe Y, Nagano M, et al.Ar tourch plasma characteristics and its application to waste treatment. Thin Solid Films, 1998, 316: 111~116
    [20] Liu C J, Vissokov G P, Ben W L Jang. Catalyst preparation using plasma technologies. Catal. Today, 2002, 72: 173~184
    [21] Liu C J, Zou J J, Yu K L, et al. Plasma application for more environmentally friendly catalyst preparation. Pure Appl. Chem. 2006, 78: 1227~1238
    [22] Liu C J, Cheng D G, Zhang Y P, et al. Remarkable enhancement in the dispersion and low-temperature activity of catalysts prepared via novel plasma reduction-calcination method. Catal. Sur. Asia, 2004, 8: 111~118
    [23] Vissokov G P. Plasma–chemical preparation and properties of catalysts used in synthesis of ammonia. J. Mater. Sci., 1998, 33: 3711~3720
    [24] Peev T M, Vissokov G P, Czako-Nagy I, et al. M?ssbauer spectra of unreduced catalysts for ammonia synthesis obtained in plasma. Appl. Catal., 1985, 19: 301~305
    [25] Ismagilov Z R, Podyacheva O Y, et al, Application of plasma spraying in the preparation of metal-supported catalysts. Catal. Today, 1999, 51: 411~417
    [26] Khan H R, Frey H. R. f. plasma spray deposition of LaMOx (M=Co, Mn, Ni) films and the investigations of structure, morphology and the catalytic oxidation of CO and C3H8. J. Alloys compounds, 1993, 10: 209~217
    [27] Toma F L, Bertrand G, Begin S, et al. Microstructure and environmental functionalities of TiO2-supported photocatalysts obtained by suspension plasma spraying. Appl. Catal. B: Environ., 2006, 68: 74~84
    [28] Dadashova E A, Yagodovskaya T V, Beilin L A, et al. Modification of Fe2O3/ZSM-5 catalyst of Fischer-Tropsch synthesis by glow discharge in oxygen and in argon. Kinet. Catal., 1991, 32: 1350~1355
    [29] Dadashova E A, Yagodovskaya T V, Shpiro E S, et al. The Synthesis of Fe2O3/ZSM-5 catalyst for carbon monoxide hydrogenation in glow discharge of oxygen and argon. Kinet. Catal., 1993, 34, 670~673
    [30] Chu W, Chernavskii P A, Gengembre L, et al. Cobalt species in promoted cobalt alumina-supported Fischer–Tropsch catalysts. J. Catal., 2007, 252: 215~230
    [31] Zhang Y, Chu W, Cao W, et al. A plasma-activated Ni/α-Al2O3 catalyst for the conversion of CH4 to syngas. Plasma Chem. Plasma Process., 2000, 20: 137~144
    [32] Chen M H, Chu W, Dai X Y, et al. New palladium catalysts prepared by glow discharge plasma for the selective hydrogenation of acetylene. Catal. Today, 2004, 89: 201~204
    [33] Chu W, Wang L N, Chernavskii P A, et al. Glow-discharge plasma-assisted design of cobalt catalysts for Fischer-Tropsch synthesis. Angew. Chem. Int. Ed. 2008, 47: 5052~5055
    [34] Ratanatawanate C, Macias M, Jang B W L. The Promotion effect of nonthermal RF plasma on Ni/Al2O3 for benzene hydrogenation. Ind. Eng. Chem. Res. 2005, 44: 9868~9874
    [35] Shi C K, Ben W L Jang. Nonthermal RF plasma modifications on Pd/γ-Al2O3 for selective hydrogenation of acetylene in the presence of ethylene. Ind. Eng. Chem. Res. 2006, 45: 5879~5884
    [36]于开录,等离子体增强催化剂制备的物理与化学研究:[硕士学位论文],天津:天津大学,2002
    [37]邹吉军,等离子体处理制备高效催化剂的基础研究:[博士学位论文],天津:天津大学,2005
    [38]祝新利,等离子体处理对甲烷转化催化剂的影响:[博士学位论文],天津:天津大学,2007
    [39]赵瑜,氩气辉光放电等离子体室温下还原贵重金属催化剂研究:[博士学位论文],天津:天津大学,2007
    [40] Zou J J, Zhang Y P, Liu C J. Reduction of supported noble-metal ions using glow discharge plasma. Langmuir, 2006, 22: 11388~11394
    [41] Yu K L, Liu C J, Zhang Y P, et al. The preparation and characterization of highly dispersed PdO over Alumina for low-temperature combustion of methane. Plasma chem. plasma process., 2004, 24: 393~403
    [42] Liu C J, Yu K L, Zhang Y P, et al. Characterization of plasma treated Pd/HZSM-5 Catalyst for methane combustion. Appl. Catal. B: Environ., 2004, 47: 95~100
    [43] Liu C J, Yu K L, Zhang Y P, et al. Remarkable improvement in the activity and stability of Pd/HZSM-5 catalyst for methane combustion. Catal. Comm., 2003, 4: 303~307
    [44] Zhu X L, Huo P P, Zhang Y P, et al. Structure and reactivity of plasma treated Ni/Al2O3 catalyst for CO2 reforming of methane. Appl. Catal. B: Environ., 2008, 81: 132~140
    [45] Pan Y X, Liu C J, Shi P. Preparation and characterization of coke resistant Ni/SiO2 catalyst for carbon dioxide reforming of methane. J. Power Sources, 2008, 176: 46~53
    [46] Cheng D G, Zhu X L, Ben Y H, et al. Carbon dioxide reforming of methane over Ni/Al2O3 treated with glow discharge plasma. Catal. Today, 2006, 115: 205~210
    [47] Wang J G, Liu C J, Zhang Y P, et al. Partial oxidation of methane to syngas over glow discharge plasma treated Ni–Fe/Al2O3 catalyst. Catal. Today, 2004, 89: 183~191
    [48] Zou J J, Liu C J, Zhang Y P. Control of the metal-support interface of NiO-loaded photocatalysts via cold plasma treatment. Langmuir, 2006, 22: 2334~2339
    [49] Zou J J, Chen C, Liu C J, et al. Pt nanoparticles on TiO2 with novel metal-semiconductor interface as highly efficient photocatalyst. Mater. Lett., 2005, 59: 3437~3440
    [50] Zhu X L, Huo P P, Zhang Y P, et al. Characterization of argon glow discharge plasma reduced Pt/Al2O3 catalyst. Ind. Eng. Chem. Res., 2006, 45: 8604~8609
    [51] Zhang Y P, Ma P S, Zhu X L, et al. A novel plasma-treated Pt/NaZSM-5 catalyst for NO reduction by methane. Catal. Comm., 2004, 5: 35~39
    [52] Furukawa K, Tian S R, Yamauchi H, et al. Characterization of HY zeolite modified by a radio-frequency CF4 plasma. Chem. Phys. Lett., 2000, 318: 22~26
    [53] Korovchenko P, Renken A, Kiwi-Minsker L. Microwave plasma assisted preparation of Pd-nanoparticles with controlled dispersion on woven activated carbon fibres. Catal. Today, 2005, 102-103: 133~141
    [54] S. Kameoka S, Kuriyama T, Kuroda M, et al. Applied surface science The chemical interaction between plasma-excited nitrogen and the surface of titanium dioxide. Appl. Surf. Sci., 1995, 89: 411~415
    [55] Duan X K, Yang J Y, Zhong W, et al. Synthesis of Bi2Te3 nanopowders by vacuum arc plasma evaporation. Powder Tech., 2007, 172: 63~66
    [56] Peppler K, P?lleth M, Meiss S, et al. Electrodoposition of metals for micro and nanostructuring at interfaces between solid, liquid and gaseous conductors: dendrites, whiskers and nanoparticles. Z. Phys. Chem., 2006, 220: 1507~1527
    [57] Koo I G, Lee M S, Shim J H, et al. Platinum nanoparticles prepared by a plasma-chemical reduction method. J. Mater. Chem., 2005, 15: 4125~4128
    [58] El Abedin S Z, Polleth M, Meiss S A, et al. Ionic liquids as green electrolytes for the electrodeposition of nanomaterials. Green Chem., 2007, 9: 549~553
    [59] Meiss S A, Rohnke M, Kienle L S, et al. Employing plasmas as gaseous electrodes at the free surface of ionic liquids: deposition of nanocrystalline silver particles. Chem. Phys. Chem., 2007, 8: 50~53
    [60] Takeda T, Chang J S, Ishizaki T, et al. Morphology of high-frequency electrohydraulic discharge for liquid-solution plasmas. IEEE Transaction on Plasma Science, 2008, 36: 1158~1159
    [61] Baba K, Kaneko T, Hatakeyama R. Ioin irradiation effects on ionic liquids interfaced with rf discharge plasmas. Appl. Phys. Lett., 2007, 90: 201501(1)~201501(3)
    [62] Hieda J, Oda M, Lee K H, et al. Reaction kinetics for synthesis of gold nanoparticles in solution plasma field. Int. Symp. Plasma Chemistry-18, 2007, p. 510, Paper 1C~a7. CD-ROM.
    [63] Takeda T, Baroch P, Ishizaki T, et al. Sterilization treatment of bacteria by discharge in an aqueous solution and elucidation of the mechanism. Int. Symp. Plasma Chemistry-18, 2007, p. 733, Paper 27P-151. CD-ROM.
    [64] Miron C, Chang J S, Takeda T, et al. Plasma parameter high frequency bipolar pulsed spark electrohydraulic discharge characteristics and plasma parameters of liquid solution plasmas. Proc. Int. Conf. Gas Discharge Appl., 2008. in press.
    [65] Endres F, El Abedin S Z. Air and water stable ionic liquids in physical chemistry. Phys. Chem. Chem. Phys., 2006, 8: 2101~2116
    [66] Earle M J, Seddon K R. Ionic liquids: Green solvents for the future. Pure Appl. Chem., 2000, 72: 1391~1398
    [67] Hurley F H, Weir T P. The Electrodeposition of aluminum from nonaqueous solutions at room temperature. J. Electrochem. Soc., 1951, 98: 207~212
    [68] Robinson J, Osteryoung R A. An electrochemical and spectroscopic study of some aromatic hydrocarbons in the room temperature molten salt system: aluminum chloride-n-butylpyridinium chloride. J. Am. Chem. Soc., 1979, 101: 323~327
    [69] Hussey C L. Room temperature molten salt systems. Adv. Molten Salt Chem., 1983, 5: 185~229
    [70] Wilkes J S, Zaworotko M J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc., Chem. Commun., 1992, 13: 965~966
    [71] Bonh?te P, Dias A, Papageorgiou N, et al. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem., 1996, 35: 1168~1178
    [72] MacFarlane D R, Meakin P, Sun J, et al. Pyrrolidinium Imides: A new family of molten salts and conductive plastic crystal phases. J. Phys. Chem. B, 1999, 103: 4164~4170
    [73]李汝雄,绿色溶剂:离子液体的合成和应用,北京:化学工业出版社, 2004
    [74] Dean J A. Lange’s Handbook of Chemisrty (15th edition). New York: McGrawHill, 1999
    [75] Sheldon R. Catalytic reactions in ionic liquids. Chem. Commun., 2001, 23: 2399–2407
    [76] Wilkes J S. Properties of ionic liquid solvents for catalysis. J. Mole. Catal. A: Chem., 2004, 214:11~17
    [77] Abbott A P, Capper G, Davies D L, et al. Novel ambient temperature ionic liquids for zinc and zinc alloy electrodeposition. Trans. Instit. Metal Finishing, 2001, 79: 204~206
    [78] Barisci J N, Wallace G G, MacFarlane D R, et al. Investigation of ionic liquids as electrolytes for carbon nanotube electrodes. Electrochem. Commun., 2004, 6:22~27
    [79] Zhu H P, Yang F, Tang J, et al. Br?nsted acidic ionic liquid 1-methylimidazolium tetrafluoroborate: a green catalyst and recyclable medium for esterification. Green Chem., 2003, 5: 38~39
    [80] Welton T, Ionic liquids in catalysis. Coordination Chem. Rev., 2004, 248: 2459~2477
    [81] Zhao D B, Wu M, Kou Y, et al. Ionic liquids: applications in catalysis. Catal. Today, 2002, 74: 157~189
    [82] Gordon C M. New developments in catalysis using ionic liquid. Appl. Catal A: General, 2001, 222: 101~117
    [83] Mehnert C P. Supported ionic liquid catalysis. Chem., 2004, 11: 50~56
    [84] Dupont J, Souza R F, Suarez P A Z. Ionic liquid (Molten Salt) phase organometallic catalysis. Chem. Rev., 2002, 102: 3667~3692
    [85] Zhang J, Huang C P, Chen B H, et al. Alkylation of isobutane and butene using chloroaluminate imidazolium ionic liquid as catalyst: Effect of organosulfur compound additive. Korean J. Chem. Eng., 2008, 25: 982~986
    [86] Boon J A, Levisky J A, Pflug J L, et al. Friedel Crafts reactions in ambient-temperature molten-salts. J. Org. Chem., 1986, 57: 480~483
    [87] Chauvin Y, Gilbert B, Guibard I. Catalytic dimerization of alkenes by nickel complexes in organochloroaluminate molten salts. J. Chem. Soc, Chem. Commun., 1990: 23: 1715~1716
    [88] Freemantle M. Designer solvents. Chem. Eng. News, 1998, 76 (13): 32~37
    [89] CalòV, Nacci A, Monopoli A. Effects of ionic liquids on Pd-catalyzed carbon–carbon bond formation. Eur. J. Org. Chem., 2006, 3791~3802
    [90] Baidossi M, Joshi A V, Mukhopadhyay S, et al. Tandem catalytic condensation and hydrogenation processes in ionic liquids. Tetrahedron Lett., 2005, 46: 1885~1887
    [91] Scheeren C W, Machado G, Dupont J, et al. Nanoscale Pt (0) particles prepared in imidazolium room temperature ionic liquids: synthesis from an organometallic precursor, characterization, and catalytic properties in hydrogenation reactions. Inorg Chem., 2003, 42: 4738~4742
    [92] Umpierre A P, Machado G, Fecher G H, et al. Selective hydrogenation of 1, 3-Butadiene to 1-Butene by Pd (0) nanoparticles embedded in imidazolium ionic liquids. Adv. Synth. Catal., 2005, 347: 1404~1412
    [93] Wojtków W, Trzeciak A M,Choukroun R, et al. Pd colloid-catalyzed methoxycarbonylation of iodobenzene in ionic liquids. J. Mol. Catal. A: Chem., 2004, 224: 81~86
    [94] Xu D Q, Hu Z Y, Li W W, et al. Hydrogenation in ionic liquids: An alternative methodology toward highly selective catalysis of halonitrobenzenes to corresponding haloanilines. J. Mol. Catal. A: Chem., 2005, 235: 137~142
    [95] Cassol C C, Umpierre A P, Machado G, et al. The role of Pd nanoparticles in ionic liquid in the Heck reaction. J. Am. Chem. Soc. 2005, 127: 3298~3299
    [96] Xie X G, Chen B, Lu J P, et al. Synthesis of benzofurans in ionic liquid by a PdCl2-catalyzed intramolecular Heck reaction. Tetrahedron Lett., 2004, 45: 6235~6237
    [97] Park S B, Alper H. Highly efficient, recyclable Pd(II) catalysts with bisimidazole ligands for the Heck reaction in ionic liquids. Org. Lett., 2003, 5: 3209~3212
    [98] Hagiwara H, Shimizu Y, Hoshi T, et al. Heterogeneous Heck reaction catalyzed by Pd/C in ionic liquid. Tetrahedron Lett., 2001, 42: 4349~4351
    [99] Li Z, Xia C. Epoxidation of olefins catalyzed by manganese (III) porphyrin in a room temperature ionic liquid. Tetrahedron Lett., 2003, 44: 2069~2071
    [100] Wang B, Kang Y, Yang L, et al. Epoxidation ofα,β-unsaturated carbonyl compounds in ionic liquid/water biphasic system under mild conditions. J. Mol. Catal. A: Chem., 2003, 203: 29~36
    [101] Shi F, Peng J J, Deng Y Q. Highly efficient ionic liquid-mediated palladium complex catalyst system for the oxidative carbonylation of amines. J. Catal., 2003, 219: 372~375
    [102] Parshall G W. Catalysis in molten salt media. J. Am. Chem. Soc., 1972, 94: 8716~8719
    [103] Mehnert C P. Supported ionic liquid catalysis. Chem. Eur. J., 2005, 11: 50~56
    [104] Riisager A, Fehrmann R, Haumann M, et al. Supported ionic liquid phase (SILP) catalysis: an innovative concept for homogeneous catalysis in continuous fixed-bed reactors. Eur. J. Inorg. Chem., 2006, 695~706
    [105] Mehnert C P, Cook R A, Dispenziere N C, et al. Supported ionic liquid catalysis - a new concept for homogeneous hydroformylation catalysis. J. Am. Chem. Soc., 2002, 124: 12932~12933
    [106] Riisager A, J?rgensen B, Wasserscheid P, et al. First application of supported ionic liquid phase (SILP) catalysis for continuous methanol carbonylation. Chem. Commun., 2006, 9: 994~996
    [107] Wolfson A, Vankelecom I F J, Jacobs P A. Co-immobilization of transition-metal complexes and ionic liquids in a polymeric support for liquid-phase hydrogenations. Tetrahedron Lett., 2003, 44: 1195~1198
    [108] Hagiwara H, Sugawara Y, Isobe K, et al. Immobilization of Pd(OAc)2 in ionic liquid on silica: Application to sustainable Mizoroki-Heck reaction. Org. Lett., 2004, 6: 2325~2328
    [109] Breitenlechner S, Fleck M, Müller T E, et al. Solid catalysts on the basis of supported ionic liquids and their use in hydroamination reactions. J. Mol. Catal. A: Chem., 2004, 214: 175~179
    [110] Yamaguchi K, Yoshida C, Uchida S, et al. Peroxotungstate immobilized on ionic liquid-modified silica as a heterogeneous epoxidation catalyst with hydrogen peroxide. J. Am. Chem. Soc., 2005, 127: 530~531
    [111] DeCastro C, Sauvage E, Valkenberg M H, et al. Immobilised ionic liquids as lewis acid catalysts for the alkylation of aromatic compounds with dodecene. J. Catal., 2000, 196: 86~94
    [112] Riisager A, Fehrmann R, Haumann M, et al. Stability and kinetic studies of supported ionic liquid phase catalysts for hydroformylation of propene. Ind. Eng. Chem. Res., 2005, 44: 9853~9859
    [113] Endres F, Bukowski M, Hempelmann R, et al. Electrodeposition of nanocrystalline metals and alloys from ionic liquids. Angew. Chem. Int. Ed., 2003, 42: 3428~3430
    [114] Endres F. Ionic liquids: solvents for the electrodeposition of metals and semiconductors. Chem. Phys. Chem., 2002, 3: 144~154
    [115] Huang J F, Sun I W. Fabrication and surface functionalization of nanoporous gold by electrochemical alloying/dealloying of Au-Zn in an ionic liquid, and the self-assembly of L-cysteine monolayers. Adv. Func. Mater., 2005, 15: 989~994
    [116] Mu X D, Meng J Q, Li Z C, et al. Rhodium nanoparticles stabilized by ionic copolymers in ionic liquids: long lifetime nanocluster catalysts for benzene hydrogenation. J. Am. Chem. Soc., 2005, 127: 9694~9695
    [117] Hu Y, Yu Y Y, Hou Z S, et al. Biphasic hydrogenation of olefins by functionalized ionic liquid-stabilized palladium nanoparticles. Adv. Syn. Catal., 2008, 350: 2077~2085
    [118] Itoh H, Naka K, Chujo Y. Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. J. Am. Chem. Soc., 2004, 126: 3026~3027
    [119] Ren L Z, Meng L J, Lu Q H, et al. Fabrication of gold nano- and microstructures in ionic liquids-A remarkable anion effect. J. Colloid Interf. Sci., 2008, 323: 260~266
    [120] Bhatt A I, Mechler A, Martina L L, et al. Synthesis of Ag and Au nanostructures in an ionic liquid: thermodynamic and kinetic effects underlying nanoparticle, cluster and nanowire formation. J. Mater. Chem., 2007, 17: 2241~2250
    [121] Khatri O P, Adachi K, Murase K, et al. Self-assembly of ionic liquid (BMI-PF6)-stabilized gold nanoparticles on a silicon surface: chemical and structural aspects. Langmuir, 2008, 24: 7785~7792
    [122] Mu X D, Evans D G, Kou Y. A general method for preparation of PVP-stabilized noble metal nanoparticles in room temperature ionic liquids. Catal. Lett., 2004, 97: 151~154
    [123] Dupont J, Fonseca G S, Umpierre A P, et al. Transition-metal nanoparticles in imidazolium ionic liquids: recycable catalysts for biphasic hydrogenation reactions. J. Am. Chem. Soc., 2002, 124: 4228~4229
    [124] Scheeren C W, Machado G, Teixeira S R, et al. Synthesis and characterization of Pt(0) nanoparticles in imidazolium ionic liquids. J. Phys. Chem. B, 2006, 110: 13011~13020
    [125] Fonseca G S, Umpierre A P, Fichtner P F, et al. The use of imidazolium ionic liquids for the formation and stabilization of Ir-0 and Rh-0 nanoparticles: efficient catalysts for the hydrogenation of arenes. Chem. Eur. J., 2003, 9: 3263~3269
    [126] Scheeren C W, Machado G, Dupont J, et al. Nanoscale Pt(0) particles prepared in imidazolium room temperature ionic liquids: synthesis from an organometallic precursor, characterization, and catalytic properties in hydrogenation reactions. Inorg. Chem., 2003, 42: 4738~4742
    [127] Gelesky M A, Umpierre A P, Machado G, et al. Laser-induced fragmentation of transition metal nanoparticles in ionic liquids. J. Am. Chem. Soc., 2005, 127: 4588~4589
    [128] Fonseca G S, Machado G, Teixeira S R, et al. Synthesis and characterization of catalytic iridium nanoparticles in imidazolium ionic liquids. J. Colloid Interf. Sci., 2006, 301: 193~204
    [129]张晟卯,张春丽,张经纬等,室温离子液体中银纳米微粒的制备与结构表征,物理化学学报,2004,20(5): 554~556
    [130] Jiang Y, Zhu Y J. Microwave-assisted synthesis of sulfide M2S3 (M=Bi, Sb) nanorods using anionic liquid. J. Phys. Chem. B, 2005, 109: 4361~4364
    [131] Li Z H, Liu Z M, Zhang J L, et al. Synthesis of single-crystal gold nanosheets of large size in ionic liquids. J. Phys. Chem. B, 2005, 109: 14445~14448
    [132] Zhou Y, Antonietti M. Synthesis of very small TiO2 nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates. J. Am. Chem. Soc., 2003, 125: 14960~14961
    [133] Yoo K S, Lee T G, Kim J S. Preparation and characterization of mesoporous TiO2 particles by modified sol–gel method using ionic liquids. Micro. Meso. Mater., 2005, 84: 211~217
    [134] Zhu K K, Po?gan F, D’Souza L, et al. Ionic liquid templated high surface area mesoporous silica and Ru–SiO2. Micro. Meso. Mater., 2006, 91: 40~46
    [135] Kim K S, Demberelnyamba D, Lee H. Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids. Langmuir, 2004, 20: 556~560
    [136]常怀秋,杨青林,张军等,室温离子液体在纳米材料制备中的应用,化学通报, 2006, 69(52): 1~6
    [137] Chang H C, Jiang J C, Tsai W C, et al. Hydrogen bond stabilization in 1,3-dimethylimidazolium methyl sulfate and 1-butyl-3-methylimidazolium hexafluorophosphate probed by high pressure: The role of charge-enhanced C-H center dot center dot center dot O interactions in the room-temperature ionic liquid. J. Phys. Chem. B, 2006, 110: 3302~3307
    [138] Campbell J L E, Johnson K E. Torkelson J R, Infrared and variable-temperature 1H-NMR investigations of ambient-temperature ionic liquids prepared by reaction of HCl with 1-ethyl-3-methyl-1H-imidazolium chloride. Inorg. Chem., 1994, 33: 3340~3345
    [139] Saha S, Hayashi S, Kobayashi A, et al. Crystal structure of 1-butyl-3-methylimidazolium chloride, A clue to the elucidation of the ionic liquid structure. Chem. Lett., 2003, 32: 740~741
    [140] Lin S T, Ding M F, Chang C W, et al. Nuclear magnetic resonance spectroscopic study on ionic liquids of 1-alkyl-3-methylimidazolium salts. Tetrahedron, 2004, 60: 9441~9446
    [141] K?ddermann T, Wertz C, Heintz A, et al. Ion-pair formation in the ionic liquid 1-ethyl-3-methylimidazolium bis(triflyl)imide as a function of temperature and concentration. Chem. Phys. Chem., 2006, 7: 1944~1949
    [142] Qiao K, Hagiwara H, Yokoyama C. Acidic ionic liquid modified silica gel as novel solid catalysts for esterification and nitration reactions. J. Mol. Catal. A, 2006, 246: 65~69
    [143] Wu J P, Wang M J, Stark J P W. Evaluation of band structure and concentration of ionic liquid BMImBF(4) in molecular mixtures by using second derivatives of FTIR spectra. J. Quant. Spectrosc. Radiat. Transfer, 2006, 102: 228~335
    [144] Nanbu N, Sasaki Y, Kitamura F. In situ FT-IR spectroscopic observation of a room-temperature molten salt vertical bar gold electrode interphase. Electrochem. Commun., 2003, 5: 383~387
    [145] Huang J, Jiang T, Han B X, et al. Hydrogenation of olefins using ligand-stabilized palladium nanoparticles in an ionic liquid. Chem. Commun., 2003, 14: 1654~1655
    [146] Firestone M A, Dietz M L, Seifert S, et al. Ionogel-templated synthesis and organization of anisotropic gold nanoparticles. Small, 2005, 1: 754~760
    [147] U. S. National Institute of Standards and Technology (NIST) XPS database. http://srdata.nist.gov/xps/main_search_menu.htm
    [148] Yan Y H, Chan-Park M B, Yue C Y. CF4 Plasma treatment of poly(dimethylsiloxane): effect of fillers and its application to high-aspect-ratio UV embossing. Langmuir, 2005, 21: 8905~8912
    [149] Daniel M C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis,and nanotechnology. Chem. Rev., 2004, 104: 293~346
    [150] Yang J G, Zhou Y L, Okamoto T, et al. A new method for preparing hydrophobic nano-copper powders. J Mater. Sci., 2007, 42: 7638~7642
    [151] Formo E, Lee E, Campbell D, et al. Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications. Nano Lett., 2008, 8: 668~672
    [152] Liu Z W, Yeo S W, Ong C K. An alternative approach to in situ synthesize single crystalline ZnO nanowires by oxidizing granular zinc film. J. Mater. Sci., 2007, 42: 6489~6493
    [153] Lofton C, Sigmund W. Mechanisms controlling crystal habits of silver and gold colloids. Adv. Funct. Mater., 2007, 15: 1197~1208
    [154] Tian N, Zhou Z Y, Sun S G, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007, 316: 732~735
    [155] Gou L F, Murphy C J. Solution-phase synthesis of Cu2O nanocubes. Nano Lett., 2003, 3: 231~234
    [156] Pileni M P. Control of the size and shape of inorganic nanocrystals at various scales from nano to macrodomains. J. Phys. Chem. C, 2007, 111: 9019~9038
    [157] Tao A R, Habas S, Yang P D. Shape control of colloidal metal nanocrystals. Small, 2008, 4: 310~325
    [158] Haruta M. Size- and support-dependency in the catalysis of gold. Catal. Today, 1997, 36: 153~166
    [159] Shiddiky M J A, Shim Y B. Trace analysis of DNA: preconcentration, separation, and electrochemical detection in microchip electrophoresis using Au nanoparticles. Anal. Chem., 2007, 79: 3724~3733
    [160] Cliffel D E, Zamborini F P, Gross S M, et al. Mercaptoammonium-monolayer-protected water-soluble gold, silver, and palladium clusters. Langmuir, 2000, 16: 9699~9702
    [161] Pong B K, Elim H I, Chong J X, et al. New insights on the nanoparticle growth mechanism in the citrate reduction of gold(III) salt: formation of the Au nanowire intermediate and its nonlinear optical properties. J. Phys. Chem. C, 2007, 111: 6281~6287
    [162] Tan Y N, Lee J Y, Wang D I C. Aspartic acid synthesis of crystalline gold nanoplates, nanoribbons, and nanowires in aqueous solutions. J. Phys. Chem. C, 2008, 112: 5463~5470
    [163] Wang C, Hu Y J, Lieber C M, et al. Ultrathin Au nanowires and their transport properties. J Am. Chem. Soc., 2008, 130: 8902~8903
    [164] Liu W, Gao X. Reducing HAuCl4 by the C60 dianion: C60-directed self-assembly of gold nanoparticles into novel fullerene bound gold nanoassemblies. Nanotechnology, 2008, 19: 405609~405616
    [165] Pastoriza–Santos I, Sánchez–Iglesias A, Abajo A F J G, et al. Environmental optical sensitivity of gold nanodecahedra. Adv. Funct. Mater., 2007, 17: 1443~1450
    [166] Kim F, Song J H, Yang P D. Photochemical synthesis of gold nanorods. J. Am. Chem. Soc., 2002, 124: 14316~14317
    [167] Huang C J, Chiu P H, Wang Y H, et al. Preparation and characterization of gold nanodumbbells. Nanotechnology, 2006, 17: 5355~5362
    [168] Kim J U, Cha S H, Shin K, et al. Synthesis of gold nanoparticles from gold(I)-alkanethiolate complexes with supramolecular structures through electron beam irradiation in TEM. J. Am. Chem. Soc., 2005, 127: 9962~9963
    [169] Kim Y J, Song J H. Dose rate and irradiation time effects on the shape of Au nanomaterials under proton beam irradiation. Nanotechnology, 2007, 18: 445603~445607
    [170] Li C C, Shuford K L, Park Q H, et al. High-yield synthesis of single-crystalline gold nano-octahedra. Angew. Chem. Int. Ed., 2007, 46: 3264~3268
    [171] Smith D K, Korgel B A. The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir 2008, 24: 644~649
    [172] Tsuji M, Miyamae N, Lim S Y, et al. Crystal structures and growth mechanisms of Au@Ag core-shell nanoparticles prepared by the microwave-polyol method. Crystal Growth & Design, 2006, 6: 1801~1807
    [173] Johnson C J, Dujardin E, Davis S A, et al. Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J. Mater. Chem., 2002, 12: 1765~1770
    [174] Zhu J M, Shen Y H, Xie A J, et al. Photoinduced synthesis of anisotropic gold nanoparticles in room-temperature ionic liquid. J. Phys. Chem. C, 2007, 111: 7629~7633
    [175] Bhatt A I, Mechlerá, Martin L L, et al. Synthesis of Ag and Au nanostructures in an ionic liquid: thermodynamic and kinetic effects underlying nanoparticle, cluster and nanowire formation. J. Mater. Chem., 2007, 17: 2241~2250
    [176] Egusa S J, Redmond P L, Scherer N F. Thermally-driven nanoparticle array growth from atomic Au precursor solutions. J. Phys. Chem. C, 2007, 111: 17993~17996
    [177] Matsubara S, Hayakawa T, Yang Y, et al. Fabrication of twin-linked gold nanoparticles and their linear/nonlinear optical properties. J. Phys. Chem. C, 2008, 112: 11917~11921
    [178] Lu D L, Domen K, Tanaka K I. Electrodeposited Au-Fe, Au-Ni, and Au-Co alloy nanoparticles from aqueous electrolytes. Langmuir, 2002, 18: 3226~3232
    [179] Hamasaki T, Kashiwagi T, Imada T, et al. Kinetic analysis of superoxide anion radical-scavenging and hydroxyl radical-scavenging activities of platinum nanoparticles. Langmuir, 2008, 24: 7354~7364
    [180] Bakshi M S, Possmayer F, Petersen N O. Poly(N-vinyl-2-pyrrolidone) (PVP)-capped dendritic gold nanoparticles by a aqueous-Phase room-temperature synthesis of gold nanoribbons: soft template effect of a gemini surfactant. J. Phys. Chem. C, 2008, 112: 8259–8265
    [181] Teng X W, Wang Q, Liu P, et al. Formation of Pd/Au nanostructures from Pd nanowires via galvanic replacement reaction. J. Am. Chem. Soc., 2008, 130: 1093~1101
    [182] Arhancet J P, Davis M E, Merola J S, et al. Hydroformylation by supported aqueous-phase catalysis: A new class of heterogeneous catalysts. Nature, 1989, 339: 454~455
    [183] Mehnert C P, Mozeleskib E J, Cook R A. Supported ionic liquid catalysis investigated for hydrogenation reactions. Chem. Commun., 2002, 24: 3010~3011
    [184] Brennecke J F, Anthony J L, Maginn E J. Gas solubilities in ionic liquids. Wiley-VCH: Weinheim, 2003
    [185] Ohlin C A, Dyson P J, Laurenczy G. Carbon monoxide solubility in ionic liquids: determination, prediction and relevance to hydroformylation. Chem. Commun., 2004, 9: 1070~1071
    [186] Riisager A, Wasserscheid P, Hal RV, et al. Continuous fixed-bed gas-phase hydroformylation using supported ionic liquid-phase (SILP) Rh catalysts. J. Catal., 2003, 219: 452~455
    [187] Riisager A, Fehrmann R, Flicker S, et al. Very stable and highly regioselective supported ionic-liquid-phase (SILP) catalysis: continuous-flow fixed-bed hydroformylation of propene. Angew. Chem. Int. Ed., 2005, 44: 815~819
    [188] Yang Y, Deng C X, Yuan Y Z, Characterization and hydroformylation performance of mesoporous MCM-41-supported water-soluble Rh complex dissolved in ionic liquids. J. Catal., 2005, 232: 108~116
    [189] Huang J, Jiang T, Han B X, et al. A novel method to immobilize Ru nanoparticles on SBA-15 firmly by ionic liquid and hydrogenation of arene. Catal. Lett., 2005, 103: 59~62
    [190] Gruttadauria M, Riela S, Meo P L, et al. Supported ionic liquid asymmetric catalysis. A new method for chiral catalysts recycling, The case of proline-catalyzed aldol reaction. Tetrahedron Lett., 2004, 45: 6113~6116
    [191] Ciriminna R, Hesemann P, Moreau J J E, et al. Aerobic oxidation of alcohols in carbon dioxide with silica-supported ionic liquids doped with perruthenate. Chem. Eur. J. 2006, 12: 5220~5224
    [192] Hagiwara H, Sugawara Y, Isobe K, et al. Immobilization of Pd(OAc)(2) in ionic liquid on silica: Application to sustainable Mizoroki-Heck reaction. Org. Lett., 2004, 6: 2325~2328
    [193] Zhao D Y, Huo Q, Feng J, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc., 1998, 120: 6024~6036
    [194] Wang Z J, Xie Y B, Liu C J, Synthesis and characterization of noble metal (Pd, Pt, Au, Ag) nanostructured materials confined in the channels of mesoporous SBA-15. J. Phys. Chem. C, 2008, 112: 19818~19824