基于无损监测的钢筋混凝土劣化过程和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在寒冷地区,冻融循环和除冰盐的耦合作用是一种非常典型的破坏模式,它能够导致严重的表面剥落和内部损伤。现有的耐久性评价手段多是基于质量损失和动弹性模量保留值的,评价方法的发展相对落后于实际的耐久性问题。而且多因素耦合作用下混凝土耐久性研究相对集中在混凝土基体的宏观性能变化上,忽略了混凝土的内部损伤和介观层次孔隙结构的劣化行为。不仅如此,在荷载、冻融循环和氯盐侵蚀的耦合作用下,冻融和荷载所导致的裂纹增大了氯离子渗透和钢筋锈蚀的风险,对多因素耦合作用下钢筋的锈蚀行为也值得进行系统研究。
     为解决上述问题,本文利用应变计和七位半数字多用表监测了在冻融循环和氯盐侵蚀作用下水泥基材料的变形和电阻率演变,研究了残余应变与传统评价参数的关系,探索了用电阻率表征水泥基材料冻融损伤的方法和评价依据;通过改进的平板扫描法,着重考察了在冻融循环和氯盐侵蚀作用下混凝土在介观层次的孔隙结构劣化行为;系统研究了钢筋的锈蚀行为和机理;结合电阻率和孔隙结构试验结果,提出了混凝土冻融破坏的损伤模型。本文取得了以下研究成果:
     1.建立了应变表征混凝土冻融损伤的方法和依据。在冻融循环和氯盐侵蚀作用下,饱盐混凝土的变形呈非线性,水胶比为0.65的饱盐混凝土在10次冻融循环内能产生约150με的残余应变,微裂纹萌生并不断扩展是导致混凝土残余应变逐渐增大的原因,应变监测表明混凝土的破坏是一个累积损伤的过程;应变—温度曲线具有明显的滞回,通过对干燥混凝土的应变—温度曲线在冻结段的拟合发现,混凝土的热膨胀系数α随加热—冷却循环次数的增大而下降,对于非引气混凝土,水胶比为0.51和0.61的混凝土经45次加热—冷却循环后α分别下降了0.87(10~(-6)/℃)和0.23(10~(-6)/℃),而水胶比为0.51的引气混凝土其α下降了0.79(10~(-6)/℃)。
     2.发现了冻融损伤过程中的临界残余应变。对于水胶比为0.61的试件,在未达到临界残余应变之前,混凝土存在轻微的损伤,超过临界残余应变之后,质量损失明显增大、相对动弹性模量迅速下降。对于引气混凝土以及水胶比为0.39的混凝土,则存在初始临界残余应变SICRS和临界残余应变SCRS两个临界点。在初始临界残余应变SICRS之前,混凝土基本不受影响,外部环境作用对混凝土基本不会造成损伤,超过SICRS后混凝土开始遭受轻微损伤直至达到临界残余应变SCRS。
     3,建立了电阻率表征水泥基材料冻融损伤的方法和评价依据。电阻率曲线的增长幅度与冻融损伤成正比,电阻率曲线反映了损伤过程中孔溶液、毛细孔连通度和毛细孔曲折度的变化以及水泥基材料内部产生的裂纹和缺陷。拟合电阻率—温度曲线得到的斜率P和在Y轴的截距A与最大电阻率ρmax的皮尔逊相关系数分别达到0.926和0.958。电阻率—温度曲线同样具有滞回现象,利用电阻率—温度曲线得到了结冰形核温度Tint、临界孔隙封闭点、临界孔隙导通点和融点。此外,还发现低含水率的水泥基材料具有“斩波效应”。
     4.证实了混凝土遭受冻融破坏所产生的内部损伤。经平板扫描法和图像统计分析证明,混凝土内平均裂纹数量和长度随冻融循环的进行而不断增加。水泥混凝土经过25次和100次冻融循环后,平均裂纹数量分别能达到0.25条和0.5条,平均裂纹长度分别能达到3.5μm和7μm;单位孔隙面积随着冻融循环次数的增加而逐渐增大,孔隙剖面的分形维数介于1.09~1.14之间,圆形度平均从1.6增加到2左右,混凝土孔隙结构全面劣化,损伤程度显著增大。
     5.阐明了荷载—冻融—氯盐耦合作用对钢筋锈蚀的影响。在不施加荷载的情况下,经过200次冻融循环和氯盐侵蚀的耦合作用,钢筋并不会进入活化态。在施加了0.3和0.4倍的初始弯拉应力后,经过100次快速冻融循环后,阳极反应过程阻力变小,反应朝易于腐蚀的方向进行,钢筋混凝土将在10~15年内发生钢筋锈钢破坏,荷载的存在明显增大了钢筋发生锈蚀的风险。
     6.建立了混凝土冻融破坏的损伤模型。根据残余应变变化速率的不同,混凝土基体的破坏过程可以分为诱导期、加速期和稳定增长期三个阶段,诱导期内饱水度不断增加,但基体的质量损失并不明显,加速期残余应变迅速增大,基体内部裂纹密度增加,损伤程度由饱水度控制,而稳定增长期则是长裂纹逐渐连通,浆体和骨料持续剥落的过程。
The coupling action of freeze-thaw cycles and de-icing salt is a typicaldeterioration mode in cold regions. It will result in severe surface scaling and internaldamage of the concrete matrix. However, measurement of existing durabilityevaluation mainly focuses on weight loss and retention value of dynamic elasticmodulus. The development of assessment method fall behind the actual durabilityissues obviously. Research on durability of concrete under combined actions mainlyfocuses on the degradation of concrete macro properties, while internal damage anddeterioration behavior of pore structure in mesoscopic scale as well as the relationshipbetween pore structure deterioration and permeability were neglected so far. Morethan that, cracks induced by freeze-thaw cycles and external load increase the hazardof steel corrosion and chloride penetration when concrete subject to freeze-thawcycles, chloride salt attack and external load. Therefore, corrosion behavior ofreinforced concrete subjects to combined action deserve to research systematically.
     To solve the above problems, the deformation and resistivity behavior of cementbased materials were monitored by using strain gauges and7-1/2digital multimeter,respectively. Relationships between traditional evaluation parameters and residualstrain as well as test method and evaluation basis of resistivity to characterize thedurability of cement based materials were also studied. The deterioration behavior ofconcrete pore structure under the action of freeze-thaw cycles in mesoscopic scalewas investigated. Further, given that the possible effects of freeze thaw cycles andchloride salt attack combined with load, corrosion behavior of steel bar were studied.A deterioration process model of concrete exposed to freeze thaw cycles wasproposed according to the results of strain, resistivity and pore structure. Thefollowing research findings were obtained:
     Test method of strain to characterize the damage of concrete expose to freezethaw cycles and chloride salt attack were established. Results show that deformationof concrete show nonlinear. The150με residual strain of saturated concrete with thewater to cement ratio of0.65were generated after10freeze thaw cycles.Strain-temperature hysteresis phenomenon was found. With regard to the driedconcrete, coefficient of thermal expansion decrease with the increase of freeze thawcycle numbers. Thermal expansion coefficient of concrete with the water to cementratio of0.51and0.61decrease by0.87(10~(-6)/℃) and0.23(10~(-6)/℃) respectively after 45heating and cooling cycles for non-air entrained concrete, and air-entrainedconcrete with the water to cement ratio of0.51decrease by0.79(10~(-6)/℃).
     Critical residual strain during the process of freeze thaw damage was found.Concrete only suffer slight damage before the critical residual strain for specimenswith the w/c of0.61. Weight loss increases obviously and relative dynamic elasticmodulus decreases rapidly after exceeding the critical residual strain. Bothair-entrained concrete and concrete with the w/c of0.39have two critical residualstrain points, namely, initial critical residual strain SICRSand critical residual strainSCRS.Concrete can be unacted on the environmental load before SICRS. Then concretesuffer slight damage until it reaches the SCRS.
     Test method and evaluation basis of resistivity to characterize the freeze thawdamage of cement based materials were established. Results show that resistivity isproportional to freeze thaw damage. Resistivity reflects the variation of pore solution,pore connectivity and pore sinuosity as well as cracks and defects of cement basedmaterials. Resistivity-temperature hysteresis phenomenon was also found. Pearsoncorrelation coefficient of ρmaxto slope of fitting curve P and Y-intercept A are0.926and0.958respectively. Further, ice nucleation temperature, depecolation point andrepecolation point were obtained from the resistivity-temperature curve. Furthermore,chopped wave of resistivity curve of unsaturated cement based materials wasobserved.
     Internal damage of concrete caused by freeze thaw attack was confirmed by flatscanning method. Results show that average crack number and average crack lengthincrease with the progress of freeze thaw damage. Average crack number can reach0.25and0.5(average crack length can reach3.5μm and7μm) for concrete subjectedto50and100freeze thaw cycles, respectively. Moreover, per area increases with theongoing of freeze thaw damage. Fractal dimensions of pore sectional are between1.09and1.14and average roundness is between1.6and2.
     Effects of external load, freeze thaw cycles combined with chloride slat attack oncorrosion behavior of steel bar were clarified. Results show that steel bar will keeppassivation state after200freeze thaw cycles combined with chloride salt attack withthe absence of external loads. depassivation time of steel bar moved up with the stressratio of0.4, the cathode reaction was restrained and resistance of anode reactiondecreases after the depassivation of steel bar. Steel corrosion damage may occur inreinforced concrete during10~15years.
     Deterioration model of concrete exposed to freeze thaw damage was established. The deterioration process of concrete can divide into three phases, namely, inductionphase, accelerated phase and stabilization growth phase, according to the difference ofchanging rates of residual strain. Saturation degree of concrete is increasing ininduction period, but weight loss is not obvious. Internal crack numbers and crackdensity increase with the growing of residual strain, and the deterioration degree wascontrolled by the saturation degree in accelerated phase. With regard to thestabilization growth period, long cracks connect to each other and the connectivityincrease. Paste and mortar scaling from the surface of concrete steadily.
引文
[1] T.. Powers, Measuring Young’s modulus of elasticity by means of sonic vibrations, in:Proceedings of ASTM,1938: pp.460-469.
    [2] F.B. Hornibrook, Application of sonic method to freezing and thawing studies of concrete,1939.
    [3] W.T. Thomson, Measuring changes in physical properties of concrete by the dynamic method,in: Proceeding of ASTM,1940: p.1113.
    [4] L. Obert, W.I. Duvall, Discussion of dynamic methods of testing concrete with suggestions forstandardization, in: Proceeding of ASTM,1941: pp.1053-1073.
    [5] T.E. Stanton, Determined, Tests comparing the modulus of elasticity of portland cementconcrete as Methods, by the dynamic (sonic) and compression (scant at1000psi),1944.
    [6] G. Fagerlund, The international cooperative test of the critical degree of saturation method ofassessing the freeze/thaw resistance of concrete, Materials and Structures.1977,10:231-253.
    [7] Arnfelt H., Damage on Concrete Pavements by Winter time Salt Treatment, in: Stockholm,1943.
    [8] G.J. Verbeck, P. Klieger, STUDIES OF “SALT” SCALING OF CONCRETE, HighwayResearch Board Bulletin.1957,1-13.
    [9] D. Jana, Concrete construction or salt—which causes scaling? Part I: Importance of air-voidsystem in concrete, Concrete International.2004,26:31–38.
    [10] S. Jacobsen, Calculating liquid transport into high-performance concrete during wetfreeze/thaw, Cement and Concrete Research.2005,35:213-219.
    [11] B. Zuber, J. Marchand, Modeling the deterioration of hydrated cement systems exposed to frostaction Part1: Description of the mathematical model, Cement and Concrete Composites.2000,30:1929-1939.
    [12] B. Johannesson, Dimensional and ice content changes of hardened concrete at differentfreezing and thawing temperatures, Cement and Concrete Composites.2010,32:73-83.
    [13] V. Penttala, Freezing-Induced Strains and Pressures in Wet Porous Materials and Especially inConcrete Mortars, Advanced Cement Based Materials.1998,7:8-19.
    [14]蔡昊,混凝土抗冻耐久性预测模型,清华大学博士学位论文,1998.
    [15] T. Chen, Effect of water saturation on deterioration of welded tuff due to freeze-thaw action,Cold Regions Science and Technology.2004,38:127-136.
    [16] L. Basheer, J. Kropp, D.J. Cleland, Assessment of the durability of concrete from itspermeation properties: a review, Construction and Building Materials.2001,15:93-103.
    [17] P.Tikalsky, J. Pospisil, W. MacDonald, A method for assessment of the freeze-thaw resistanceof preformed foam cellular concrete, Cement and Concrete Research.2004,34:889-893.
    [18] V. Penttala, Surface and internal deterioration of concrete due to saline and non-salinefreeze–thaw loads, Cement and Concrete Research.2006,36:921-928.
    [19] D.K. Panesar, S.E. Chidiac, Capillary suction model for characterizing salt scaling resistance ofconcrete containing GGBFS, Cement and Concrete Composites.2009,31:570-576.
    [20] G. Fagerlund, The critical degree of saturation method of assessing the freeze/thaw resistanceof concrete, Materials and Structures.1977,10(58):379-382.
    [21] T.C. Powers, R.A. Helmuth, Theory of volume changes in hardened portland-cement pasteduring freezing, Highway Research Board Proceedings.1953,32:285-297.
    [22] C. MacInnis, J.D. Whiting, The frost resistance of concrete subjected to a deicing agent,Cement and Concrete Research.1979,9:325-336.
    [23] M. Takashi, D.H. Lee, Deformation and deterioration of concrete subjected to cyclic coolingdown to very low temperatures, in: G. Fagerlund, M.J. Setzer (Eds.), Freeze-tha W andDe-icing Resistance of Concrete, Lund,1991: pp.19-33.
    [24] J. Kaufmann, A qualitative sequential frost deicing salt damage model based on experimentaldata, in: M. Setzer, R. Auberg, K. J.(Eds.), International RILEM Workshop on FrostResistance of Concrete, RILEM Publications SARL,2002: pp.197-204.
    [25]曾强,李克非,冻融情况下降温速率对水泥基材料变形和损伤的影响,清华大学学报.2008,48:1390-1394.
    [26] J. Kaufmann, Experimental identification of ice formation in small concrete pores, Cement andConcrete Research.2004,34:1421-1427.
    [27] M. Hasan, H. Okuyama, Y. Sato, T. Ueda, Stress-Strain Model of Concrete Damaged byFreezing and Thawing Cycles, Journal of Advanced Concrete Technology.2004,2:89-99.
    [28] T.C. Powers, A Working Hypothesis for Further Studies of Frost Resistance of Concrete,Journal Of The American Concrete Institute.1945,16:245-272.
    [29] T.C. Powers, T.F. Willis, The air requirement of frost resistant concrete, Highway ResearchBoard Proceedings.1949,29:184-211.
    [30] A.-S. Dequiedt, M. Coster, L. Chermant, J.-L. Chermant, Distances between air-voids inconcrete by automatic methods, Cement and Concrete Composites.2001,23:247-254.
    [31] B. a niewska-Piekarczyk, The influence of selected new generation admixtures on theworkability, air-voids parameters and frost-resistance of self compacting concrete, Constructionand Building Materials.2012,31:310-319.
    [32] M. Pigeon, R. Gagné, C. Foy, Critical air-void spacing factors for low water-cement ratioconcretes with and without condensed silica fume, Cement and Concrete Research.1987,17:896-906.
    [33] J. Zhu, S.-H. Kee, D. Han, Y.-T. Tsai, Effects of air voids on ultrasonic wave propagation inearly age cement pastes, Cement and Concrete Research.2011,41:872-881.
    [34] M. Pigeon, M. Lachance, Critical Air Void Spacing Factors for Concretes Submitted to SlowFreeze-Thaw Cycles, American Concrete Institute.1981,78:282-291.
    [35] R. Herman, An introduction to electrical resistivity in geophysics, American Journal of Physics.2001,69:943-952.
    [36] E.Hammond, T.D.Robson, Comparison of electrical properties of various cement and concretes,The Engineer (London).1955,199:114-115.
    [37] G.E. Moufore, The electrical resistivity of concrete, Journal of PCA.1968:35-48.
    [38] J. Calleja, New techniques in the study of setting and hardening hydraulic mortars, Journal ofACI.1952,23:525-536.
    [39] H. Cai, X. Liu, Freeze-thaw durability of concrete: ice formation process in pores, Cement andConcrete Research.1998,28:1281–1287.
    [40] J. Cao, Damage evolution during freeze–thaw cycling of cement mortar, studied by electricalresistivity measurement, Cement and Concrete Research.2002,32:1657-1661.
    [41] Y. Liu, Experiments and modeling on resistivity of multi-layer concrete with and withoutembedded rebar, Florida Atlantic University,2008.
    [42] R. Jones, The non-destructive testing method of concrete, Magazine of Concrete Research.1949:67-78.
    [43] R.Jones, E.Gatfield, Testing Concrete by an Ultrasonic Pulse Technique, DSIR Road ResearchTech. Paper No.34, London, HMSO,1955, London, His Majesty’s Stationery Office,1955.
    [44] J.R. Leslie, W.J. Cheesman, An ultrasonic method of studying deterioration and cracking inconcrete structures, Journal of the American Concrete Institute.1949,21:17-36.
    [45] H.Y. Qasrawi. I.A. Marie, The use of USPV to anticipate failure in concrete under compression,Cement and Concrete Research.2003,33:2017-2021.
    [46] A.M. Filonidov, Use of ultrasound for checking the frost resistance of concrete, PowerTechnology and Engineering (formerly Hydrotechnical Construction).1982,16:278-283.
    [47] M. Setzer, G. Fagerlund, D. Janssen, CDF test—Test method for the freeze-thaw resistance ofconcrete-tests with sodium chloride solution (CDF), Materials and Structures.1996,29:523-528.
    [48] M.Ohtsu;T.Yamamoto, Compensation procedure for half-cell potential measurement,Construction and Building Materials.1997,11:395-402.
    [49] V. Leelalerkiet, J.-W. Kyung, M. Ohtsu, M. Yokota, Analysis of half-cell potentialmeasurement for corrosion of reinforced concrete, Construction and Building Materials.2004,18:155-162.
    [50] R. Huang, J.-J. Chang, J.-K. Wu, Correlation between corrosion potential and polarizationresistance of rebar in concrete, Materials Letters.1996,28:445-450.
    [51] N. Gowripalan, H.M. Mohamed, Chloride-ion induced corrosion of galvanized and ordinarysteel reinforcement in high-performance concrete, Cement and Concrete Research.1998,28:1119-1131.
    [52] M. Stern, A. L. Geary, Electrochemical Polarization,1. A Theoretical Analysis of the Shape ofPolarization Curves, Journal of Electrochemical Society.1957,104:56-63.
    [53] Z.-tian Chang, B. Cherry, M. Marosszeky, Polarisation behaviour of steel bar samples inconcrete in seawater. Part2: A polarisation model for corrosion evaluation of steel inconcrete, Corrosion Science.2008,50:3078-3086.
    [54] K.R. Gowers, S.G. Millard, On-site linear polarization resistance mapping of reinforcedconcrete structures, Corrosion Science.1993,35:1593-1600.
    [55] S.G. Millard, D. Law, J.H. Bungey, J. Cairns, Environmental influences on linear polarisationcorrosion rate measurement in reinforced concrete, NDT&E International.2001,34:409-417.
    [56] D.W. Law, J. Cairns, S.G. Millard, J.H. Bungey, Measurement of loss of steel from reinforcingbars in concrete using linear polarisation resistance measurements, Corrosion.2004,37:381-388.
    [57] M. Kou il, P. Novák, M. Bojko, Limitations of the linear polarization method to determinestainless steel corrosion rate in concrete environment, Cement and Concrete Composites.2006,28:220-225.
    [58] A. Poursaee, Electrochimica Acta Determining the appropriate scan rate to perform cyclicpolarization test on the steel bars in concrete, Cement and Concrete Research.2010,55:1200-1206.
    [59] D.G. John, P.C. Searson, J.L. Dawson, Use of AC Impedance Technique in Studies on Steel inConcrete in Immersed Conditions, British Corrosion Journal.1981,16:102-106.
    [60]史美伦,混凝土阻抗谱,史美伦,北京,中国铁道出版社,2003.
    [61]机械工业部科技与质量监督司,中国机械工程协会理化检验分会,机械工程材料测试手册腐蚀与摩擦学卷,沈阳,辽宁科学技术出版社,2002.
    [62] Z. Sun, G.W. Scherer, Effect of air voids on salt scaling and internal freezing, Cement andConcrete Research.2010,40:260-270.
    [63] John J. Valenza II, G.W. Scherer, Mechanism for Salt Scaling, Journal of the AmericanCeramic Society.2006,89:1161-1179.
    [64] John J. Valenza II, G.W. Scherer, A review of salt scaling: I. Phenomenology, Cement andConcrete Research.2007,37:1007-1021.
    [65] T. Cho, Prediction of cyclic freeze–thaw damage in concrete structures based on responsesurface method, Construction and Building Materials.2007,21:2031-2040.
    [66] O. Coussy, P. Monteiro, Poroelastic model for concrete exposed to freezing temperatures,Cement and Concrete Research.2008,38:40-48.
    [67] Oldershaw Brant, Combined effects of freeze-thaw and sustained loads on reinforced concretebeams strengthened with frps, Queen’s University,2008.
    [68] P.A. Mitchell, Freeze-thaw and sustained load durability of near surface mounted frpstrengthened concrete, Queen’s University,2010.
    [69] W.E. Norris, D.J. Naus, H.L. Graves III, Inspection of nuclear power plant containmentstructures, Nuclear Engineering and Design.1999,192:303-329.
    [70] M. Saito, H. Lshimori, Chloride permeability and repeated of concrete under loading, Cementand Concrete Research.1995,25:803-808.
    [71]廖欣译,水泥的结构和性能,北京,化学工业出版社,2009.
    [72]杨全兵,氯化钠对混凝土内部饱水度的影响,硅酸盐学报.2005,11:1422-1425.
    [73]杨全兵,冻融循环条件下氯化钠浓度对混凝土内部饱水度的影响,硅酸盐学报.2007,35:96-100.
    [74]余红发,孙伟,武卫锋,杨山,鄢良慧,普通混凝土在盐湖环境中的抗卤水冻蚀性与破坏机理研究,硅酸盐学报.2003,31:763-769.
    [75]孙丛涛,牛荻涛,混凝土抗盐冻性能试验研究,硅酸盐通报.2010,29:762-767.
    [76]巴恒静,李中华,关辉,混凝土抗盐冻性能影响因素的研究,混凝土.2008,(11):1-3.
    [77] Y. Zhou, M.D.Cohen, W.L. Dolch., Effect of External Loads on the Frost-Resistant Propertiesof Mortar with and Without Silica Fume, ACI Materials Journal.1995,91:595-601.
    [78] Z. Yang, J. Weiss, J. Olek, Using acoustic emission for the detection of damage caused bytensile loading and its impact on the freeze-thaw resistance of concrete, in: InternationalConference on Construction Materials,2005: pp.1-8.
    [79] R. El-Hacha, Prestressed CFRP sheets for strengthening concrete beams at room and lowtemperatures, Queen’s University,2000.
    [80] A. Kong, Freeze-thaw behaviour of circular concrete members confined by fibre reinforcedpolymer jackets when simultaneously subjected to sustained axial loads, Queen’s University,2005.
    [81]黄鹏飞,包亦望,姚燕,在盐冻循环、钢锈与弯曲荷载协同作用下钢筋混凝土的损伤失效研究,工业建筑.2005,35:63-67.
    [82]王阵地,姚燕,王玲,冻融循环-氯盐侵蚀-荷载耦合作用下混凝土中钢筋的锈蚀行为,硅酸盐学报.2011,39:130-135.
    [83] W. Sun, R. Mu, X. Luo, C. Miao, Effect of chloride salt, freeze–thaw cycling and externallyapplied load on the performance of the concrete, Cement and Concrete Research.2002,32:1859-1864.
    [84] R. Mu, C. Miao, X. Luo, W. Sun, Interaction between loading, freeze–thaw cycles, andchloride salt attack of concrete with and without steel fiber reinforcement, Cement andConcrete Research.2002,32:1061-1066.
    [85] S. Chatterji, Freezing of air-entrained cement-based materials and specific actions ofair-entraining agents, Cement and Concrete Composites.2003,25:759-765.
    [86] G.G. Litvan, Phase transitions of adsorbates. III. Heat effects and dimensional changes innonequilibrium temperature cycles, Journal of Colloid and Interface Science.1972,38:75-83.
    [87] G.G. Litvan, Phase transitions of adsorbates. V. Aqueous sodium chloride solutions adsorbedof porous silica glass, Journal of Colloid and Interface Science.1973,45:154-169.
    [88] G.G. Litvan, Phase transitions of adsorbates. IV. Mechanism of frost action in hardened cementpaste, Journal of the American Ceramic Society.1972,55:38-42.
    [89] M.J. Setzer, Micro-Ice-Lens Formation in Porous Solid1, Journal of Colloid and InterfaceScience.2001,201:193-201.
    [90] N.Banthia, M.Pigeon, L.Lachance, Calorimetric study of freezable water in cement paste,Cement and Concrete Research.1989,19:939-950.
    [91] Z. Sun, G.W. Scherer, Pore size and shape in mortar by thermoporometry, Cement andConcrete Research.2010,40:740-751.
    [92] R. Piltner, Stress analysis of expansive reactions in concrete, Cement and Concrete Research.2000,30:843-848.
    [93] G. Fagerlund, The critical degree of saturation method of assessing thefreeze/thaw resistance ofconcrete, Materials and Structures.1977,10(4):217-229.
    [94] I. Vegas, J. Urreta, M. Frías, R. García, Freeze–thaw resistance of blended cements containingcalcined paper sludge, Construction and Building Materials.2009,23:2862-2868.
    [95] J.P. Kaufmann, Study of ice formation with ultrasonic pulse transit time measurement, in:RILEM Workshop on Frost Damage in Concrete, Minneapolis,2002: pp.161–172.
    [96] A.Hillerborg, M.Modéer, P.E. Petersson, Analysis of crack formation and crack growth inconcrete by means of fracture mechanics and finite elements, Cement and Concrete Research.1976,6:773-781.
    [97] Takashi Miura, D.H. Lee, Deformation and Deterioration of Concrete at low Temperatures, in:Research Seminar of RILEM Committee TC-117FDC, Lund,1991: pp.19-33.
    [98] S. Bishnoi, T. Uomoto, Strain–temperature hysteresis in concrete under cyclic freeze–thawconditions, Cement and Concrete Composites.2008,30:374-380.
    [99] Qingbin Li, L. Yuan, Model for measurement of thermal expansion coefficient of concrete byfiber optic sensor, International Journal of Solids and Structures.2002,39:2927-2937.
    [100] Tayfun Uygunoglu, Ilker Bekir Topcu, Thermal expansion of self-consolidating normal andlightweight aggregate concrete at elevated temperature, Construction and Building Materials.2009,23:3063-3069.
    [101] P.K. Mehta, P.J.M. Monteiro, Concrete Microstructure, Properties, and Materials, Third Edit,New York, The McGraw-Hill Companies,2006.
    [102] G. Sant, D. Bentz, Jason Weiss, Capillary porosity depercolation in cement-based materials:Measurement techniques and factors which influence their interpretation, Cement and ConcreteResearch.2011,41:854–864.
    [103] Rob B. Polder, Test methods for on site measurement of resistivity of concrete-a RILEMTC-154technical recommendation, Construction and Building Materials.2001,15:125-131.
    [104] F. Rajabipour, Jason Weiss, Electrical conductivity of drying cement paste, Materials andStructures.2007,40:1143-1160.
    [105] J. Broomfield, S. Millard, Measuring concrete resistivity to assess corrosion rates, Concrete.2002,36:37-9.
    [106] W. Morris, E.I. Moreno, A.A. Sagüés, Practical evaluation of resistivity of concrete in testcylinders using a Wenner array probe, Cement and Concrete Research.1996,26:1779–1787.
    [107] B. Toumi and M. Resheidat, A simple and low cost method for rapid assessment of air voids inhardened concrete, Asian Journal of Civil Engineering.2010,11:335-343.
    [108] J. Carlson, Advancement on the Application of a Flat-Bed Scanner for Hardened PortlandCement Concrete Air Void Analysis By, Michigan Technological University,2005.
    [109] J. Carlson, L. Sutter, T.V. Dam, K.R. Peterson, Comparison of Flatbed Scanner and RapidAir457System for Determining Air Void System Parameters of Hardened Concrete, Journal of theTransportation Research Board.2007,1979:54-59.
    [110]刘伟宝,陆采荣,梅国兴王珩,采用平板扫描图像识别方法测定碾压混凝土气泡参数的研究, in:第十届全国水泥和混凝土化学及应用技术会议论文摘要集,南京,2007: pp.69-70.
    [111]许艳,胡小芳,混凝土界面过渡区表面形貌的分形维数表征,硅酸盐通报.2009,28:869-873.
    [112]韦江雄,余其俊,曾小星,白瑞英,混凝土中孔结构的分形维数研究,华南理工大学学报.2007,35:121-124.
    [113]李倩,赵风清,李豪等.,矿渣、钢渣基胶凝材料的耐久性研究,混凝土与水泥制品.2011,(1):23-27.
    [114] Ru Mu, Wenling Tian, Mingjie Zhou, Moisture migration in concrete exposed to freeze-thawcycles, Journal of China Ceramic Society.2010,38:1713-1717.
    [115] M.F. Montemor, A.M.P. Simoes, M. M. Salta, Effect of fly ash on concrete reinforcementcorrosion studied by EIS, Corrosion Science.2000,22:175-185.
    [116] D.M. Bastidas, A.Fernandez-Jimenez, A. Palomo, J.A. Gonzalez, A study on the passive statestability of steel embedded in activated fly ash mortars, Corrosion Science.2008,50:1058-1065.
    [117] H.E. Jamil, A. Shriri, R. Boulif, et al., Corrosion behavior of reinforcing steel exposed to anamino alcohol based corrosion inhibitor, Cement and Concrete Composites.2005,27:671-678.
    [118] Y.-seok Choi, J.-gu Kim, K.-myong Lee, Corrosion behavior of steel bar embedded in fly ashconcrete, Corrosion Science.2006,48:1733-1745.
    [119] O.E. Gjorv, Durability and service life of concrete structures, in: The First Fib Congress, Tokyo,2002: pp.1-16.
    [120] S. Ahmad, Reinforcement corrosion in concrete structures, its monitoring and service lifeprediction––a review, Cement and Concrete Composites.2003,25:459-471.
    [121] C.Andrade, C. Alonso, On-site measurements of corrosion rate of reinforcements, Constructionand Building Materials.2001,15:141-145.
    [122] R.P. Khatri, V. Sirivivatnanon, P. Heeley, Critical polarization resistance in service lifedetermination, Cement and Concrete Research.2004,34:829-837.
    [123] S.Ahmad, B Bhattacharjee, Assessment of service lives of reinforced concrete structuressubjected to chloride-induced rebar corrosion, Journal of Structure Engineering.1997,23:177-182.
    [124] Z. P. Bazant, Physical Model for Steel Corrosion in Sea Structures-Theory, J Struct. Div.1979,105:1137-1153.
    [125] S. Morinagn, Prediction of Service Lives of Reinforced Concrete Buildings Based on Rate ofCorrosion of Reinforcing Steel, in: J.M. Baker, P.J. Nixon, et al.(Eds.), Durability of BuildingMaterials and Components,1991: pp.5-16.
    [126] Y. Liu, Modeling the Time-to-Corrosion Cracking of the Cover Concrete in ChlorideContaminated Reinforced Concrete Structures, Virginia Polytechnic Institute and StateUniversity,1996.
    [127] N.J.M.Wilkins, J.V. Sharp, Localised corrosion of reinforcement in marine concrete, in:C.L.Page, K.W.J. Treadaway, et al.(Eds.), Corrosion of Reinforcement in Concrete, Elsevierapplied science,1990: pp.19-28.
    [128] G. Fagerlund, Determination of pore-size distribution from freezing-point depression,Matériaux Et Constructions.1973,6:215-225.
    [129] John J. Valenza II, G.W. Scherer, A review of salt scaling: II. Mechanisms, Cement andConcrete Research.2007,37:1022-1034
    [130] W. Sun, Y.M. Zhang, H.D. Yan, R. Mu, Damage and damage resistance of high strengthconcrete under the action of load and freeze-thaw cycles, Cement and Concrete Research.1999,29:1519-1523.
    [131]李朝阳,宋玉普,赵国藩.,混凝土疲劳残余应变性能研究,大连理工大学学报.2001,41:355-358.
    [132] W. Wang, S. Wu, H. Dai, Fatigue behavior and life prediction of carbon fiber reinforcedconcrete under cyclic flexural loading, Materials Science and Engineering: A.2006,434:347-351.
    [133] Paulo B. Cachim, Joaquim A. Figueiras, Paulo A.A. Pereira, Numerical modelling offibre-reinforced concrete fatigue in bending, International Journal of Fatigue.2002,24:381–387.