补肾对超排卵周期颗粒细胞GDNF、GFR_α-1表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察补肾中药对超排卵周期颗粒细胞胶质细胞源性神经营养因子(glial cellline-derived neurotrophic factor,GDNF)、GDNF家族特异性受体α-1(GDNF familyreceptor α-1,GFRα-1)的影响,从卵母细胞生殖泡裂解、第一极体的排出及其成熟旁分泌调节的角度,探讨补肾改善卵母细胞质量,提高控制性超排卵妊娠结局的机制。
     方法:临床研究:将80例因输卵管因素行体外受精-胚胎移植(in vitrofertilization-embryo transfer,IVF-ET)的患者按照随机数字表法分为治疗组40例(二至天癸颗粒联合促性腺激素(Gn),40个周期)和对照组40例(安慰剂颗粒联合Gn,40个周期)。采用IVF-ET治疗中目前常规应用的控制性超排卵方案,治疗组在IVF治疗周期加用二至天癸颗粒;对照组则加用安慰剂颗粒。观察临床肾虚证候积分变化情况,Gn用量及用药天数,取卵数、优质卵率、受精率、优质胚胎率、临床妊娠率及颗粒细胞GDNF、GFR α-1mRNA的表达情况。同时行颗粒细胞体外培养24h、48h后观察E2、P的分泌情况以了解颗粒细胞的分泌功能。
     实验研究:将165只8-9周龄、健康昆明种雌性小鼠按照随机法分为空白组、治疗组及对照组,每组各55只。治疗组及对照组进行控制性超排卵,连续灌胃给药(治疗组用二至天癸颗粒,对照组用等量生理盐水),三组又各分为1、2两组。1组50只脱颈处死小鼠,取生发泡(GV)期裸卵(DOs),观察生殖泡破裂(GVBD)和第一极体(PB1)释放;之后成熟卵母细胞行GDNF、GFR α-1mRNA的表达检测;2组各5只雌雄鼠合笼饲养,取受精卵,观察卵裂率、成胚率。
     结果:临床研究:治疗组患者肾虚症状得到明显改善,治疗组Gn用量及用药天数均低于对照组,单个卵雌激素(E_2/卵泡)水平高于对照组,优质卵率、优质胚胎率及临床妊娠率均高于对照组,差异均有统计学意义(P<0.05);治疗组颗粒细胞培养24h、48h生长情况,培养24h、48h后收集的培养液E_2、P检测及颗粒细胞GDNF、GFR α-1mRNA表达均优于对照组,差异均有统计学意义(P<0.05)。实验研究:治疗组GV期卵母细胞GVBD率、PB1排出率均高于对照组,差异有统计学意义(P<0.05);各组小鼠受精卵卵裂率及成胚率比较,对照组低于空白组,治疗组高于对照组,差异有统计学意义(P<0.05)。治疗组卵母细胞GFR α-1mRNA的表达高于对照组,差异有统计学意义(P<0.05)。
     结论:1.获得与既往国家级和省级课题相同的临床妊娠率(54%左右)。在IVF-ET治疗周期,应用补肾中药可明显改善患者肾虚症状,减少Gn用量,提高优质卵率、优质胚胎率,进而改善临床妊娠率,是临床常用的有效药物。2.补肾中药提高颗粒细胞GDNF、GFRα-1mRNA的表达,改善颗粒细胞分泌功能,这可能是补肾中药改善IVF结局的机制之一。3.补肾中药促进小鼠GV期卵母细胞生殖泡的破裂(GVBD)和第一极体(PB1)的排出;提高小鼠卵母细胞GFRα-1mRNA的表达,并改善了小鼠受精卵的卵裂、形成囊胚的能力。推断:补肾中药提高颗粒细胞GDNF、GFRα-1mRNA的表达,提高小鼠卵母细胞GFRα-1mRNA的表达,促进卵母细胞GVBD和PB1的排出,从而改善了卵母细胞成熟度,提高卵细胞质量,从而提高胚胎质量及临床妊娠率。这可能又是补肾中药改善IVF结局的机制之一。
Objective:To investigate the effects of reinforcing kidney on the expression ofGDNF、GFRα-l in granulosa cell of superovulation cycle, In view of GVBD、extrusion ofPB1and oocyte maturation paracrine, to explore the mechanism of reinforcing KidneyChinese herbs Erzhitiangui(ETG) Granule to improve the treatment outcome of insuperovulation cycle.
     Method: Clinical Study:80infertile women with tubal factor undergoing vitrofertilization-embryo transfer (IVF-ET) were randomized into the study group, treated withETG and Gn(40cases), and the control group, treated with placebos granules and Gn (40cases). The long term protocol was adopted. The E2and P secretion in granule cell aftercultured for24h、48h in vitro was observed to learn about the secreting function of granulecell. The expression of GDNF、GFR-1mRNA in luteinizing granulosa cells were alsodetected. The syndrome scores of TCM, administration time and number of Gn, number ofretrieved oocytes, fertilization rate, high quality embryo rate and pregnancy rate wereevaluated.
     Experimental Study:165Kunming female mice of8-9weeks old were allocated intothree groups randomly: control group(group HMG+HCG+NS), HMG and HCG weregiven for ovarian stimulation, performed abdomen injection with0.9%salt solution ofsame as study group on the same time schedule; study group(group HMG+HCG+ETG);ETG combined with HMG and HCG were given; blank group(group nothing). Three groupwere divided into1、2groups each.1group were taked denuded on germinal vesiclestage,observed the germinal veicles breakdowm and extrusion of the first polar body, The expression of GDNF、GFR-1mRNA in the oocytes were also detected;;2group were retrieved to evaluate the ability of merogenesis and forming the embryo.
     Result:Symptoms of kidney asthenia of the study group was significantly improved.The level of E2per occtye, the ratio of high quality occtye and embryo, the clinicalpregnancy rate were higher than those of the control group. The difference werestatistically significant (P<0.05). The E2and P secretion in granule cell after cultured for24h、48h in vitro were higher than the control group. The expression of GDNF、GFRα-lmRNA in granule cell of the study group was higher than that of the control group, Thedifference were statistically significant (P<0.05). The study group was significant higherthan control group in the frequency of the germinal veicles breakdowm and extrusion ofthe first polar body. The expression of GFRa-l mRNA in in the oocytes of the study groupwas higher than that of the control group. The number ability of merogenesis and formingthe embryo of fertilized ovum in control group were lower than those of the study andblank group. The difference was statistically significant (P<0.05).
     Conclusion:1. Reinforcing Kidney Chinese herbs combined with western medicinecan decrease the dosage of Gn obviously and improve symptoms of kidney asthenia, thequality of oocyte, the ratio of high quality occtye and embryo, the ratio of pregnancy.2.Reinforcing Kidney Chinese herbs can also improve the secreting function of granule cell,the expression of GDNF、GFRα-1mRNA in luteinizing granulosa cells. That maybe oneof the mechanism of reinforcing Kidney Chinese herbs to improve the ratio of pregnancy.and raise the quality of oocytes.3. Reinforcing Kidney Chinese herbs can improve thegerminal veicles breakdowm and extrusion of the first polar body, the ability ofmerogenesis and forming the embryo of fertilized ovum, and the expression of GFRα-1mRNA in oocytes., which may suggest that Reinforcing Kidney Chinese herbs raise thequality of oocytes、embryo and the ratio of pregnancy by improve the germinal veiclesbreakdowm, extrusion of the first polar body, the expression of GDNF、GFRα-1mRNAin luteinizing granulosa cells and the expression of GFRα-1mRNA in oocytes. Thatmaybe another one of the mechanism of reinforcing Kidney Chinese herbs to improve theratio of pregnancy.
引文
[1]罗丽兰.不孕与不育,北京:人民卫生出版社,1998,第1版:411.
    [2]谈勇,石川睦男.补肾调周法在体外受精-胚移植期前应用的临床观察.中国中医药信息杂志,2001;12(8):45-46.
    [3]曾勇,胡晓东,等.补肾调冲法在试管婴儿助孕技术中的运用—附96例临床报告.中医药学报,2002;30(6):10-11.
    [4]李东,郭佳.补肾调周法改善卵巢储备功能在辅助生殖技术中运用的临床研究.北京中医药大学学报,2008;31(2):131-134.
    [5]朱文杰,李雪梅,陈秀敏,等.滋肾育胎丸对体外受精-胚胎移植患者胚胎种植率的影响.中国中西医结志,2002;22(10):729-730.
    [6]刘颖,吴敬之.固胎汤降低体外受精-胚胎移植妊娠流产率127例临床研究.中医杂志,2006;47(4):272-273.
    [7]刘金星,刘敏如,宋韬,等.养精汤促排卵的临床及实验研究.中国中西医结合杂志,2001;21(2):94-98.
    [8]沈皓,蔡德培,陈伯英.补肾中药对下丘脑~垂体促性腺机能的影响.中西医结合学报,2004;2(1):53-57.
    [9]杜惠兰,宋翠淼,马惠荣,等.补肾固冲系列方对雄激素所致无排卵大鼠垂体的影响.中国中医药科技,2002;9(2):100-101.
    [10]李嫔,赵丽萍.补肾中药对大鼠腺垂体生长激素蛋白表达的影响.内蒙古医学杂志,2003;35(1):5-7.
    [11]陈秋梅.调经孕育汤治疗排卵障碍不孕症的实验研究.国外医学中医中药分册,2002;24(4):254-255.
    [12]杜惠兰,宋翠淼,马惠荣,等.补肾固冲系列方诱发小鼠排卵的实验研究.河北中医药学报,2001;16(3):8-9.
    [13]杜惠兰,宋翠淼,马惠荣,等.补肾固冲系列方对雄激素所致无排卵模型大鼠卵巢、子宫及微量元素的影响.中国中医药科技,2002;9(2):102-103.
    [14]夏誉薇,蔡连香,张树成.女贞孕育汤对鸡胚绒毛尿囊膜血管生成模型血清药理学研究.中医药学刊,2003;21(4):531.
    [15]夏誉薇,张树成,蔡连香.女贞孕育汤对不孕症子宫内膜组织形态、雌孕激素受体和血管生成因子表达的影响.中国中医药信息杂志,2004;11(1):26~28.
    [16]刘艳娟,黄光英,陆付耳,等.健胎液对胚泡着床障碍小鼠胚泡着床作用的研究.上海中医药杂志,2004;38(4):46.
    [17]刘艳娟,黄光英,杨明炜,等.健胎液对胚泡着床障碍小鼠雌、孕激素及其受体的影响.中国中药杂志,2005;30(5):373-376.
    [18]连方,孙振高,张建伟,等.二至天癸方对小鼠卵母细胞质量影响的实验研究.中国中西医结合杂志,2004;24(7):625-627.
    [19]连方,孙振高,穆琳,等.二至天癸颗粒提高卵母细胞质量与小鼠卵巢内IGF-1RmRNA表达量关系的研究.中国中西医结合杂志,2006;26(5):43l-434.
    [20]李桂娴,张亚滨,许晴,等.中草药促排卵对小鼠血清Ca2+等含量的影响.生殖与避孕,1996;16(5):383-385.
    [21]李桂娴,史小林,张亚滨,等.中草药促排卵汤对小鼠卵巢及子宫内膜作用的组织化学研究.生殖与避孕,1995;15(6):429-433.
    [22]张树成,沈明秀,蔡连香,等.补肾调经和养血补肾方药调经、促排卵作用的实验研究.中医杂志,1999;40(6):369-371.
    [23]张树成,张志洲,刘效群,等.补肾调经方药促进人着床期子宫内膜同步化的组织形态学观察.中国中医基础医学杂志,2002;8(4):48-49.
    [24]张树成,张志洲,刘彬,等.补肾调经方调经促排卵健内膜作用的临床实验研究.中医药学刊,2002;20(6):720-721.
    [25]张树成,沈明秀,吴志奎.补肾生血和补肾调经方药对老龄雌性金黄地鼠生殖器官组织形态的影响.中国民间疗法,1998;6(5):56-57.
    [26]王素霞,孙玉英.安胎合剂对GnRH-超排卵小鼠子宫内膜形态学的影响.中医药学报,2006;34(5):45-47.
    [27]宋殿荣,刘亚琴,张崴,等.补肾活血方中药对妊娠大鼠子宫内膜容受性的影响.国际妇产科学杂志,2009;36(2):161-163.
    [28]张明敏,黄玉琴,程亮亮,等.补肾安胎方对胚泡着床障碍小鼠子宫内膜HB-EGF及其受体EGFR表达的影响.华中科技大学学报(医学版),2008;37(1):85-88.
    [29]何冬梅,尤昭玲,雷磊,等.寿胎丸对反复自然流产小鼠母胎界面SOCS1和SOCS3蛋白表达的影响.湖南中医药大学学报,2009;29(2):26-28.
    [30]刘芳,罗颂平.“助孕3号方”对早孕先兆流产患者Th1/Th2细胞因子和P、β-HCG影响的研究.中国免疫学杂志,2008;24(4):332-336.
    [31]陆启滨,任青玲.安子合剂治疗抗心磷脂抗体阳性致先兆流产191例临床研究中华临床医学杂志,2006;7(11):25-27.
    [32]孙青原.牛卵母细胞发育过程的细胞核变化.东北农学院学报,1990,21:234-238.
    [33]谭景和,孙青原,杨增明,等.山羊卵母细胞发育的超微结构研究.解剖学报,1992,23(1):106-110.
    [34]陈大元.受精生物学,北京:科学出版社,2000,316-383.
    [35]王炼炼.卵母细胞体外培养的研究现状.中华医学写作杂志,2005,12(9):776-779.
    [36]Gougeon A. Regulation of ovarian follicular development in primates:facts andhypotheses. Endocr Rev,1996;17:121-155.
    [37]Pincus G, Enzmann EV, Can Mammalian Eggs Undergo Normal Development inVitro?. Proc Natl Acad Sci U S A,1934;20:121-122.
    [38]Mehlmann LM. Stops and starts in mammalian oocytes: recent advances inunderstanding the regulation of meiotic arrest and oocyte maturation. Reproduction,2005;130:791-799.
    [39]Mehlmann LM,Saeki Y, Tanaka S,et al. The Gs-linked receptor GPR3maintainsmeiotic arrest in mammalian oocytes. Science,2004:306:1947-1950.
    [40]Sorensen RA,Wassarman PM. Relationship between growth and meiotic maturation ofthe mouse oocyte. Dev Biol,1976;50:531-536.
    [41]De Vant’ery C,Gavin AC,Vassalli JD,et al. An accumulation of p34cdc2at the endof mouse oocyte growth correlates with the acquisition of meiotic competence. DevBiol,1996;174:335-344.
    [42]Kanatsu-Shinohara M,Schultz RM,Kopf GS. Acquisition of meiotic competence inmouse oocytes: absolute amounts of p34(cdc2),cyclin B1,cdc25C,and weel inmeiotically incompetent and competent oocytes. Biol Reprod,2000;63:1610-1616.
    [43]Peng X R,Hsueh A J,Lapolt P S,Bjersing L,Ny T. Localization of luteinzinghormone receptor messenger ribonueleic acid expression in ovarian cell types duringfollicle development and ovulation. Endoerinology,1991;129:3200-3207.
    [44]Eppig J J,Wigglesworth K,Pendola F,Hirao Y. Murine oocytes suppress expressionof Iuteinizing hormone receptor messenger ribonueleic acid by granulose cells. BiolReprod,1997;56:976-984.
    [45]Collti M,Andersen CB,Richard F,Mehat SC,Chun SY,Homer K,Jin C,TsafririA. Role of cyclic nucleotide signaling in oocyte maturation. Mol Cell Endocrinol,2002:187:153-159.
    [46]Park J-Y,Su Y-Q,Ariga M,Law E,Jin SLC,Conti M. EGF-like growth factors asmediators of LH action in the ovulatory follicle. Science,2004;303:682-684.
    [47] Ashkenazi H,Cao X,Motola S,Poplike rM,Conti M,Tsafriri A. Epidermal growthfactor family members: endogenous mediators of the ovulatory response.Endoerinology,2005;146:77-84.
    [48]叶英辉.Leptin和GDNF对小鼠卵母细胞的旁分泌调节机制.2008,浙江大学博士学位论文.
    [49]Masui Y, Clarke HJ. Oocyte maturation. Int Rev Cytol,1979;57:185-282.
    [50]Nagahama Y, Yoshikuni M, Yamashita M, et al. Regulation of oocyte growth andmaturation in fish. Curr Top Dev Biol,1995;30:103-145.
    [51]Thomas P, Zhu Y, Pace M. Progestin membrane receptors involved in the meioticmaturation of teleost oocytes: a review with some new findings. Steroids,2002;67:511-517.
    [52]Hammes SR. Steroids and oocyte maturation-a new look at an old story. MolEndocrinol,2004;18:769-775.
    [53]Gill A, Jamnongjit M, Hammes SR. Androgens promote maturation and signaling inmouse oocytes independent of transcription: a release of inhibition model formammalian oocyte meiosis. Mol Endocrinol,2004;18:97-104.
    [54]Schultz RM, Montgomery RR, Ward-Bailey PF, et al. Regulation of oocyte maturationin the mouse: possible roles of intercellular communication, cAMP, and testosterone.Dev Biol,1983;95:294-304.
    [55]Dekel N,Beers WH. Rat oocyte maturation in vitro: relief of cyclic AMP inhibition bygonadotropins. Proc Natl Acad Sci U S A,1978;75:4369-4373.
    [56]Lieberman ME, Tsafriri A, Bauminger S, et al. Oocytic meiosis in cultured rat folliclesduring inhibition of steroidogenesis. Acta Endocrinol (Copenh),1976;83:151-157.
    [57]Baltsen M. Gonadotropin-induced accumulation of4,4-dimethylsterols in mouseovaries and its temporal relation to meiosis. Biol Reprod,2001;65:1743-1750.
    [58]Grondahl C,Hansen TH,Marky-Nielsen K, et al. Human oocyte maturation in vitro isstimulated by meiosis-activating sterol. Hum Reprod,2000;15Suppl,5:3-10.
    [59]Byskov AG, Andersen CY, Nordholm L, et al. Chemical structure of sterols thatactivate oocyte meiosis. Nature,1995;374:559-562.
    [60]Grondahl C, Ottesen JL, LessI M,et al. Meiosis-activating sterol promotes resumptionof meiosis in mouse oocytes cultured in vitro in contrast to related oxysterols. BiolReprod,1998;58:1297-1302.
    [61]Hegele-Hartung C, Grutzner M, Lessl M, et al. Activation of meiotic maturation in ratoocyte after treatment with follicular fluid meiosis-activating sterol in vitro and ex vivo.Biol Reprod,2001;64:418-424.
    [62]Hegele-Hartung C, Kuhnke J, Lessl M, et al. Nuclear and cytoplasmic maturation ofmouse oocytes after treatment with synthetic meiosis-activating sterol in vitro. BiolReprod,1999:61:1362-1372.
    [63]Marin Bivens CL, Grondahl C, Murray A, et al. Meiosis-activating sterol promotes themetaphaseΙto metaphase П transition and Preimplantation developmental competenceof mouse oocytes maturing in vitro. Biology of reproduction,2004;70:1458-1464.
    [64]Cho WK, Stern S, Biggers JD. Inhibitory effect of dibutyryl cAMP on mouse oocytematuration in vitro. J Exp Zool,1974;187:383-386.
    [65]Tomell J, Billig H, Hillensjo T. Resumption of rat oocyte meiosis is paralleled by adecrease in guanosine3’,5’-cyclic monophosphate (cGMP) and is inhibited bymicroinjection of cGMP. Acta Physiol Scand,1990;139:511-517.
    [66]Duckworth BC,Weaver JS,Ruderman JV. G2arrest in Xenopus oocytes depends onphosphorylation of cdc25by protein kinase A. Proc Natl Acad Sci USA,2002;99:16794-16799.
    [67]Bornslaeger EA, Mattei P, Schultz RM. Involvement of cAMP-dependent proteinkinase and protein phosphorylation in regulation of mouse oocyte maturation. Dev Biol,1986;114:453-462.
    [68]Downs SM. Specificity of epidermal growth factor action on maturation of the murineoocyte and cumulus oophorus in vitro. Biol Reprod, l989;41:371-379.
    [69]Eppig JJ. Maintenance of meiotic arrest and the induction of oocyte maturation inmouse ooeyte-granulosa cell complexes developed in vitro from preantral follicles.Biol Reprod,1991;45:824-830.
    [70]Lincoln AJ, Wickramasinghe D, Stein P, et al. Cdc25b phosphatase is required forresumption of meiosis during oocyte maturation. Nat Genet,2002;30:446-449.
    [71]Bornslaeger EA,Schultz RM. Regulation of mouse oocyte maturation: effect ofelevating cumulus cell cAMP on ooeyte cAMP levels. Biol Reprod,1985;33:698-704.
    [72]Webb RJ, Marshall F, Swann K, et al. Follicle-stimulating hormone induces a gapjunction-dependent dynamic change in [cAMP] and protein kinase a in mammalianoocytes. Dev Biol,2002;246:441-454.
    [73]Anderson E, Albertini DF. Gap junctions between the oocyte and companion folliclecells in the mammalian ovary. J Cell Biol,1976;71:680-686.
    [74]Mehlmann LM, Jones TL, Jaffe LA. Meiotic arrest in the mouse follicle maintained bya Gs protein in the oocyte. Science,2002;297:1343-1345.
    [75]Homer K, Livera G, Hinckley M, et al. Rodent oocytes express an active adenylylcyclase required for meiotic arrest. Dev Biol,2003;258:385-396.
    [76]Urner F, Hemnann WL, Baulieu EE, et al. Inhibition of denuded mouse oocyte meioticmaturation by forskolin, an activator of adenylate cyclase. Endocrinology,1983;113:1170-1172.
    [77]Olsiewski PJ, Beers WH. cAMP synthesis in the rat oocyte. Dev Biol,1983;100:287-293.
    [78]Downs SM, Buccione R, Eppig JJ. Modulation of meiotic arrest in mouse oocytes byguanyl nucleotides and modifiers of G-proteins. J Exp Zool,1992;262:391-404.
    [79]Kalinowski RR, Berlot CH, Jones TL, et al. Maintenance of meiotic prophase arrest invertebrate oocytes by a Gs protoin-mediated pathway. Dev Biol,2004;267: l-13.
    [80]Eggerickx D, Denef JF, Labbe O, et al. Molecular cloning of an orphanG-protein-coupled receptor that constitutively activates adenylate cyclase. Biochem J,1995;309(Pt3):837-843.
    [81]Mattioli M, Galeati G, Bacci ML, et al. Change sinmaturation-promoting activity in thecytoplasm of pig oocytes throughout maturation. Mol Reprod Dev,1991;30:119-125.
    [82]Prochazka R, Motlik J, Fulka J. Activity of maturation promoting factor in pig oocytesafter microinjection and serial transfer of maturing cytoplasm. Cell Differ Dev,1989;27:175-181.
    [83]Wu GM, Sun QY, Mao J, et al. High developmental competence of pig oocytes aftermeiotic inhibition with a specific M-phase promoting factor kinase inhibitor,butyrolactone Ι. Biol Reprod,2002;67:170-177.
    [84]Meinecke B, Krischek C. MAPK/ERK kinase (MEK) signalling is required forresumption of meiosis in culture cumulus-enclosed pig oocytes. Zygote,2003;11:7-16.
    [85]Dai Y, Lee C, Hutchings A, et al. Selective requirement for Cdc25C protein synthesisduring meiotic progression in porcine oocytes. Biol Reprod,2000;62:519-532.
    [86]Inoue M, Nait oK, Aoki F, et al. Activation of mitogen-activated protein kinase duringmeiotic maturation in porcine oocytes. Zygote,1995;3:265-271.
    [87]Sun QY, Lai L, Park KW, et al. Dynamic events are differently mediated bymicrofilaments,microtubules,and mitogen-activated protein kinase during porcineoocyte maturation and fertilization in vitro. Biol Reprod,2001;64:879-889.
    [88]Lee J, Miyano T, Moor RM. Localisation of phosPhorylated MAP kinase during thetransition from meiosis ΙtomeiosisПin pig oocytes. Zygote,2000;8:119-125.
    [89]Sun QY, Nagai T. Molecular mechanisms underlying pig oocyte maturation andfertilization. J Reprod Dev,2003;49:347-359.
    [90]Craig J, Zhu H, Dyce PW, et al. Leptin enhances oocyte nuclear and cytoplasmicmaturation via the mitogen-activated protein kinase pathway. Endoerinology,2004;145:5355-5363.
    [91]Inoue M, Naito K, Nakayama T, et al. Mitogen-activated protein kinase translocatesinto the germinal vesicle and induces germinal vesicle breakdown in porcine oocytes.Biol Reprod,1998:58:130-136.
    [92]Ohashi S, Naito K, Sugiura K, et al. Analyses of mitogen-activated protein kinasefunction in the maturation of porcine oocytes. Biol Reprod,2003;68:604-609.
    [93]Fan HY, Tong C, Lian L, et al. Characterization of ribosomal S6protein kinasep90rsk during meiotic maturation and fertilization in pig oocytes: mitogen-activatedprotein kinase-associated activation and localization. Biol Reprod,2003;68:968-977.
    [94]Fan HY, Tong C, Li MY, et al. Translocation of the classic protein kinase C isoforms inporcine oocytes: implications of protein kinase C involvement in the regulation ofnuclear activity and cortical granule exocytosis. Exp Cell Res,2002;277:183-191.
    [95]Fan HY, Li MY, Tong C, et al. Ihihibitory effects of cAMP and protein kinase C onmeiotic maturation and MAP kinase phosphorylation in porcine oocytes. Mol ReprodDev,2002;63:480-487.
    [96]Jung T, Lee C. Moor RM. Effects of protein kinase inhibitors on pig oocyte maturationin vitro. Reprod Nutr Dev,1992;32:461-473.
    [97]Coskun S, Lin YC. Mechanism of action of epidermal growth factor-induced porcineoocyte maturation. Mol Reprod Dev,1995;42:311-317.
    [98]Shimada M, Maeda T, Terada T. Dynamic changes of connexin-43,gap junctionalprotein,in outer layers of cumulus cells are regulated by PKC and PI3-kinase duringmeiotic resumption in porcine oocytes. Biol Reprod,2001;64:1255-1263.
    [99]Sun QY, Wu GM, Lai L, et al. Translocation of active mitochondria during pig oocytematuration,fertilization and early embryo development in vitro. Reproduction,2001;122:155-163.
    [100]Bing YZ, Naga T, Rodriguez-Martinez H. Effects of cysteamine, fsh andestradiol-17beta on invitro maturation of poreine oocytes. Theriogenology,2001;55:867-876.
    [101]Ding J, Foxcroft GR. Epidermal growth factor enhances oocyte maturation in pigs.Mol Reprod Dev,1994;39:30-40.
    [102]Singh B, Meng L, Rutledge JM, et al. Effects of epidermal growth factor andfollicle-stimulating hormone during in vitro maturation on cytoplasmic maturation ofporcine oocytes. Mol Reprod Dev,1997;46:401-407.
    [103]Wang W, Niwa K. Synergetic effects of epidermal growth factor and gonadotropinson the cytoplasmic maturation of pig oocytes in a serum-free medium. Zygote,1995:3:345-350.
    [104]Abeydeera LR, Wang WH, Cantley TC, et al. Presence of beta-mercaptoethanol canincrease the glutathione content of pig oocytes matured in vitro and the rate ofblastocyst development after in vitro fertilization. Theriogenology,1998;50:747-756.
    [105]Jeong BS, Yang X. Cysteine, glutathione, and Percoll treatments improve poreineoocyte maturation and fertilization in vitro. Mol Reprod Dev,2001:59(3):330-335.
    [106]Grupen CG, Nagashima H, Nottle MB. Cysteamine enhances in vitro development ofporcine oocytes matured and fertilized in vitro. Biol Reprod,1995;53:173-178.
    [107]Abeydeera LR, Wang WH, Cantley TC, et al. Development and viability of pigoocytes matored in a protein-free medium containing epidermal growth factor.Theriogenology,2000;54:787-797.
    [108]Yoshida M, Ishigaki K, Nagai T, et al. Glutathione concentration during maturationand after fertilization in pig oocytes: relevance to the ability of oocytes to form malepronucleus. Biol Reprod,1993;49:89-94.
    [109]Mori T, Amano T, Shimizu H. Roles of gap junctional communication of cumuluscells in cytoplasmic maturation of porcine oocytes cultured in vitro. Biol Reprod,2000;62:913-919.
    [110]Eppig JJ. Oocyte control of ovarian follicular development and function in mammals.Reprod,2001;122(6):829~838.
    [111]Buccione R, Schroeder A C, Eppig JJ. Interactions between somatic cells and germcells throughout mammalian oogenesis. Biol Reprod,1990;43(4):543-547.
    [112]Cecconi S, Rossi G, De Felici M, et al. Mammalian oocyte growth in vitro isstimulated by soluble factor(s) produced by preantral granulose cells and by Sertolicells.. Mol Reprod Dev,1996;44(4):540-546.
    [113]Vanderhyden BC, Telfer EE, Eppig JJ. Mouse oocytes promote proliferation ofgranulosa cells from preantral and antral follicles in vitro..Biol Reprod,1992;46(6):1196-1204.
    [114]McGrath SA, Esquela AF, Lee SJ. Oocyte-specific expression ofgrowth/differentiation factor-9. Mol Endocrinol,1995;9(l):131-136.
    [115]Dong J, Albertini D F, Nishimori K, et al. Growth differentiation factor-9is requiredduring early ovarian folliculogenesis. Nature,1996;383(6600):531-535.
    [116]Lanuza GM, Fischman ML, Baranao JL. Growth promoting activity of oocytes ongranulose cells is decreased upon meiotic maturation. Dev Biol,1998;197(1):129-139.
    [117]Li R, Norman RJ, Armstrong DT, et al. Oocyte-secreted factor(s) determinefunctional differences between bovine mural granulose cells and cumulus cells.. BiolReprod,2000;63(3):839-845.
    [118]Mcnatty KP, Makris A, Degrazia C, et al. The production of progesterone, androgens,and estrogens by granulose cells,thecal tissue,and stromal tissue from human ovariesin vitro. J Clin Endocrinol Metab,1979;49(s):687-699.
    [119]Sugiura K, Pendola FL, Eppig JJ. Oocyte control of metabolic cooperativity betweenoocytes and companion granulosa cells: energy metabolism. Dev Biol,2005;279(1):20~30.
    [120]Buccione R, Schoroeder AC, Eppig JJ. Interactions between somatic cells and germcells throughout mammalian oogenesis. Biol Reprod,1990;43(4):543~547.
    [121]Cecconi S, Ciccarelli C, Barberi M, et al.Granulosa cell-oocyte interactions. BiolReprod,2004;115(1): S19~S22.
    [122]Heng BC, Tong GQ, Ng SC. Effects of granulosa coculture onin vitrooocyte meioticmaturation within a putatively less competent murine model.Theriogenology,2004;62(6):1066~1092.
    [123]Simon AM, Goodenough DA, Li E, et al. Female infertileity in mice lackingconnexin37. Nature,1997;385(6616):525~529.
    [124]Aharoni D, Dantes A, Oren M, et al. cAMP-mediated signals as determinants forapoptosis in primary granulosa cells. Exp Cell Res,1995;218(1):271~282.
    [125]Yamamoto Y, Yoshizaki G, Takeuchi T, et al. Role of gap junctions and protein kinaseA during the development of oocyte maturational competence in Ayu (Plecoglossusaltivelis). Gen Comp Endocrinol,2008;155(3):789~795.
    [126]王建辰,章孝荣.动物生殖调控.合肥:安徽科学技术出版社,1998:65~66.
    [127]Gilchrist RB, Ritter LJ, Armstrong DT. Oocyte-somatic cell interactions duringFollicle development in mammals. Anim Reprod Sci,2004;82-83:431-446.
    [128]Albertini DF, Combelles CM, BenecchiE, et al. Cellular basis for paracrine regulationof ovarian follicle development. Reproduction,2001;121:647-653.
    [129]Combelles CM, Carabatsos MJ, Kumar TR,et al. Hormonal control of somatic celloocyte interactions during ovarian follicle development. Mol Reprod Dev,2004;69:347-355.
    [130]Wright CS, Becker DL, Lin JS, et al. Stage-specific and differential expression of gapjunctions in the mouse ovary: Connexin-specific roles in follicular regulation.Reproduction,2001;121:77-88.
    [131]Klinger F G, De FeliciM. In vitro development of growing oocytes from fetal mouseoocytes: Stage-specific regulation by stem cell factor and granulosa cells. Dev Bio j,2002;244:85-95.
    [132]Gittens JE, Barr KJ, Vanderhyden BC, etal. Interplay between paracrine signaling andgap junctional communication in ovarian follicles. J Cell Scj,2005;118:113-122.
    [133]Hussein TS, Froiland DA, Amato F, et al. Oocytes prevent cumulus cell apoptosis bymaintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J CellSci,2005;118:5257-5268.
    [134]Vanderhyden BC, Cohen JN, Morley P. Mouse oocytes regulate granulose cellsteroidogenesis. Endocrinology,1993;133:423-426.
    [135]Sutton ML, Cetica PD, Beconi MT, et al. Influence of oocyte-secreted factors andculture duration on the metabolic activity of bovine cumulus cell complexes.Reproduction,2003;126:27-34.
    [136]Buccione R, Vanderhyden BC, Caron PJ, et al. FSH-induced expansion of the mousecumulus oophorus in vitro is dependent upon a specific factor(s) secreted by theoocyte. Dev Biol,1990;138:16-25.
    [137]Salustri A, Yanagishita M, Hascall VC. Mouse oocytes regulate hyaluronic acidSynthesis and mucification by FSH-stimulated cumulus cells. Dev Biol,1990;138:26-32.
    [138]Dragovic RA, Ritter LJ, Schulz SJ, et al. Role of oocyte-secreted growthdifferentiation factor9in the regulation of mouse cumulus expansion. Endocrinology,2005;146:2798-2806.
    [139]McNatty KP, Moore LG, Hudson NL, et al. The oocyte and its role in regulatingovulation rate: a new paradigm in reproductive biology. Reproduction,2004;128:379-386.
    [140]Hussein TS, Thompson JG, Gilchrist RB. Oocyte-secreted factors enhance oocytedevelopmental competence. Dev Biol,2006;296:514-521.
    [141]Lin LF, Doherty DH, Lile JD, et al. GDNF: a glial cell line-derived neurotrophicfactor for midbrain dopaminergic neurons.Scienee,1993;260:1130-1132.
    [142]Buj-Bello A, Buchman VL, Horton A, et al. GDNF is an age-specific survival factorfor sensory and antonomic neurons. Neuron,1995;15:821-828.
    [143]Bennett DL, Boucher TJ, Armanini MP, et al. The glial cell line-derived neurotrophicfactor family receptor components are differentially regulated within sensory neuronsafter nerve injury. J Neurosci,2000;20:427-437.
    [144]Airaksinen MS, Titievsky A, Saarma M. GDNF family neurotrophic factor signaling:four masters, one servant? Mol Cell Neurosci,1999;13:313-325.
    [145]Manie S, Santoro M, Fusco A,et al. The RET receptor: function in development anddysfunction in congenital malformation. Trends Genet,2001;17:580-589.
    [146]Airaksinen MS, Saarma M. The GDNF family: signalling, biological functions andtherapeutic value. Nat Rev Neurosci,2002;3:383-394.
    [147]Kotzbauer PT, Lampe PA, Heuckeroth RO, et al. Neurturin, a relative ofglial-cell-line-derived neurotrophic factor. Nature,1996;384(6608):467-470.
    [148]Milbrandt J, de Sauvage FJ, Fallrner TJ, et al. Persephin,a novel neurotrophic factorrelated to GDNF and neurturin. Neuron,1998;20(2):245-253.
    [149]Baloh RH, Tansey MG, Lampe PA, et al. Artemin, a novel member of the GDNFligand family, supports peripheral and central neurons and Signals through theGFRalpha3-RET receptor complex. Neuron,1998;21(6):1291-1302.
    [150]Saarma M, Sariola H. Other neurotrophic factors: glial cell line-derived neurotrophicfactor(GDNF). Microse Res Teeh,1999;45:292-302.
    [151]Neff F, Noelker C, Eggert K, et al. Signaling pathways mediate the neuroprotectiveeffects of GDNF. Ann N Y Acad Sci,2002;973:70-74.
    [152]Trupp M, Ryden M, Jornvall H, et al. Peripheral expression and biological activitiesof GDNF,a new neurotrophic factor for avian and mammalian peripheral neurons. JCell Biol,1995;130(l):137-148.
    [153]Meng X, Lindahl M, Hyvonen ME, et al. Regulation of cell fate decision ofundifferentiated spermatogonia by GDNF. Science,2000;287(5457):1489-1493.
    [154]Golden JP, Demaro JA, Osborne PA, et al. Expression of neurturin, GDNF, andGDNF fanlily-receptor mRNA in the developing and mature mouse. Exp Neurol,1999;158(2):504-528.
    [155]Jing S, Wen D, Yu Y, et al. GDNF-induced activation of the ret protein tyrosine kinaseis mediated by GDNFR-alPha, a novel receptor for GDNF. Cell,1996;85(7):1113-1124.
    [156]Baloh RH, Tansey MG, Golden JP, et al. TrmR2, a novel receptor that mediatesneurturin and GDNF signaling through Ret. Neuron,1997;18(5):793-802.
    [157]Naveilhan P, Baudet C, Mikaels A, et al. Expression and regulation of GFRalpha3, aglial cell line-derived neurotrophic factor famlily receptor. Proc Natl Acad Sci USA,1998,95(3):1295-1300.
    [158]Angrist M, Jing S,Bolk S, et al. Human GFRA1: cloning, mapping, genomicstructure, and evaluation as a candidate gene for Hirschsprung disease susceptibility.Genomics,1998;48(3):354-362.
    [159]Sanicola M, Hession C, Worley D, et al. Glial cell line-derived neurotrophicfactor-dependent RET activation can be mediated by two different cell-surfaceaccessory proteins. Proc Natl Acad Sci USA,1997;94(12):6238-6243.
    [160]Dey BK, Wong YW, Too HP. Cloning of a novel murine isoform of the glial cellline-derived neurotrophic factor receptor. Neuroreport,1998;9(l):37-42.
    [161]de Graaff E, Srinivas S, Kilkenny C, et al. Differential activities of the RET tyrosinekinase receptor isoforms during mammalian embryogenesis. Genes Dev,2001;15(18):2433-2444.
    [162]Lorenzo MJ, Gish GD, Houghton C, et al. RET altemate splicing influences theinteraction of aetivated RET with the SH2and PTB domains of Shc, and the SH2domain of Grb2. Oncogene,1997;14(7):763-771.
    [163]Sariola H, Saarma M. Novel functions and signaling pathways for GDNF. J Cell Sci,2003;116:3855-3862.
    [164]Kawamura K, Ye Y, Kawamura N, et al.Completion of Meiosis Ⅰof preovulatoryoocytes and facilitation of preimplantation embryo development by glial cellline-derived neurotrophic factor. Dev Biol,2008;315(1):189-202.
    [165]Farhi J, Ao A, Fisch B, et al. Glial cell line-derived neurotrophic factor (GDNF) andits receptors in human ovaries from fetuses, girls, and women. Fertil Steril,2010;93(8):2565-2571.
    [166]Poteryaev D,Titievsky A,Sun Y F,et al. GDNF triggers a novel ret-independent Srckinase family-coupled signaling via a GPI-linked GDNF receptor alphal..FEBS Lett,1999,463(l-2):63-66.
    [167]Linher K,Wu D,Li J. Glial cell line-derived neurotrophic factor: an Intraovarianfactor that enhances oocyte developmental competence in vitro.. Endocrinology,2007,148(9):4292-4301.
    [168]Nurse P. Universal control mechanism regulating onset of M-Phase.. Nature,1990,344(6266):503-508.
    [169]Labbe J C,Capony J P,Caput D,et al. MPF from starfish oocytes at first meioticmetaphase is a heterodimer containing one molecule of cdc2and one molecule ofcyclinB.. EMBO J,1989,8(10):3053-3055.
    [170]Hampl A,Eppig JJ.Translational regulation of the gradual increase in histone H1kinase activity in maturing mouse oocytes. Mol Reprod Dev,1995;40:9-15.
    [171]Polanski Z,Ledan E,Brunet S,Louvet S,Verlhac MH,Kubiak JZ,Maro B. CyClinsynthesis controls the progression of meiotic maturation in mouse oocytes.Development,1998;125:4989-4997.
    [172]Aravindakshan J,Chen X L,Sairam M R. Age-dependent bimodal GDNF regulationduring ovarian tumorigenesis in follitropin receptor mutant mice.. Bioehem BiophyRes Commun,2006,351(2):507-513.
    [173]Tadokoro Y,Yomogida K,Ohta H,et al. Homeostatic regulation of germinal stemcell proliferation by the GDNF/FSH pathway.. Mech Dev,2002,113(l):29-39.
    [174]Wu Z, Templeman J L, Smith R A,et al. Effects of glial cell line-derived neurotrophicfactor on isolated developing mouse Sertoli cells in vitro. J Anat,2005,206:175-184.
    [175]Megrath S A, Esquela A F, Lee S J. Ooeyte-specific expression ofgrowth/differentiation factor-9. Mol Endocrinol,1995,9(l):131-136.
    [176]Salustri A,Yanagishita M,Underhill C B,et al. Localization and synthesis ofhyaluronic acid in the cumulus cells and mural granulosa cells of the preovulatoryfollicle. Dev Biol,1992,151(2):541-551.
    [177]Dong J, Albertini D F, Nishimori K, et al. Growth differentiation factor-9is requiredduring early ovarian folliculogenesis. Nature,1996,383(6600):531-535.
    [178]许丽绵,罗颂平.排卵障碍的病机探讨.中国中医药信息杂志,2003,10(3):4-5.
    [179]连方,赵斌,吕雪梅等.二至天癸颗粒对体外受精-胚胎移植患者卵泡液代谢组学及Ca2+浓度的影响.中国中西医结合杂志,2010,30(1):22-23.
    [180]李秀芳.补肾中药对卵母细胞ras蛋白活性影响的研究.2008,山东中医药大学硕士论文.
    [181]连方,孙振高,穆琳.二至天癸颗粒提高卵细胞质量与小鼠卵巢内IGF-1RmRNA表达量关系的研究.中国中西医结合杂志,2006;26(5):431-432.
    [182]连方,滕依丽,张建伟,等.二至天癸颗粒对体外受精-胚胎移植周期人卵泡液白血病抑制因子和卵细胞质量的影响.中国中西医结合杂志,2007;27(11):976-977.
    [183]张建伟,连方,孙振高,等.中药二至天癸颗粒对控制性超排卵周期卵泡液IL-1β、IL-6以及对胚胎质量的影响.生殖与避孕,2007;27(11):714-716.
    [184]王琳,连方,马凤梅,等.二至天癸颗粒含药血清对初老小鼠卵巢颗粒细胞分泌功能的影响,中国中医药信息杂志,2008;15(12):47-48.
    [185]丰有吉,沈铿.妇产科学,北京:人民卫生出版社,2001,第1版:394.
    [186]中国中西医结合学会妇产科专业委员会第三届学术会议.子宫内膜异位症、妊娠高血压综合征及女性不孕症的中西医诊疗标准.中西医结合杂志,1991;11(6):376-378.
    [187]张玉珍.中医妇科学.北京:上中国中医药出版社,2002,第1版:323-324.
    [188]沈自尹等整理.中医虚证辨证参考标准.中西医结合杂志,1986;6(10):598.
    [189]卢惠霖,卢光琇.人类生殖与生殖工程,郑州:河南科学技术出版社,2001,第1版:109-110.
    [190]孟励.胚胎评分标准.齐鲁医院第三届助孕技术研讨会讲义(2002)(内部资料).
    [191]苗明三.实验动物和动物实验技术,北京:中国中医药出版社,2003,第1版:143-144
    [192]李靖,李炫诚,吴云霞.确定小鼠动情周期的三种方法.实验动物科学,2007;24(3):63-64.
    [193]罗元恺.罗元恺论医集,北京:人民卫生出版社,1990,第1版:17-20.
    [194]罗元恺.肾气-天癸-冲任的探讨及其与妇科的关系.上海中医药杂志,1983;1:11-13.
    [195]李健美,谈勇.夏桂成生殖节律理论探析.江西中医药,2007;38(4):10-11.
    [196]沈自尹.肾的研究进展与总结.中国医药学报,1988;3(3):56-60.
    [197]沈自尹.中医肾的古今论.中医杂志,1997;38(1):48.
    [198]俞瑾.肾主生殖与生命网络研究中的启示.中国中西医结合杂志,2000;20(6):409-411.
    [199]俞瑾.生命网络调控与女性健康-新的医学思路.中国中西医结合杂志,2007;27(11):1033-1037.
    [200]连方,王琳,张建伟,等.二至天癸方对高龄不孕妇女卵巢反应性的影响.中国中西医结合杂志,2006;26(8):685-688.
    [201]沈皓,蔡德培,陈伯英.补肾中药对下丘脑-垂体促性腺机能的影响.中西医结合学报,2004;2(1):53-57.
    [202]杜惠兰,宋翠淼,马惠荣,等.补肾固冲系列方对雄激素所致无排卵大鼠垂体的影响.中国中医药科技,2002;9(2):100-101.
    [203]李桂娴,史小林,张亚滨,等.中草药促排卵汤对小鼠卵巢及子宫内膜作用的组织化学研究.生殖与避孕,1995;15(6):429-433.
    [204]Kawamura K, Ye Y, Kawamura N, et al. Completion of Meiosis Ⅰof preovulatoryoocytes and facilitation of preimplantation embryo development by glial cellline-derived neurotrophic factor. Dev Biol,2008;315(1):189-202.
    [205]Dole G, Nilsson EE, Skinner MK. Glial-derived neurotrophic factor promotes ovarianprimordial follicle development and cell-cell interactions during folliculogenesis.Reproduction,2008;135(5):671-682.
    [206]Linher K,Wu D,Li J. Glial cell line-derived neurotrophic factor: an Intraovarianfactor that enhances oocyte developmental competence in vitro. Endocrinology,2007;148(9):4292-4301.
    [207]Farhi J,Ao A,Fisch B,et al. Glial cell line-derived neurotrophic factor (GDNF) andits receptors in human ovaries from fetuses, girls, and women. Fertil Steril,2010;93(8):2565-71.
    [208]Poteryaev D, Titievsky A, Sun Y F, et al. GDNF triggers a novel ret-independent Srckinase family-coupled signaling via a GPI-linked GDNF receptor alphal. FEBS Lett,1999;463(l-2):63-66.
    [209]Nurse P. Universal control mechanism regulating onset of M-Phase. Nature,1990;344(6266):503-508.
    [210]Labbe J C, Capony J P, Caput D, et al. MPF from starfish oocytes at first meioticmetaphase is a heterodimer containing one molecule of cdc2and one molecule ofcyclinB. EMBO J,1989;8(10):3053-3055.
    [211]Enomoto H, Araki T, Jacklnan A, et al. GFR alphal-deficient mice have deficits in theenteric nervous system and kidneys. Neuron,1998;21:317-324.
    [212]Moore MW, Klein RD, Farinas I, et al. Renal and neuronal abnormalities in micelacking GDNF. Natore,1996;382:76-79.
    [213]Pichel JG, Shen L, Sheng HZ, et al. Defects in enteric innervation and kidneydevelopment in mice lacking GDNF. Nature,1996;382:73-76.
    [214]Sehuchardt A, D’Agati V, Larsson-Blomberg L, et al. Defects in the kidney andenteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature,1994;367:380-383.
    [215]李璘,丁安伟,孟丽.女贞子多糖的免疫调节作用研究.中药药理与临床,2001;17(2):11-12.
    [216]娄艳,陈志良,王春霞.齐墩果酸对更年期大鼠作用的实验研究.中药材,2005;28(7):584-587.
    [217]Zhang H, Xing WW, Li YS, et al. Effects of a traditional Chinese herbal preparationon osteoblasts and osteoclasts. Maturitas,2008;61(4):334-339.
    [218]胡慧娟,杭秉茜,刘勇.旱莲草对免疫系统的影响.中国药科大学学报,1992;23(1):55-57.
    [219]王雪梅,张建胜,戴云,等.旱莲草总黄酮的提取及其体外抗氧化活性研究.时珍国医国药,2009;20(2):356-358.
    [220]朱玉云,高允生,张峰,等.旱莲草水提物对低氧模型小鼠的影响.医药导报,2006;(25)1:12-15.
    [221]秦达念,佘白蓉,佘运初.菟丝子黄酮对实验动物及人绒毛组织生殖功能的影响.中药新药与临床药理,2000;11(6):349-351.
    [222]朱金凤,余运初,周楚华.寿胎丸加味治疗先兆流产的临床观察及实验研究.中西医结合杂志,1987;7(7):407-409.
    [223]王建红,王敏章,欧阳栋,等.菟丝子黄酮对应激雌性大鼠下丘脑β-EP与腺垂体FSH、LH的影响.中药材,2002;25(12):886-887.
    [224]崔瑞琴,丁樱.菟丝子黄酮对雷公藤多苷所致生殖损伤雌鼠卵巢损伤表达的影响.辽宁中医药大学学报,2009;11(8):246-247.
    [225]王晓敏,王建红,伍庆华,等.菟丝子黄酮对去势雌性大鼠血清雌激素水平和血管平滑肌细胞的影响.天津医药,2005;33(10):650-651.
    [226]夏誉薇,张树成,蔡连香.女贞孕育汤对不孕症子宫内膜组织形态、雌孕激素受体和血管生成因子表达的影响.中国中医药信息杂志,2004;11(1):26-28.
    [227]施仁潮.枸杞子,杭州:浙江科学技术出版社,2002,第1版:12-22.
    [228]邹俊华,梁红业,闵凌峰,等.枸杞子的抗衰老功效及增强DNA修复能力的作用.中国临床康复,2005;9(11):132-133.
    [229]周金黄,王筠默.中药药理学,上海:上海科学技术出版社,1986,第1版:268.
    [230]朱家恩,白延斌,蔺美玲,等.白芍对去卵巢大鼠体重、血脂及抗氧化能力的影响.中国老年医学杂志,2009;29(1):135-137.
    [231]孔增科,周海平,付正良.常用中药药理与临床应用,呼和浩特:内蒙古科学技术出版社,2005,第1版:429.
    [232]周金黄,王筠默.中药药理学,上海:上海科学技术出版社,1986,第1版:190.
    [233]刘浩,金志魁,耿春惠,等.卵巢刺激周期促性腺激素用量对卵母细胞形态及临床结局的影响.现代妇产科进展,2006;15(4):295-298.
    [234]刘春喜,苏迎春,孙莹璞,等.促性腺激素使用天数对体外授精-胚胎移植及妊娠结局的影响.现代妇产科进展,2010;19(4):289-291.
    [235]Mettle L, Tavmergen EN. Significance of oestradiol values in IVF-ET under acombined GnRH-analogue desensitization for the outcome of pregnancies. HumReprod,1989;4(8suppl):59-64.
    [236]李美芝,王蔼明.妇科内分泌学,北京:人民军医出版社,2001:69.
    [237]Schramm RD, Bavister BD. Effect of granulosa cells and gonadotro phins on meioticand development competence of oocytes in vitro in non-stimulated rhesus monkeys.Hum Reprod,1995;10:887.
    [238]Cunha-Filho JS, Gross JL, Bastos-de-Souza CA, et a1. Physiopathological aspects ofcorpus luteum defect in infertile patients with mild/minimal endometriosis. J AssistReprod Genet,2003;20(3):117-121.
    [239]Harlow CR, Cahill DJ, Maile LA, et al. Reduced preovulatory granulosa cellsteroidogenesis in women with endometriosis.J Clin Endocrinol Metab,1996;81(2):426-429.
    [240]Hampl A, Eppig JJ. Translational regulation of the gradual increase in histone H1kinase activity in maturing mouse oocytes. Mol Reprod Dev,1995;40:9-15.
    [241]Polanski Z, Ledan E, Brunet S, et al. CyClin synthesis controls the progression ofmeiotic maturation in mouse oocytes. Development,1998;125:4989-4997.
    [242]连方,辛明蔚,穆琳,等.卵巢为奇恒之脏之我见.天津中医药,2007;24(2):125-126.
    [1]Lin LF, Doherty DH, Lile JD, et al. GDNF: a glial cell line-derived neurotrophic factorfor midbrain dopaminergic neurons.Scienee,1993;260:1130-1132.
    [2]Buj-Bello A,Buchman VL,Horton A,et al.GDNF is an age-specific survival factor forsensory and antonomic neurons.Neuron,1995;15:821-828.
    [3]Bennett DL,Boucher TJ,Armanini MP,et al. The glial cell line-derived neurotrophicfactor family receptor components are differentially regulated within sensory neuronsafter nerve injury. J Neurosci,2000;20:427-437.
    [4]Airaksinen M S, Titievsky A, Saarma M. GDNF family neurotrophic factor signaling:four masters, one servant?.Mol Cell Neurosci,1999;13:313-325.
    [5]Manie S, Santoro M, Fusco A,et al. The RET receptor: function in development anddysfunction in congenital malformation. Trends Genet,2001;17:580-589.
    [6]Airaksinen MS, Saarma M. The GDNF family: signalling, biological functions andtherapeutic value. Nat Rev Neurosci,2002;3(5):383-394.
    [7]Golden JP, Demaro JA, Osborne PA, et al. Expression of neurturin, GDNF, And GDNFfanlily-receptor mRNA in the developing and mature mouse. Exp Neurol,1999;158(2):504-528.
    [8]Widenfalk J, Parvinen M, Lindqvist E, et al. Neurturin, RET, GFRalpha-1andGFRalpha-2, but not GFRalpha-3, mRNA are expressed in mice gonads. Cell TissueRes,2000;299(3):409-415.
    [9]Jing S, Wen D, Yu Y, et al. GDNF-induced aetivation of the ret protein tyrosine kinase ismediated by GDNFR-alpha, a novel receptor for GDNF. Cell,1996;85(7):1113-1124.
    [10]Baloh RH, Tansey MG, Golden JP, et al. TrnR2, a novel receptor that mediatesneurturin and GDNF signaling through Ret. Neuron,1997;18(5):793-802.
    [11]Naveilhan P, Baudet C, Mikaels A, et al. Expression and regulation of GFRalPha3,aglial cell line-derived neurotrophic factor family receptor. Proc Natl Acad Sci USA,1998,95(3):1295-1300.
    [12]Thompson J, Doxakis E, Pinon LG, et al. GFRalpha-4, a new GDNF family receptor.Mol Cell Neurosei,1998;11(3):117-126.
    [13]Garces A, haase G, Airaksinen MS, et al. GFRalpha is required for development ofdistinct subpopulations of motoneuron. J Neurosci,2000;20:4992-5000
    [14]Matsuo A, Nakarnura S, Akiguehi I. Immunohistochemical localization of familyreceptor alpha-1in the rat brain:confirmation of expression in various neuronalsystems. Brain Res,2000;859:57-71
    [15]Yan Q, Matheson C, Lopez OT, et al. In vivo neurotrophic effects of GDNF onneonatal and adult facial motor neurons. Nature,1995;373:341-344.
    [16]Ho TW, Bristol LA, Coccia C, et al.TGF beta trophic factors differentially modulatemotor axon outgrowth and protection from excitotoxicity. Exp Neurol,2000;161:664-675.
    [17]Naveihan P, Elshamy WM, Ernfors P. Differential regulation of mRNAs for GDNF andits receptors Ret and GDNFR alpha after sciatic nerve Iesion in the mouse. Eur JNeurosci,1997;9:1450-1460.
    [18]Bennett DL, Michael GJ, Ramachandran N, el ta. A distinct subgroup of small DRGcells express GDNF receptor components and GDNF is protective for these neuronsafter nerve inury. J Neurosci,1998;18:3059-3072.
    [19]Lin LH, Doherty DH, Life JD, et al. GDNF:A glial cell line-derived neurotrophicfactor for midbrain dopaminergic neurons. Seience,1993;260:1130-1132.
    [20]Sehatz DS, Kaufmann WA, Saria A, et al. Dopamine neurons in a simpleGDNF-treated meso-striatal organotypic co-eulture model. Exp Brain Res,1999;127:270-278.
    [21]Connor B, Kozlowski DA, Sehallert T, et al. Differential effects of glial cellline-derived neurotrophic factor (GDNF) in the striatum and substantia nigra of theaged Parkinsonian rat. Gene Therapy,1999;6:1936-1951.
    [22]Wang Y, Lin SZ, Chiou AL, et al. Glial cell line-derived neurotrophic factor protectsischemia-induced injury in the cerebral cortex. J Neurosci,1997;17:4341-4348.
    [23]Sakurai M, Abe K, Hayashi T, et al. Adenovirus-mediated glial cell Iine-derivedneurotrophic factor gene delivery reduces motor neuron injury after transient spinalcord ischemia in rabbits. J Thorac Cardiovasc Surg,2000;120:1148-1157.
    [24]Fang M, Wang Y, Liu HX, et al. Decreased GDNF expression in dorsal spinal cord ofunilateral arthritic rat. Neuroreport,2000;11:737-741.
    [25]Utsumi H, Chiba H, Kamimura Y, et al.Expression of GFRalPha-l, receptor forGDNF,in rat brain capillary during postnatal development of the BBB. Am J PhysiolCell Physiol,2000;279:361-368.
    [26]Granholm A C, Srivastava N, Mott JL, et al. Morphological alterations in theperipheral and central nervous systems of mice lacking glial cell line-derivedneurotrophic factor (GDNF): immunohistochemical studies. J Neurosci,1997;17:1168-1178.
    [27]Mandel RJ, Snyder RO, Leff SE. Recombinant adeno-associated viral vector-mediatedglial cell line-derived neurotrophic factor gene transfer protects nigral dopatnineneurons after onset of progressive degeneration on a rat model of Parkinson’s disease.Exp Neurol,1999;160:205-214.
    [28]Davidoff M S, Middendorff R, Koeva Y, et al. Glial cell line-derived neurotrophicfactor (GDNF) and its receptors GFRalpha-1and GFRalpha-2in the human testis. ItalJ Anat Embryol,2001;106:173-180.
    [29]Trupp M, Ryden M, Jornvall H, et al. Peripheral expression and biological activities ofGDNF, a new neurotrophic factor for avian and mammalian peripheral neurons. J CellBiol,1995;130:137-148.
    [30]Viglietto G, Dolci S, Bruni P, et al. Glial cell line-derived neutrotrophic factor andneurturin can act as paracrine growth factors stimulating DNA synthesis ofRET-expressing spermatogonia. Int J Oncol,2000;16:689-694.
    [31]Meng X, Pata I, Pedrono E, et al. Transient disruption of spermatogenesis byderegulated expression of neurturin in testis. Mol Cell Endocrinol,2001;184:33-39.
    [32]Golden J P, DeMaro JA, Osborne PA,etal. Expression of neurturin, GDNF, and GDNFfamily-receptor mRNA in the developing and mature mouse. Exp Neurol,1999;158:504-528.
    [33]Wu Z, Templeman JL, Smith RA, et al. Effects of glial cell line-derived neurotrophicfactor on isolated developing mouse Sertoli cells in vitro. J Anat,2005;206:175-184.
    [34]Dong J, Albertini DF, Nishimori K, et al. Growth differentiation factor-9is requiredduring early ovarian folliculogenesis. Nature,1996;383(6600):531-535.
    [35]Lanuza GM, Fischman ML, Baranao JL. Growth Promoting activity of oocytes ongranulosa cells is decreased upon meiotic maturation. Dev Biol,1998;197(1):129-139.
    [36]Albertini DF, Anderson E. The appearance and structure of intercellular connectionsduring the ontogeny of the rabbit ovarian follicle with particular reference to gapjunctions. J Cell Biol,1974;63(l):234-250.
    [37]Mestwerdt W A M L. Morphology and morphometry of human preovulatory folliclescollected during LH surge with emphasis on granulose cells. Laneaster, UK: MTPPress Ltd,1982:233.
    [38]Whitman GF, Boldt JP, Martinez JE, et al. Flow cytometric analysis of induced humangraafian follicles. I. Demonstration and sorting of two luteinized cell populations.Fertil Steril,1991;56(2):259-264.
    [39]Megrath SA, Esquela AF, Lee SJ. Ooeyte-specific expression of growth/differentiationfactor-9. Mol Endocrinol,1995;9(l):131-136.
    [40]Salustri A, Yanagishita M, Underhill CB, et al. Localization and synthesis ofhyaluronic acid in the cumulus cells and mural granulosa cells of the preovulatoryfollicle. Dev Biol,1992;151(2):541-551.
    [41]段翠密,李恩中,张世庆,等.小鼠睾丸gdnf基因的克隆及其在支持细胞中的表达.中华男科学杂志;2007:13(11):975-978.