两亲性多肽的合成、自组装和界面吸附研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子自组装是当前科学研究领域的热点课题。多肽分子自组装以其丰富的自组装驱动力、新颖的聚集体形态、特殊的功能及良好的生物相容性,在纳米技术、生物材料、药物传输等方面具有广泛的应用前景。两亲性多肽具有表面活性剂两亲的特性,不同的两亲性多肽可自组装成不同的结构例如纳米纤维、纳米管、纳米囊泡。本论文设计一系列具有不同分子结构特征的两亲性多肽,通过研究其在溶液中自组装和固/液界面吸附,探讨两亲性多肽分子自组装的机理,并为两亲性多肽的应用提供理论基础。
     采用微波多肽固相合成方法合成具有表面活性剂特征的AmK、X6K、AnD系列两亲性多肽,并利用AFM、TEM、CD等实验手段对它们自组装行为进行表征。AmK和AnD系列两亲性多肽随着疏水尾部氨基酸残基数的增加,临界聚集浓度减小,自组装形成不同的结构。A3K自组装形成层状结构;A6K自组装形成纳米纤维结构,其直径为8.0±1.0 nm,长度超过1μm;A9K自组装形成纳米短棒结构,其直径为3.0±1.0 nm,其长度小于100 nm。两亲性多肽疏水尾部氨基酸残基数的增加和疏水尾部侧链碳原子数的不同,导致两亲性多肽的临界聚集浓度不同,分子间的相互作用力发生变化,自组装形成的纳米结构不同。A3K、A6K及A9K自组装结构不同可以应用传统表面活性剂的分子堆积理论进行解释。
     对AmK系列的A6K、A9K两亲性多肽的自组装动力学进行研究,A6K在溶液配制初期发生聚集,24 h形成短的纳米纤维,经过一周时间达到自组装的动态平衡,形成长度达到微米级的纳米纤维,但是纤维中仍存在断点;A9K在溶液配制1 h内即可达到自组装动态平衡,形成规则的纳米短棒结构。实验表明多肽疏水尾部的疏水相互作用力不同对其自组装的动力学过程有影响。
     对AmK系列的A6K、A9K两亲性多肽的在不同环境条件(pH值、温度、盐离子浓度)下自组装结构的稳定性进行了考察,A9K自组装的纳米短棒结构比A6K自组装的纳米纤维结构更稳定,疏水尾部的作用在两亲性多肽的自组装过程的稳定性中起重要作用。环境因素的改变使自组装中非共价键间的相互作用改变,两亲性多肽通过头基间的静电相互作用,疏水尾部的相互作用和分子间的氢键彼此协调,控制两亲性多肽自组装的形貌。
     采用SE、AFM等实验手段对AmK系列的A6K、A9K在亲水和疏水固/液界面上的吸附进行了初步研究。两亲性多肽浓度低于其临界聚集浓度(CAC)时,在亲水和疏水界面上以单体形式吸附。两亲性多肽浓度高于其CAC时,亲水界面上A6K、A9K在吸附平衡时,以在溶液中自组装形成纳米结构替换单体结构吸附在界面上;疏水界面上A6K在吸附平衡时吸附量与亲水界面上吸附量接近,推测吸附形式与亲水界面相同,而疏水界面上A9K在吸附平衡时吸附量增加,推测自组装结构受界面性质的影响,在单体吸附的结构上进一步以溶液中自组装结构吸附。
     疏水尾部的相互作用在两亲性多肽的自组装、自组装动力学、自组装体稳定性及界面吸附机理的过程中都起主要作用。通过两亲性多肽的自组装及其动力学和环境因素对其自组装的影响的研究,确定了该类两亲性多肽自组装的机理可以应用传统表面活性剂分子堆积理论进行解释。通过两亲性多肽在固/液界面上的吸附的研究,推测在亲水界面上,静电相互作用引发吸附,平衡时疏水相互作用起主要作用;在疏水界面上,吸附初期和平衡时疏水相互作用起主导作用。
As a promising approach to fabricating novel materials and devices on the nanoscale, short peptide self-assembly has been extensively explored over the past few decades. Because of their unique features such as biocompatibility and biological modifications, peptide-based self-assembled have been found applications in the delivery of drugs, nano-technology, bio-materials. Surfactant-like peptides have been reported to self-assemble efficiently into various nanostructures, including fibers, tapes, tubes, and spheres. In this paper, we designed a series of surfactant-like peptides and studied their self-assembly. We described the dynamic self-assembly processes of peptide surfactants in aqueous solution. Our results have revealed interesting transitions in structure and dynamics of peptide molecular self-assembly. We also studied the adsorption of surfactant-like peptides at the hydrophilic and hydrophobic solid/water interface. The main conclusions are listed as follows:
     From a combined AFM, TEM, and CD study of a series of surfactant-like peptides AmK(m=3,6 and 9), we show that structural transitions (sheets, fibers,worm-like micelles, and short rods) can be induced by increasing the length of the hydrophobic peptide region. The trend can be interpreted using the molecular packing theory developed to describe surfactant structural transitions, but decreased CAC, and increased electrostatic interaction associated with increasing the peptide hydrophobic chain need to be taken into account appropriately. Dynamic processes of molecular self-assembly from two surfactant-like peptides A6K and A9K have been investigated. Aggregated peptide stacks were formed during the first hour of solution preparation, followed by their assembly into short nanofibrillar segments in the 24 hour period. The alignment of short nanofibers into mature long ones then occurred, with final lengths extended to several microns but with diameters remaining fixed at 5-8 nm. Even after a week, gaps or joints still remained in the mature nanofibers. In contrast, A9K self-assembled into smaller nanorods with diameters of around 3-4 nm and lengths mostly within about 100 nm. The entire self-assembling process was completed within the first hour and there were few further morphological variations afterwards.
     The changed of two surfactant-like peptides A6K and A9K self-assembly in different pH values, temperature and ionic strength have been studied. The structure of peptides is sensitive to the changes of pH, temperature, ionic strength. With the weak non-covalent interaction including the electrostatic interaction, intermolecular hydrogen bond and the interaction of hydrophobic tail, they could self-assembled into the nano-structure and they harmonize with each other. The interactions of hydrophobic tail play a major role in the stability of the surfactant-like peptides self-assembly process.
     We have focus on the interfacial adsorption of two surfactant-like peptides A6K and A9K, at the hydrophilic and hydrophobic solid/water interface. The A6K achieved its steady adsorption at the concentration of 0.5 mM while the A9K achieved its stead adsorption at the concentration of 0.05 mM on hydrophilic solid/liquid interface. At the concentration of surfactant-like peptide below the CAC, the single molecule of them is adsorbed on the interface. While above the CAC, A6K and A9K are self-assemble into nano-structure and monolayer adsorption on hydrophilic solid/liquid interface. On the hydrophobic solid/liquid interface, A6K self-assembled into nanofibers and monolayer adsorption. While the self-assembled structures of A9K changed by hydrophobic interfacial properties and double-layer adsorbed on it.
     The hydrophobic tail played a major role in the surfactant-like peptides self-assembly, the dynamic process of self-assembly, self-assembly stability and adsorption on different solid/liquid interface. Through the research, we illustrated the mechanism of surfactant-like peptides self-assembly and adsorption on different solid/liquid interface. Our results showed electrostatic attraction was important for initiating the adsorption and hydrophobic interaction was more dominant in determining the equilibrated amount of adsorption.
引文
[1]Merrifield R. B.. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide[J]. J. Am. Chem. Soc., 1963,V85(14):2149-2154
    [2]韩香,顾军.多肽的固相合成[J].天津药学,2002,V14(1):7-9
    [3]Chang C. D., Meienhofer J.. Solid-phase peptide synthesis using mild base cleavage of N-alpha-fluorenylmethyloxycarbonylamino acids, exemplified by a synthesis of dihydro- somatostatin[J]. Int J Pept Protein Res., 1978,V11:246-249
    [4]陈心,罗素兰,等.多肽固相合成的研究进展[J].生物技术,2006,V16(1):81-83
    [5]http://www.51peptide.com/introduction.htm,多肽化学合成概述
    [6]Lehn J. M..超分子化学:概念和展望[M].第一版,沈兴海译,北京,北京大学出版社,2006
    [7]Lehninger A. L.. Biochemistry[M], 2nd ed. Worth, New York, 1975
    [8]Balzani V. V., Credi A., Raymo F. M., et al. Towards Artificial Molecular Machines[J]. Angew. Chem. Int Ed., 2000,V39(19):3348-3391
    [9]Ikkala O., Brinke G. T.. Functional materials based on self-assembly of polymeric supramolecules[J]. Science, 2002,V295:2407-2409
    [10]Brunsveld L., Folmer B. J. B., Meijer E. W., et al. Supramolecular Polymers[J]. Chem Rev, 2001,V101:4071-4098
    [11]徐筱杰.超分子建筑-从分子到材料[M],北京:科学技术文献出版社,2000
    [12]Whitesides G. M., Mathias J. P., Seto C. T.. Molecular self-assembly and nanochemistry: chemical strategy for the synthesis of nanostructures[J]. Science, 1991,V254:1312-1319
    [13]赵晓军,张曙光.美国麻省理工学院分子自组装实验室简介[J].天然产物研究与开发,2004,V16(4):376-377
    [14]林贤福,陈志春,吴忆南.聚丙烯自组装复合的界面层分子相互作用研究[J].高分子材料科学与工程,1999,V15(5):105-110
    [15]Pattubala A. N. R., Munirathinam N., Achill R. C.. Supramolecular self assembly of a monomeric copper(II) complex of N-salicylidene-2-methoxyaniline forming three dimensional closed and open channels[J]. Inorg Chem Commun, 2003,V6: 698-701
    [16]王毓德,马春来,孙晓丹,等.分子自组装及其在传感器中的应用[J].高技术通讯,2002,V12(10):102-106
    [17]马丽,白燕,刘仲明,等.纳米技术在生物传感器中的应用[J].传感器技术,2002,114V21(3):58-61
    [18]罗嗥,曹维孝.感光性聚电解质复合物与十二烷基硫酸钠的相互作用及聚电解质复合物的自组装研究[J].感光科学与光化学,2000,V18(3):281-281
    [19]Rolando G., Lucia B., Andrea D., et a1. Some bioelectrochemical applications of self-assembled films on mercury[J]. Solid State Ionics, 2002,V150:13-26
    [20]苏晓渝,谢如刚.超分子自组装中的非共价键协同作用[J].化学研究与应用,2007,V19:1304-1309
    [21]王镜岩,朱圣庚,徐长法.生物化学[M].第三版,北京,高等教育出版社,2002, 558-565
    [22]Santoso S., Hwang W., Zhang S., et al. Self-assembly of Surfactant-like Peptides with Variable Glycine Tails to form Nanotubes and Nanovesicles[J]. Nano Letters, 2002,V2: 687-691
    [23]Holmes T. C., Lacalle S., Zhang S., et al. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds[J]. P Natl Acad Sci Usa, 2000,V97:6728-6733
    [24]Vauthey S., Santoso S., Zhang S.. Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles[J]. Proc. Natl. Acad. Sci. U. S. A., 2002,V99:5355-5360
    [25]Ellis-Behnke R. G., Liang Y. X., Zhang S., et al., Nano neuro knitting: Peptide nanofiberScaffoldfor brain repair and axon regeneration withfunctional return of vision[J]. P NATL ACAD SCI USA, 2006,V103:5054-5059
    [26]Zhao X., Zhang S.. Molecular designer self-assembling peptides[J]. Chemical Society Reviews, 2006,V35:1105-1110
    [27]Bitton R., Schmidt J., Biesalski M., et al. Self-Assembly of Model DNA-Binding Peptide Amphiphiles[J]. Langmuir, 2005,V21(25):11888-11895
    [28]Dieckmann G. R., Dalton A. B., Johnson P. A., et al., Controlled Assembly of Carbon Nanotubes by Designed Amphiphilic Peptide Helices[J]. J Am Chem Soc, 2003,V125:1770 -1777
    [29]Matsui H., Pan S., Douberly G. E.. Douberly, Fabrication of Nanocrystal Tube Using Peptide Tubule as Template and Its Application as Signal-Enhancing Cuvette[J]. J Phys Chem b, 2001,V105:1683-1686
    [30]Yuwono V. M., Hartgerink J. D.. Peptide Amphiphile Nanofibers Template and Catalyze Silica Nanotube Formation[J]. Langmuir, 2007,V23:5033-5038
    [31]Zhao X., Zhang S., Fabrication of molecular materials using peptide construction motifs [J].Trends Biotechnol., 2004,V22:470-476
    [32]Bucki R., Pastore J. J., Randhawa P., et al. Antibacterial Activities of Rhodamine B-Conjugated Gelsolin-Derived Peptides Compared to Those of the Antimicrobial Peptides Cathelicid in LL37, Magainin II, and Melittin[J]. Antimicrob Agents Ch, 2004,V48(5):1526 -1533
    [33]Meyerholz D. K., Ackermann M. R.. Antimicrobial peptides and surfactant proteins in ruminant respiratory tract disease[J]. Vet Immunol Immunop, 2005, V108:91-96
    [34]Patch J. A., Barron A. E.. Mimicry of bioactive peptides via non-natural,sequence-specific peptidomimetic oligomers[J]. Curr Opin Chem Biol, 2002,V6:872-877
    [35]Fernandez-Lopez S., Kim H. S.,Choi E. C., et al. Antibacterial agents based on the cyclic D,L-alphapeptide architecture[J]. Nature, 2001,V412:452-455
    [36]Kiley R., Zhao X. J., Vaughn M., et al. Self-Assembling Peptide Detergents Stabilize Isolated Photosystem I on a Dry Surface for an Extended Time[J], Plos Biology, 2005,V3: 1180-1186
    [37]DeSantis P., Moroaetti S., Rizzo R.. Conformational analysisi of regular enantiomeric sequences[J], Macromolecules, 1974,V7:52-58
    [38]Jeffrey D., Hartgerink J. R., Granja R. A., et al. Self-Assembling Peptide Nanotubes[J], J.Am. Chem. Soc., 1996,V118:43-50
    [39]Redman J. E., Ghadiri M. R.. Synthesis of photoaetive p-azidotetrafluom phenylalanine containing peptide by solid-phase Fmoc methodology[J]. Org Leu, 2002,V25(4):4467-4469
    [40]Bromley E. H. C., Channon K., Woolfson D. N., et al. Peptide and Protein Building Blocks for Synthetic Biology: From Programming Biomolecules to Self-Organized Biomolecular Systems[J]. Chemical Biology, 2008,V3:38-50
    [41]Hodges R. S., Saund A. K., Chong P. C. S., et al. Synthetic model for 2-stranded alpha-helical coiled-coils-design, synthesis, and characterization of an 86-residue analog of tropomyosin[J]. J. Biol. Chem., 1981,V256:1214-1224
    [42]O’Shea E. K., Lumb K. J., and Kim P. S.. Peptide velcro-design of a heterodimeric coiled-coil[J]. Curr. Biol., 1993,V3:658-667
    [43]Harbury P. B., Plecs J. J., Tidor B., et al. High-resolution protein design with backbone freedom [J]. Science, 1998,V282:1462-1467
    [44]Woolfson D. N.. The design of coiled-coil structures and assemblies[J], Adv. Protein Chem., 2005,V70:79-112
    [45]Pandya M. J., Spooner G. M., Woolfson D. N., et al. Sticky-end assembly of a designed peptide fiber provides insight into protein fibrillogenesis[J]. Biochemistry, 2000,V39:8728- 8734
    [46]Ryadnov M. G., Woolfson D. N.. MaP Peptides: Programming the Self-Assembly of Peptide-Based Mesoscopic Matrices[J]. J. Am. Chem. Soc., 2005,V127:12407-12415
    [47]Cerasoli E., Sharpe B. K., Woolfson D. N.. ZiCo: A Peptide Designed to Switch Folded State upon Binding Zinc[J]. J. Am. Chem. Soc., 2005,V127:15008-15009
    [48]林凤,姚菊明.肽自组装纳米材料的研究进展[J].材料科学与工程学报,2008,V26:312-315
    [49]Burkhard P., Meier M., and Lustig A.. Design of a minimal protein oligo- merization domain by a structural approach[J]. Prot. Sci., 2000,V9:2294-2301
    [50]Monera O. D., Zhou N. E., Hodges R. S.. Comparison of antiparallel and parallel 2-stranded alpha-helical coiled-coils-design, synthesis, and characterization[J]. J. Biol. Chem., 1993,V268:19218-19227
    [51]Oakley M. G., and Kim P. S.. A buried polar interaction can direct the relative orientation of helices in a coiled coil[J]. Biochemistry, 1998,V37:12603-12610
    [52]McClain D. L., Woods H. L., Oakley M. G.. Design and characterization of a heterodimeric coiled coil that forms exclusively with an antiparallel relative helix orientation[J]. J. Am. Chem. Soc., 2001,V123:3151-3152
    [53]Gurnon D. G., Whitaker J. A., Oakley M. G.. Design and characterization of a homodimeric antiparallel coiled coil[J]. J. Am. Chem. Soc., 2003,V125:7518-7519
    [54]Zhang S., Holmes T., Loekshin C., et al. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane[J]. Proc Natl Acad Sci USA, 1993,V90:3334-3338
    [55]Zhang S., Gelain F., Zhao X. J.. Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures[J]. Semin Cancer Biol, 2005,V15:413-420
    [56]Zhang S.. Emerging biological materials through molecular self-assembly[J]. Biotechnol Adv, 2002,V20:321-339
    [57]Zhang S., Rich A.. Directconversion of an oligopeptide from aβ-sheet to anα-helix: a model for amyloid formation[J]. Proc Natl Acad Sci USA, 1997,V94:23
    [58]Chandravarkar A., Mandal B., Mimna R., et al. Switch-Peptides: Controlling Self-Assembly of Amyloidβ-Derived Peptides in vitro by Consecutive Triggering of Acyl Migrations [J]. J. Am. Chem. Soc., 2005,V127:11888-11889
    [59]Zhang S., Yan L., Altman M., et al. Biological surface engineering: a simple system for cell pattern formation[J]. Biomaterials, 1999,V20:1213
    [60]陈元维,张昌中,李天全,等.多肽分子自组装研究进展[J].生物医学工程学杂志,2006,V23:209-211
    [61]Zhang S.. Fabrication of novel biomaterials through molecular self-assembly[J]. Nat Biotechnol, 2003,V21:1171-1178
    [62]Aggeli A., Bell M., Boden N., et al. PH as a Trigger of Peptideβ-Sheet Self-Assembly and Reversible Switching between Nematic and Isotropic Phases[J]. J. Am. Chem. Soc., 2003,V125:9619-9628
    [63]Collier J. H., Messersmith P. B.. Self-Assembling Polymer-Peptide Conjugates: Nanostructural Tailoring[J]. Adv. Mater., 2004,V16:907-910
    [64]Winkler S., Wilson D., Kaplan D. L.. Controllingβ-sheet assembly in genetically engineered silk by enzymatic phosphorylation[J]. Biochemistry, 2000,V39:12739-12746
    [65]Reches M., Gazit E.. Casting Metal Nanowires Within Discrete Self-Assembled Peptide Nanotubes[J]. Science, 2003,V300:625-627
    [66]Jayawarna V., Ali M., Ulijn R. V., et al. Nano-structured hydrogels for 3D cell culture through self-assembly of Fmoc-dipeptides[J]. Adv. Mater., 2006,V18:611-614
    [67]Yang Z. M., Liang G. L., Xu B., et al. Using a Kinase/Phosphatase Switch to Regulate a Supramolecular Hydrogel and Forming the Supramolecular Hydrogel in vivo[J]. J. Am. Chem. Soc., 2006,V128:3038-3043
    [68]Sone E. D., Stupp S. I.. Semiconductor-Encapsulated Peptide-Amphiphile Nanofibers[J]. J.Am. Chem. Soc., 2004,V126:12756-12757
    [69]Wilmot C. M., Thornton J. M.. Analysis and prediction of the different types of beta-turn in proteins [J]. J. Mol. Biol., 1988,V203:221-232
    [70]Hartgerink J. D., Beniash E., Stupp S. I.. Self-Assembly and Mineralization of Peptide-Amphiphile Nanofibers[J]. Science, 2001,V294:1684-1688
    [71]Hartgerink J. D., Beniash E., Stupp S. I.. Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials[J]. Proc. Natl. Acad. Sci. U. S. A., 2002,V99:5133-5138
    [72]Jun H. W., Yuwono V., Hartgerink J. D.. Enzyme-Mediated Degradation of Peptide- Amphiphile Nanofiber Networks[J]. Adv. Mater., 2005,V17:2612-2617
    [73]Berndt P., Fields G. B., Tirrell M.. Synthetic lipidation of peptides and amino acids: monolayer structure and properties[J]. J. Am. Chem. Soc., 1995,V117:9515-9522
    [74]Matsui H., Gologan B.. Crystalline Glycylglycine Bolaamphiphile Tubules and Their pH-Sensitive Structural Transformation [J]. J. Phys. Chem. B., 2000,V104:3383-3386
    [75]Nowak A. P., Breedveld V., Pakstis L., et al. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles[J]. Nature, 2002,V417:424-428
    [76]Scanlon S., Aggeli A. Self-assembling peptide nanotubes[J]. Nanotody, 2008,V3:22-30
    [77]Maltzahn G. V., Vauthey S., Zhang S., et al. Positively Charged Surfactant-like Peptides Self-assemble into Nanostructures[J]. Langmuir, 2003,V19:4332-4337
    [78]Stendahl J. C., Rao M. S., Stupp S. I., et al. Intermolecular Forces in the Self-Assembly of Peptide Amphiphile Nanofibers[J]. Adv. Funct. Mater., 2006,V16:499-508
    [79]Nagai A., Nagai Y., Qu H. J., et al. Dynamic Behaviors of Lipid-Like Self-Assembling Peptide A6D and A6K Nanotubes[J]. J Nanosci Nanotechno, 2007,V7: 1-7
    [80]Mart R. J., Osborne R. D., Stevens M. M., Ulijn R. V.. Peptide-based stimuli-responsive biomaterials[J]. Soft Matter, 2006,V2:822-835
    [81]Whitesides G. M., Mathias J. P., Seto C. T.. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures[J]. Sceince, 1991,V254:1312-1319
    [82]Parra R. D., Zeng H. Q., Zhu J., et al. Stable Three-Center Hydrogen Bonding in a Partially Rigidified Structure[J]. Chem. Eur. J., 2001,V7:4352-4357
    [83]Wu Z. Q. , Jiang X. K., Zhu S. Z., et al. Hydrogen Bond-Induced Rigid Oligoanthranil amide Ribbons That Are Planar and Straight[J]. Org. Lett., 2004,V6:229-232
    [84]张立德,牟季美.纳米结构自组装和分子自组装体系[J].物理,1999,V28:22-26
    [85]庞先勇,戴亚,刘祥春.蛋白质中静电相互作用及其电荷分布规律[J].山西农业大学学报,1991,V11:356-258
    [86]Tanford C.. The Hydrophobic Effect: Formation of Micelles and Biological Membranes[M], 2nd. Wiley: New York, 1980
    [87]Fendler J. H.. Membrane Mimetric Chemistry[M]. Wiley, New York , 1982
    [88]Pace C. N., Heinemann U., Hahn U., et al. Ribonuclease T1: structure, function and stability[J]. Angew. Chem. Int. Ed engl, 2003,V30:343-360
    [89]Timasheff S. N.. Protein-solvent interactions and protein conformation[J]. Acc. Chem. Res., 1970,V3:62-68
    [90]Saenger W.. Principles of Nucleic Acid Structure[M]. Springer-Verlag, New York, 1984, 132-140
    [91]Murr M. M., Harting M. T., Gueleva V., et al. Iverson, An octakis-intercalating molecule [J]. Bioorg. Med. Chem., 2001,V9:1141-1148
    [92]Schult G. E., Schirmer R. H.. Principles of Protein Structure [M]. Springer-Verlag, New York, 1979
    [93]Hunter C. A., Sanders J. K. M.. The nature ofπ-πinteractions[J]. J. Am. Chem. Soc., 1990,V112:5525-5534
    [94]Wang W.,Li L. S., Helms G., et al. To Fold or to Assemble?[J]. J. Am. Chem. Soc., 2003,V125:1120-1121
    [95]Rosen M J.. Surfactants and Interfacial Phenomena[M]. New York; John Wiley&Sons, 1989
    [96]沈钟.胶体与表面化学[M].第二版,北京,化学工业出版社,1997,V6:336
    [97]Mitchell D. J., Ninham B. W.. Vesicles and microemulsions[J]. J Chem. Soc. Faraday Trans. 2, 1981,V77:601-629
    [98]Nagarajan R.. Molecular Packing Parameter and Surfactant Self-Assembly: The Negle cted Role of the Surfactant Tail[J]. Langmuir, 2002,V18:31-38
    [99]Israelachvili J. N.. Intermolecular and Surface Forces[M]. Academic Press, London, 1985, 251
    [100]Israelachvili J. N., Mitehell D. J., Ninham B. W.. Theory of assembly of hydrocarbon amphiphiles into micelles[J]. J.Chem.Soc. Faraday Trans 2, 1976,V72:1525-1568
    [101]Israelachvili J. N., Mitehell D. J., Ninham B.W.. Theory of self-assembly of lipid bilayers and vesicles[J]. Bio-Phys. Acta, 1977,V470:185-201
    [102]Israelachvili J. N., Marcelja S., Horn R. G.. Physical principles of membrane organization [J]. Q Rev. Biophys., 1980,V13:121-200
    [103]Tausk R. J., Karmiggelt J., Oudshoorn C., et al. Physical chemical studies of short-chain lecithin homologues. I. Influence of the chain length of the fatty acid ester and of electrolytes on the critical micelle concentration[J]. Biophys Chem., 1974,V1(3):175-183
    [104]Eriksson J.C., Ljunggren S.. Model calculations on the transitions between surfactant aggregates of different shapes[J]. Langmuir, 1990,V6:895-904
    [105]Mazer N. A., Benedek G. B., Carey M. C.. An investigation of the micellar phase of sodium dodecyl sulfate in aqueous sodium chloride solutions using quasielastic light scattering spectroscopy[J]. J. Phys. Chem., 1976,V80:1075-1085
    [106]May S., Bohbot Y., Shaul A. B.. Molecular Theory of Bending Elasticity and Branching of Cylindrical Micelles[J]. J. Phys. Chem. B, 1997,V101:8648-8657
    [107]Nagarajan R.. Are large micelles rigid or flexible: a reinterpretation of viscosity data for micellar solutions[J]. J. Colloid lnteface Sci., 1982,V90:477-485
    [108]Gruen D. W. R.. A statistical mechanical model of the lipid bilayer above its phase transition[J]. Bioehim. Biophys. Acta., 1980,V595:161-183
    [109]Nagarajan R., Ruckenstein E.. Theory of surfactant self-assembly: a predictive molecular thermodynamic approach[J]. Langmuir, 1991,V7:2934-2969
    [110]Tanford C.. Theory of micelle formation in aqueous solutions[J]. J. Phys. Chem., 1974,V78:2469-2479
    [111]Stevens M. M., George J.. Exploring and Engineering the Cell Surface Interface[J]. Science, 2005,V310:1135-1138
    [112]Niece K. L., Hartgerink J. D., Stupp S. I., et al. Self-Assembly Combining Two Bioactive Peptide-Amphiphile Molecules into Nanofibers by Electrostatic Attraction[J]. J. Am. Chem. Soc., 2003,V125:7146-7147
    [113]Law J. P. J., Kunze G. W.. Reactions of surfactants with montm6rillonite: Adsorption mechanisms [J]. Soil Sci. Soc. Am. Proc, 1966,V30:321-327
    [114]Rosen M. J.. Surfactants and Interfacial Phenomenon[M]. Wiley-Interscience, John Wiley& Sons, Inc., Hoboken, New Jersey., 2004, Third Edition.
    [115]Wakamatsu T., Fuerstenau D. W.. The Effect of Hydrocarbon Chain Length on the Adsorption of Sulfonates at the Solid/Water Interface. Adsorption from Aqueous Solution[M]. American Chemical Society, Washington, DC, 1968, Chapter 13,161-172
    [116]Dick S. G., Fuerstenau D. W., Healy T. W.. Adsorption of alkylbenzene sulfonate (A.B.S.)surfactants at the alumina-water interface[J]. J. Colloid Interface Sci., 1971,V37: 595-602
    [117]Giles C. H., Silva D .A. P., Easton I. A.. A general treatment and classification of the solute adsorption isotherm part. II. Experimental interpretation [J]. J. Colloid Interface Sci., 1974, V47:766-778
    [118]Gao Y., Du J., Gu T.. Hemimicelle formation of cationic surfactants at the silica gel-water interface [J]. J. Chem. Soc, Faraday Trans. I , 1987,V83:2671-2679
    [119]赵振国.胶束催化与微乳催化[M].化学工业出版社,2006
    [120]Snyder L. R.. Interactions Responsible for the Selective Adsorption of Nonionic Organic Compounds on Alumina. Comparisons with Adsorption on Silica[J]. J. Phys. Chem., 1968, V72:489-494
    [121]Fuerstenau D. W.. Streaming Potential Studies on Quartz in Solutions of Aminium Acetates in Relation to the Formation of Hemi-micelles at the Quartz-Solution Interface[J]. J. Phys. Chem., 1956,V60:981-985
    [122]Levitz P., Van Damme H.. Fluorescence Decay Study of the Adsorption of Nonionic Surfactants at the Solid-Liquid Interface. 2. Influence of Polar Chain Length[J]. J. Phys. Chem., 1986,V90:1302-1310
    [123]Chandar P., Somasundaran P., Turro N. J.. Fluorescence probe studies on the structure of the adsorbed layer of dodecyl sulfate at the alumina-water interfaces[J]. J. Colloid Interface Sci., 1987,V117:31-46
    [124]Kung K. S., Hayer K. F.. Fourier transform infrared spectroscopic study of the Adsorption of cetyltrimethylammonium bromide and cetylpyridinium chloride on silica[J]. Langmuir, 1993,V9:263-267
    [125]Atkin R., Craig V. S. J., Wanless E. J., et al. Mechanism of cationic surfactant adsorption at the solid-aqueous interface[J]. Adv Colloid Interfac, 2003,V103(86):219-304
    [126]Richard J. M., Richard A. L.. Jones and Michele Sferrazza Adsorption and displacement of a globular protein on hydrophilic and hydrophobic surfaces[J]. Colloid Surface B 2002,V23:31-42
    [127]McClellan S. J., Franses E. I.. Adsorption of bovine serum albumin at solid/aqueous interfaces[J]. Colloid Surface A, 2005,V260:265-275
    [128]Su T. J., Lu J. R., Cui Z. F., et al. Effect of pH on the Adsorption of Bovine Serum Albumin at the Silica/Water Interface Studied by Neutron Reflection[J]. J. Phys. Chem. B, 1999,V103:3727-3736
    [129]Su T. J., Lu J. R., Thomas R. K., et al. Penfold The Conformational Structure of Bovine Serum Albumin Layers Adsorbed at the Silica?Water Interface[J]. J. Phys. Chem. B, 1998, V102:8100-8108
    [130]Zhao X. J., Zhang S.. Self-Assembling Nanopeptides Become a New Type of Biomateria l [J]. Adv Polym Sci., 2006,V203:145-170
    [131]Zhao X., Nagai Y., Reeves P., et al. Designer short peptide surfactants stabilize G protein-coupled receptor bovine rhodopsin[J], Proc. Natl. Acad. Sci. U.S.A., 2006,V103:17707-17712
    [132]Drexler K. E.. Molecular engineering:An approach to the development of general capabilities for molecular manipulation[J], Proc. Natl. Acad. Sci., 1981,V78:5275-5278
    [133]Caplan M. R., Schwartzfarb E. M., Zhang S. G.. Control of self-assembling oligopeptide matrix formation through systematic variation of amino acid sequence[J]. Biomaterials, 2002, V23:219-227
    [134]Paramonov S. E., Jum H. W., Hartgerink D.. Self-Assembly of Peptide-Amphiphile Nanofibers: The Roles of Hydrogen Bonding and Amphiphilic Packing[J]. J. Am. Chem. Soc., 2006,V128:7291-7298
    [135]Jiang H., Guler M. O., Stupp S. I.. The internal structure of self-assembled peptide amphiphiles nanofibers[J]. Soft Matter, 2007,V3:454-462
    [136]Ghadiri M. R., Granja J. R., Buehler L. K.. Artificial transmembrane ion channels from self-assembling peptide nanotubes[J]. Nature, 1994,V369:301-304
    [137]Matsui H., Pan S., Gologan B., et al. Bolaamphiphile Nanotube-Templated MetallizedWires[J], J. Phys. Chem. B, 2000,V104:9576-9579
    [138]Zhao Y., Yokoi H., Tanaka M., et al. Self-Assembled pH-Responsive Hydrogels Composed of the RATEA16 Peptide[J]. Biomacromolecules, 2008,V9(6):1511-1518
    [139]Matthew S. L.,Rajagopal K., Schneider J. P., et al. Pochan Laminated Morphology of Nontwistingβ-Sheet Fibrils Constructed via Peptide Self-Assembly[J]. J. Am. Chem. Soc., 2005,V127(47):16692-16700
    [140]Greenfield N., Fasman G. D.. Computed circular dichroism spectra for the evaluation of protein conformation[J]. Biochemistry, 1969,V8:4108-4116
    [141]谢孟峡,刘媛.红外光谱酰胺Ⅱ带用于蛋白质二级结构的测定研究[J].高等学校化学学报,2004,V24:226-231
    [142]中本一雄著.无机和配位化合物的红外光谱和拉曼光谱[M].北京:科学技术出版社,1986:310
    [143]黄锦汪,计亮年.金属酶与金属蛋白的红外光谱研究[J].化学通报,1991,V1:15-19
    [144]Tanford C..The Hydrophobic Effect[M]. Wiley: New York, 1973
    [145]Nagarajan R.. Molecular Packing Parameter and Surfactant Self-Assembly:The Negle cted Role of the Surfactant Tail[J]. Langmuir, 2002,V18:31-38
    [146]Kuznetsov Y. G., Malkin A. J., Lucas R. W., et al, Imaging of Viruses By Atomic Force Microscopy[J]. J. Gen. Virol., 2001,V82:2025-2034
    [147]Vesenka J., Guthold M., Tang C. L., Keller D., et al. Substrate Preparation for Reliable imaging of DNA Molecules with the Scanning Force Microscope[J]. Ultramicroscopy, 1992, V42-44:1243-1249
    [148]Shen C. L., Murphy R. M.. Solvent Effects on Self-assembly of Beta-amyloid peptide[J]. Biophys J, 1995,V69:640-651
    [149]Hong Y., Legge R. L., Zhang S., et al. Effect of Amino Acid Sequence and pH on Nanofiber Formation of Self-Assembling Peptides EAK16-II and EAK16-IV[J]. Biomacro molecules, 2003,V4:1433-1442
    [150]Carrick L. M., Aggeli A., Boden N., et al. Effect of ionic strength on the self-assembly, morphology and gelation of pH responsiveβ-sheet tape-forming peptides[J]. Tetrahedron, 2007,V63:7457-7467
    [151]Lu J. R., Perumal S., Hopkinson L., et al. Interfacial Nano-structuring of Designed Peptides Regulated by Solution pH[J]. J. Am. Chem. Soc., 2004,V126:8940-8947
    [152]Gilchrist V. A., Lu J. R., Keddie E. J. L.. Staples and P. Garrett Adsorption of Penta (ethy lene glycol) Monododecyl Ether at the Solid Poly(methyl methacrylate)-Water Interface:A Spectroscopic Ellipsometry Study[J]. Langmuir, 2000,V16:740-748