用于稀土离子掺杂发光的Al_2O_3基质材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土发光材料在照明、显示显像、固体激光器、光存储及光通讯等领域已获得广泛应用,近年来,对稀土掺杂基质材料进行研究以提高发光效率、化学稳定性及使用寿命成为该领域的研究热点。Al2O3具有机械强度高、热传导性好、化学稳定性优良以及透明性好等特点,作为稀土掺杂基质材料受到研究人员的广泛关注。目前,粉体基质的纳米化及其分散性以及薄膜基质的透明性是研究的两个重要方向。
     本文研究了Al2O3基质材料的溶胶-凝胶制备过程,重点对Al2O3溶胶制备规律、Al2O3纳米粉体分散性以及Al2O3薄膜透明性等关键问题进行了考察,并在此基础上研究了Eu3+、Tb3+掺杂的Al2O3纳米粉体及透明薄膜的发光特性。论文主要研究内容及结论如下:
     1、开展了Al2O3溶胶的制备规律研究,结果表明水解温度会影响溶胶晶粒的形成和生长过程,在水解温度为60-80℃时,可制得稳定的勃姆石(γ-AlOOH)结构Al2O3溶胶;随陈化时间的延长,溶胶粘度增大,原先细小的溶胶粒子逐渐聚集长大形成长度约50 nm的纤维状粒子;酸的种类和用量会改变溶胶体系的电荷环境及胶粒表面的双电层结构,适当强酸的加入(pH=2.73~3.20)有利于获得稳定的溶胶;增加水用量可促进前驱体水解,有利于获得结晶完善的勃姆石Al2O3溶胶;通过添加表面活性剂可有效减少溶胶粒子之间的聚集,提高溶胶稳定性。
     2、开展了Al2O3纳米粉体制备研究,结果表明混合溶剂和表面活性剂(PEG1000)共同作用可有效解决Al2O3纳米粉体团聚问题。在煅烧分解的过程中,PEG1000减少了Al2O3晶粒之间的离子扩散,提高了Al2O3纳米粉体的分散性。随煅烧温度升高,Al203存在γ-AlOOH→γ-Al2O3→θ-Al2O3→a-Al2O3的相转变过程,粒径则呈现出先减小后增大的变化趋势。
     3、开展了Al2O3透明薄膜制备研究,结果表明Al2O3薄膜的光透过率与晶粒结构密切相关。薄膜中Al2O3晶粒的择优取向生长大幅降低了薄膜的反射系数(M)和散射系数(S),提高了薄膜透光率;煅烧导致薄膜中氧空位缺陷逐渐减少,减弱了对光的吸收,在800℃煅烧后薄膜光透过率达最高;而在900℃煅烧后,薄膜中生成的θ-Al2O3导致了薄膜光透过率降低。
     4、开展了Eu3+、Tb3+掺杂Al2O3纳米发光粉体及透明薄膜的发光特性研究。结果表明所制备的纳米发光粉体平均晶粒尺寸为10 nm左右,粒子呈颗粒状,分散性较好;而发光薄膜透明性良好,且表面致密、平整、无裂纹产生。材料的发光性能主要受煅烧温度和掺杂浓度的影响,最佳的煅烧温度为800℃,Eu3+离子最佳掺杂浓度为10 mol%,Tb3+离子最佳掺杂浓度为5 mol%。
Rare earth luminescent materials have been widely used in lighting, display imaging, solid-state lasers, optical storage and optical communication and other fields. In recent years, the research of rare-earth-doped substrate materials for improving the luminous efficiency, mechanical properties, chemical stability and life become a research hotspot in the field. Alumina has high mechanical strength, good thermal conductivity, chemical stability and good transparency, and draws many researchers' attention. At present, the nanocrystallization of the powder and its dispersion, as well as the transparent substrate film are two important directions.
     In this paper, the Al2O3 was used as the rare earth ions doped substrate, the sol-gel preparing process of Al2O3 was studied, with emphasis on the preparation of the laws of Al2O3 sol, Al2O3 nanocrystlline powder dispersion and the transparency of Al2O3 films. Based on that, the photoluminescence properties of Eu3+ doped and Tb3+ doped Al2O3 nanocrystalline powders and their transparent film were investigated. The major research contents and the conclusions were as follows:
     1. The preparation of Al2O3 sol were carried out. The results show that the hydrolysis temperature will affect the grain size of sol formation and growth process. When the hydrolysis temperature is 60-80℃, the stable boehmite (γ-AlOOH) structure sol can be obtained; with extended aging time, the sol viscosity increased, the original small particles of the sol gradually grow together to form the fibrous particles with the length of 50nm; the type and the concentration of the acid will change the charge-environment of the sol system and the double-layer structure of the sol surface, the appropriate addition of strong acid (pH= 2.73~3.20) was in favor of the sol stability; the increase in the amount of water can promote precursor hydrolysis, and is conducive to improve the crystallization of the boehmite sol. Furthermore, adding the surfactant can effectively reduce the aggregation between the sol particles to enhance the stability of sol.
     2. The preparation of Al2O3 nanocrystalline powder was carried out. The results showed that the mixed solvent and surfactant (PEG 1000) can be an effective solution to the combined effect of Al2O3 nanocrystalline powder reunion. In the process of calcination decomposition. PEG1000 reduce the Al2O3 ion diffusion between the grains and improve the Al2O3 nanocrystalline powder dispersion. With the increasing of the heat treatment temperature, Al2O3 had the phase transformation process ofγ-AlOOH→γ-Al2O3→θ-Al2O3→α-Al2O3, and the grain size is reduced firstly and then incline to increase.
     3. The preparation of transparent Al2O3 film was carried out. The results showed that the light transmittance of the Al2O3 film is closely related to the microstructure. Al2O3 films grain growth of the preferred orientation of the film significantly reduce the reflection coefficient (M) and scattering coefficient (S), to improve the film transmittance; calcination led to the film gradually reduce the oxygen vacancy, and has reduced the absorption of light. After calcined at 800℃, the optical transmittance was maximum; and calcined at 900℃, theθ-Al2O3 generated in the films resulted in lower light transmittance.
     4. The photoluminescence properties of Eu3+ and Tb3+ doped Al2O3 nanocrystalline powders and their transparent films were analysed. The results show that the average grain size of the nanocrystalline luminescent powder was about 10 nm, with granular particles, good dispersion and good transparency, and the surface is dense and smooth without cracks. Luminescence properties of the materials were mainly affected by the calcination temperature and doping concentration. The best calcination temperature is 800℃, the doped concentration of Eu3+ is 10 mol%, the doped concentration of Tb3+ is 5 mol%.
引文
[1]徐叙路,苏勉增.发光学与发光材料.北京:化学工业出版社.2004,1-3.
    [2]张中太,张俊英.无机光致发光材料及应用.北京:化学工业出版社.2004.4-6
    [3]徐叙培.发光学的回顾与进展.物理与工程.2001,11(2):1-5.
    [4]Feldmann C, Justel T, Ronda C R, Schmidt P J. Inorganic Luminescent Materials: 100 Years of Research and Application. Adv. Funct. Mater.,2003,13:511-516.
    [5]潘科夫著(李维南译).电致发光.北京:科学出版社,1987,1-3.
    [6]刘光华.稀土固体材料学.北京:机械工业出版社,1997,4-6
    [7]Ozawa L, Itoh M, Cathode Ray Tube Phosphors. Chem. Rev.,2003,103: 3835-3855.
    [8]Mikhail P, Schneider M, Bill H, et.al. Phys. Status Solid B,1999,215:17-21.
    [9]石春山,叶宜人.Eu2+离子f-f迁发射的若干判据.中国稀土学报,1983,1:84-99.
    [10]梅增霞,张希清,姚志刚,韩建民,李家泽.ZnS:Mn摩擦发光特性的研究.光谱学与光谱分析,2001,20:766-768.
    [11]Mikhrin S B, Mishin A N, Potapov A S, Rodnyi P A, Voloshinovskii A S. X-ray excited luminescence of some molybdates.
    [12]杨晓林.生物发光及化学发光在生物医学领域中应用的进展.生物物理学报,2000,16:10-18.
    [13]方容川.发光学研究及应用.合肥:中国科学技术大学出版社,1993,1-10.
    [14]许碧琼,吴玉通.新型发光材料-绿色长余辉磷光材料的研究.华侨大学学报(自然科学版),1995,16:300-333.
    [15]方俊鑫,陆栋.固体物理学(下册),上海科学技术出版社出版,1981,4-6.
    [16]Blasse G, Grabmaier B C, Luminescent Materials. Berlin-Heidelberg: Springer-Verlag,1994,1-3.
    [17]张中太,张俊英.无机光致发光材料及应用.北京:化学工业出版社,2005,1-3.
    [18]肖志国,罗昔贤.蓄光型发光材料及其制品.北京:化学工业出版社,2005,4-6.
    [19]孙家跃,杜海燕.胡文祥.固体发光材料.北京:化学工业出版社,2003,4-6.
    [20]姜岭,常程康,毛大立.长余辉发光材料的研究进展.无机材料学报,2004,19(2):268-274.
    [21]李建宇.稀土发光材料及其应用.北京:化学工业出版社,2003,4-6.
    [22]汪玉芳,刘玲霞,胡宏祥.稀土发光材料的合成与发展.浙江化工,2005,36(9):28-29.
    [23]张希艳,卢利平等.稀土发光材料.北京:国防工业出版社,2005,1-6.
    [24]刘行仁.我国稀土发光材料科学技术的发展回顾与展望.世界科技研究与发展,2003,25(1):79-84.
    [25]中国科学院,吉林物理所,中国科技大学《固体发光》编写组.固体发光,1976:3-5.
    [26]Judd B R. Optical Absorption Intensities of Rare-Earth Ions, Plays. Rev.,1962, 127:750-761.
    [27]Ofelt G S. Intensities of Crystal Spectra of Rare-Earth Ions. J Chem. Phys.,1962, 37:511-520.
    [28]郝志然.稀土在无机晶体中的发光.发光与显示,1976,(4):8-29.
    [29]张思远,毕宪章,稀土光谱理论.长春:吉林科学技术出版社,1991,1-6.
    [30]苏锵.稀土化学.郑州:河南科学技术出版社,1993,261-330.
    [31]吴光照,Judd-Ofelt模型及其应用.发光与显示,1980(4):18-22.
    [32]Blasse G.稀土在光学和发光材料中应用的理论基础.发光与显示,1976,(4):30-36.
    [33]Ouyang X, Kitai A H, Xiao T. J Appl Phys,1996,79:3229-3233.
    [34]Busta H H. Field Emission Flat Displays Vacuum Microelectronics. New York: Wiley-Interscience,2001,289-293.
    [35]Esparza-Garcya A E, Garcya-Hipolito M, Aguilar Frutis M A, et al. Luminescent and morphological characteristics of Al2O3:Tb films deposited by spray pyrolysis using acetylacetonates as precursors. Journal of the Electrochemical Society,2003, 150(2):H53-H56.
    [36]Martynez E, Garcya M, Ramos-Brito F, et al. Characterization of Al2O3:Eu3+ luminescent coatings prepared by spray pyrolysis technique. Physical Status Solidi B, 2000,220:677-681.
    [37]Yasutaka K, Katsuhisa T. Rikuo O. et al. Time-resolved study of luminescence in soda-lime silicate glasses co-doped with Gd 3+ and Eu3+.Optical Materials,2005, 27:1438-1444.
    [38]Martlnez-Martlnez R, Garcla-Hipolito M, Ramos-Brito F, et al. Blue and red photoluminescence from Al2O3:Ce3+:Mn2+ films deposited by spray pyrolysis. Journal of Physics:Condensed Matter,2005.17:3647-3656.
    [39]Serna R, Jimenez de Castro M, Chaos J A, et al. Photoluminescence performance of pulsed-laser deposited Al2O3 thin films with large erbium concentrations. Journal of Applied Physics,2001.90:5120-5125.
    [40]Xu W L, Zheng M J, Wu S, et al. Effects of high-temperature annealing on structural and optical properties of highly ordered porous alumina membranes. Appllied Physics Letters,2004,85:4364-4366.
    [41]Shmulovich J, Wong A, Wong Y H, et al. Er3+ glass waveguide amplifier at 1.5μm on silicon. Electron. Lett.,1992.28(13):1181-1182.
    [42]Iman A, Jacobson D C, Eaglesham D J. et al. Optical doping of waveguide materials by MeV Er implantation. J. Appl. Phys.,1991,22(1):3778-3784.
    [43]Milova G, Najafi S L, Skirtach A, et al. Erbium in photosensitive hybrid organoaluminosilicate sol-gel glass. Conference on integrated optics devices potential for commercialization. San Jose.1997,299(7):34-42.
    [44]Sema R, Afonso C N. In situ growth of optically active erbium doped Al2O3 thin films by pulsed laser deposition. Appl. Phys. Lett.,1996,69(11):1541-1543
    [45]Lazarouk S K, Mudryi A V, Borisenko V E. Room-temperature formation of erbium-related lumenscent centers in anodic alumina. Appl. Phys. Lett.,1998,73(16): 2272-2274.
    [46]Chryssou C E, Pitt C W. Er3+-doped Al2O3 thin films by Plasma-Enhanced Chemical Vapor Deposition(PECBVD) Exhibiting a 55-nm Optical Bandwidth. IEEE Journal of quantum electronics,1998,34(2):282-285.
    [47]Mohanty P, Ram S. Enhanced photoemission in dispersed Eu2O3 nanoparticles in amorphous Al2O3. J Master Chem,2003,13:3021-3025.
    [48]Katia J C, Omar J de L, Herica C S, et al. Eu3+ entrapped in alumina matrix obtained by hydrolytic and non-hydrolytic sol-gel routes. J Non-Crystal Solids,2002, 304:126-133.
    [49]Minardi A P, Marty O, Bovier C, et al. Optical and structural analysis of Eu3+-doped alumina planar waveguides elaborated by the sol-gel process. Opt Mater, 2001,16:9-13.
    [50]Masayuki Nogami, Yoshihiro Abe. Properties of sol-gel-derived Al2O3-SiO2 glasses using Eu3+ ion fluorescence spectra. Journal of Non-Crystalline Solids,1996, 197:73-78.
    [50]Martynez E, Garcya M, Ramos-Brito F, et al. Characterization of Al2O3:Eu3+ luminescent coatings prepared by spray pyrolysis technique. Phys Status Solidi B, 2000.220:677-681.
    [52]Ishizaka T, Nozaki R, Kurokawa Y. Tb3+ and Eu3+-doped alumina films prepared by sol-gel method under various conditions and sensitized luminescence. Journal of Physics and Chemistry of Solids,2002,63:613-617.
    [53]Wang X J, Lei M K, Yang T, et al. Phase transformation of Er3+-doped Al2O3 powders prepared by the sol-gel method. Journal of Material Research,2003, 18:2401-2405.
    [54]Wang X J, Lei M K, Yang T, et al. Phase structure and photoluminescence properties of Er3+-doped Al2O3 powders prepared by the sol-gel method. Optical Materials,2004,26:247-252.
    [55]Wang X J, Lei M K, Yang T, et al. Coherent effect of Er3+-Yb3+co-doping on enhanced photoluminescence properties of Al2O3 powders by the sol-gel method, Optical Materials,2004,26:253-259.
    [56]王兴军,曹保胜,雷明凯.Sol-gel法制备Er3+-Yb3+共掺杂Al2O3粉末光致发光特性,光子学报,2004,33(8):935-938.
    [57]杨涛,王兴军,王辉.掺Er3+勃姆石凝胶高温烧结相变,无机材料学报,2004,19(3):671-675.
    [58]毛艳丽,林丙臣,冯素雅,等.溶胶-凝胶法制备Yb3+/Er3+共掺氧化铝材料的 光谱性质,激光技术,2007,31(6):600-602.
    [59]刘世江,孙洪巍,黄淼淼等.共沉淀法制备Al2O3:Eu红色荧光粉及其发光性能研究.中国陶瓷,2007,43(3):22-25.
    [60]周建国.赵凤英,李工安等.Al2O3:Eu3+,Tb3+发光陶瓷的合成及发光行为.河南师范大学学报(自然科学版),1998,26(2):109-112
    [61]Van Den Hoven G N, Snoeks E, Polman A. Photoluminescence characterization of Er-implanted Al2O3 films. Appl. Phys. Lett.,1993,62:3065-3069.
    [62]Sema R, Jimenez de Castro M, J. A. Chaos, et al. Photoluminescence performance of pulsed-laser deposited Al2O3 thin films with large erbium concentrations. Journal of Applied Physics,2001,90:5120-5125.
    [63]高景生,宋昌烈,李成仁.中频溅射技术沉积镱铒共掺Al2O3薄膜光致发光.光电子·激光,2004,15(10):10-14.
    [64]Martinez E, Garcia M, Ramos-Brito F. Characterization of Al2O3:Eu3+ luminescent coating prepared by spray pyrolysis technique. phys. Stat.2000, 220:677-681.
    [65]Ishizaka T, kurokawa Y. Preparation conditions and optical properties of rare earth ion (Er3+ and Eu3+)-doped alumina films by the aqueous sol-gel method. Journal of Applied Physics,2001,90:243-247.
    [66]廖国进,闫绍峰,巴德纯.铈掺杂氧化铝薄膜的蓝紫色发光特性.物理学报,2008,57(11):7327-7332.
    [67]Martlnez-Martlnez R, Garcla-Hipolito M, Ramos-Brito F, et al. Blue and red photoluminescence from Al2O3:Ce3+:Mn2+films deposited by spray pyrolysis. Journal of Physics:Condensed Matter,2005,17:3647-3656.
    [68]Ishizaka T, kurokawa Y, Makino T, et al. Optical properties of rare earth ion (Nd3+, Er3+ and Tb3+)-doped alumina films prepared by the sol-gel method. Optical Materials,2001,15:293-299.
    [69]Ishizaka T, kurokawa Y. Optical properties of rare-earth ion (Gd3+, Ho3+, Pr3+ Sm3+, Dy3+ and Tm3+)-doped alumina films prepared by the sol-gel method. Journal of Luminescence,2001,92:57-63.
    [70]kurokawa Y, Ishizaka T. Photo-properties of rare earth ion (Er3+, Eu3+and
    Sm3+)-doped alumina films prepared by the sol-gel method. Chemical PhysicsLetters, 1998,287:737-741.
    [71]张密林,安丽娟等.纳米发光材料的研究进展.化学工程师,2004,1:30-32.
    [72)杨剑,滕凤恩.纳米材料综述.材料导报,1997,11:6-32.
    [73]黄波,固体材料及其应用.华东理工大学出版社,1994,1-6.
    [74]许碧琼,吴玉通,新型发光材料,绿色长余辉磷光材料的研究.华侨大学学报(自然科学版).1995.16:300-333.
    [75]张立德,牟季美.纳米材料和纳米结构.科学出版社,2002,4-6.
    [76]周永慧,林君,张洪杰.纳米发光材料研究的若千进展.化学研究与应用,2001,13:117-122.
    [77]李维芬.纳米材料的性质.现代化工,1999,19:44-17.
    [78]方俊鑫,陆栋.固体物理学(下册),上海科学技术出版社出版,1981,4-6.
    [79]李强,高镰,严东生.稀土化合物纳米荧光材科研究的新进展.无机材料学报,2001,16(1):17-22.
    [80]肖林久,孙彦彬.邱关明.纳米稀土发光材料的研究进展.稀土,2002,23(4):46-49.
    [81]张吉林,洪广言.稀土纳米发光材料研究进展.发光学报,2005,26(3):285-293.
    [82]张慰萍,尹民.稀土掺杂的纳米发光材料的制备和发光.2000,21:314-319.
    [83]Tissue B M. Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts. Chem. Mater.,1998,10:2837-2841.
    [84]于江波,袁曦明,陈敬中.纳米发光材料的研究现状及进展.材料导报,2001,15:30-32.
    [85]张密林,安丽娟,景晓燕等.纳米发光材料的研究进展.2004,100(1):20-32.
    [86]Hreniak D, Strek W. Synthesis and optical properties of Nd3+-doped nanoceramics. J. Alloys Compd.,2002,341:183-186.
    [87]林君.苏锵溶胶-凝胶法及其在稀土发光材料合成中的应用.稀土,1994,15(1):42-46.
    [88]张巍巍,谢平波,张慰萍等.稀土正硼酸盐Ln1-xBO3:Eux(Ln=Y,Gd)的结构与 发光特性.无机材料学报,2001,16(1):9-15.
    [89]Yin M, Zhang W, Xia S, et al. Luminescence of nanometricscale Y2SiO5:Eu. J. Lumin.,1996,68:335-339.
    [90]Zhang W, Yan K, et al. Luminescent properties and concentration quenching of nanocrystalline Y2-xSiO7:Eux. Chin. Lumin.,1999.20(2):97-101.
    [91]尹邦跃,王零森,樊毅等.乙二醇在络合物溶胶-凝胶法中的应用研究.硅酸盐学报,1999,27(3):337-340.
    [92]Zhai Y Q, Yao Z H, Ding S W, et al. Synthesis and characterization of Y2O3:Eu nanopowder via EDTA complexing sol-gel process. Mater. Let.,2003,57:2901-2906.
    [93]李强,高镰.纳米Y2O3:Eu3+的荧光特性.无机材料学报.1997,12(2):237-241.
    [94]Lgarashi T, Ihara M, Kusunoki T, et al. Relationship between optical properties and crystallinity of nanometer Y2O3:Eu phosphor. Appl. Phys. Let.,2000,76(12): 1549-1551.
    [95]Bazzi R, Flores M A, Louis C, et al. Synthessis and properties of europium-based phosphors on the nanometer scale:Eu2O3, Gd2O3:Eu, and Y2O3:Eu. J.Colloid and Inter.Sci.2004,273:91-197.
    [96]Meyssmy H, Riwotzki K. Wet-chemical synthesis of doped colloidal nanomaterials:particles and fibers of LaPO4:Eu, LaPO4:Ce and LaPO4:Ce,Tb. Adv. Mater.,1996,11(10):840-844.
    [97]Riwotzk K, Haase M. Wet-chemical synthesis of doped colloidal nanoparticles YVO4:Ln(Ln=Eu,Sm,Dy). J. Phys. Chem. B,1998,102:10129-10135.
    [98]陈文君,李干佐.作为微反应器的微乳液体系研究进展.日用化学工业,2002,32(2):57.
    [99]周建国,李振泉,赵凤英.纳米Y2O3:Eu3+发光材料的研究综述.2003,22(6):573-577.
    [100]Lee M H, S G, Yi S C, et al. Characterization of Eu-doped Y2O3 nanoparticles prepared in nonionic reverse microemulsions in relation to their application for field emission display. J. Electrochem. Soc.,2000,147(8):3137-3139.
    [101]林君,苏锵.溶胶-凝胶法及其在稀土发光材料合成中的应用.稀土,1994,15(1):42-46.
    [102]Shea L E, Mckittrick J, Lopez O A. Synthesis of red-emitting, small particle size luminescent oxides using an optimized combustion process. J. Am. Ceram. Soc., 1996,79(12)3257-3265.
    [103]Hong K S, Meltzer R S. Spectral hole burning in crystalline Eu2O3 and Y2O3:Eu3+nanoparticles. J. Lumin.,1998,76-77:234-237.
    [104]王惠琴,胡建国,徐燕.Y2O3:Eu发光材料的快速合成及表征.复旦学报,1995,34(5):521-524.
    [105]Tao Y, Zhao G, Zhang W, et al. Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu PhoPhors. Mater. Res. Bull.,1997.32(5):501-506.
    [106]谢平波,段昌奎,张慰萍.纳米Y2O3:Eu发光粉的光致发光研究.发光学报,1998,19(2):123-128.
    [107]Xie P, Zhang W, Yin M, et al. Preparation of nanocrystalline L2O3:Eu(Ln=Gd,Y) by combustion synthesis and photoluminescence. J. Inorg. Mater., 1998,13(1):53-58.
    [108]Xu H Y, Wang H, Meng Y Q, et al. Rapid synthesis of size controllable YVO4 nanoparticles by microwave irradiation. Solid State Comm.,2004,130(7):465-468.
    [109]Tao Y, Zhao G, Ju X, et al. EXAFS studies of luminescence centers in Eu3+ doped nanoscale phosphors. Mater. Lett.,1996,28:137-140.
    [110]丁子上,翁文剑,杨娟.化学络合法在溶胶-凝胶过程中的应用.硅酸盐学报,1995,23(5):271-275.
    [111]丁子上,翁文剑.溶胶-凝胶技术制备材料的进展.硅酸盐学报,1993,21(5):443-449.
    [112]贺可音.硅酸盐物理化学.武汉:武汉工业大学出版社,1995.
    [113]X. Bokhimi, J.A. Toledo-Antonio, M.L. Guzman-Castillo, et al. Dependence of boehmite thermal evolution on its atom bond lengths and crystallite size. J. Solid State Chem.,2001,161:319-326.
    [114]Y. Du, W. L. Cai, C. M. Mo, et al. Preparation and photoluminescence of alumina membranes with ordered pore arrays. Appl. Phys. Lett.,1999,74:2951-2953.
    [115]Zhang L, Ouyang D X, Mo C M. Analysis of transmittance of nanostructured alumina films. Nanostructured materials,1997,8(2):191-197.
    [116]Mo C M, Zhang L, Yuan z. Optical absorption of Al2O3.1995.5(1):95-99.
    [117]S. J. Wilson. The dehydration of boehmite, γ-AlOOH, to γ-Al2O3. J. Sol. Stat. Chem.,1979.30:247-255.
    [118]Lippens B C, De Boer J H. Study of phase transformations during calcination of aluminum hydroxides by selected area electron diffraction. Acta Cryst.,1964. 17:1312-1321.
    [119]Yuan Go Wang, Paul M. Bronsveld, Jeff Th. M. Dehosson. Ordering of octahedral vacancies in transiton alumina. J. Am. Ceram. Soc.,1998,81:1655-1660.
    [120]Shang-Di Mo, Yong-Nian Xu, Wai-Yim Ching, Electronic and structural properties of bulk γ-Al2O3. J. Am. Ceram. Soc.,1997,80:1193-1197.
    [121]Campostrini R, Caturan G, Ferrari M, et al. J Mater Res.1992,7:745-750.
    [122]Ferrari M, Piazza A, Montagna M, et al. J Sol-Gel Sci Tech,1994,2:783-788.
    [123]Bouajaj A, Ferrari M, Montagna M, et al. Phys Mag B,1995,71:633-638.
    [124]Zhou R S, Snyder R L. Acta Crystallographica, 1991,47:617-622.
    [125]Levin I, Bendersyk L A, Brandon D G, et al. Acta Materialia,1997,45: 3659-3663.
    [126]Sun J M, Skorupa W, Dekorsy T. J. Appl. Phys.,2005,97:123513-1-123513-7.