蛇床子素对AD大鼠学习记忆的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默病(Alzheimer’s disease,AD)是发生于老年期和老年前期的一种以进行性痴呆为特征的脑慢性退行性疾病,临床主要表现为记忆力减退、智能障碍及行为情绪等的异常改变。统计表明,65岁左右的老年人中AD发病率为10%,85岁以上的老年人中发病率为47%,AD患者的存活期预计可达到20年,但大多数病例在确诊后仅能存活8~10年,它已经成为人类的第四号杀手。随着人口老龄化进程加快,开发对AD有效的干预措施和治疗药物已成为AD研究的热点,也是一个倍受关注的社会问题。
     AD的发病机制一般包括胆碱功能降低,氧化应激,淀粉样肽的级联反应,炎症介质,甾体类激素减少。另外兴奋性毒性、细胞凋亡(apoptosis)、细胞周期调节异常也与AD关系密切。神经生化学揭示中枢氨基酸类神经递质与学习和记忆密切相关,Asp和Glu属于兴奋性氨基酸,Gly和GABA属于抑制性氨基酸,它们对维持神经系统的兴奋和抑制平衡起重要作用。AD时中枢各种氨基酸水平发生变化,尤其Glu和GABA间的平衡被破坏,是导致神经元损伤的关键因素。细胞凋亡是AD发生神经元退行性死亡的重要途径,因此干扰细胞凋亡可能成为治疗AD新方法。细胞凋亡受多种基因的调控,Bcl-2基因家族是很重要的调控基因,包括众多成员,其中Bax在凋亡中起促进作用,Bcl-2则拮抗细胞凋亡。Bcl-2/Bax组成一个平衡体系,Bax过剩细胞凋亡加速,Bcl-2过多则细胞凋亡被抑制。近年来,随着对细胞周期及其调控研究的深入,人们发现AD发病机制与细胞周期调控密切相关,提出了AD发病机制细胞周期假说:一旦细胞周期调控的某一环节出现异常,成年人中枢神经系统的神经元可再次进入细胞周期,但处在有丝分裂末期企图重新进入细胞周期的神经元将出现细胞周期停滞,最终形成AD某种病理特征或神经元凋亡。
     蛇床子素(osthole,Ost),7-甲氧基-8-异戊烯基-香豆素,传统中药蛇床子的组成成分,具有多种的药理作用,包括抗氧化、抗炎、抗肿瘤、抗血小板、雌激素样和抗疼痛等作用,目前已在临床上用于治疗皮肤病和性病多年。我们多年来一直从事蛇床子素改善学习记忆,抗衰老的研究,目前研究表明蛇床子素能通过抑制脑内乙酰胆碱酯酶(acetylcholinesterase,AChE)活性、增强谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-PX)和超氧化物歧化酶(superoxide dismutase,SOD)活性而清除氧自由基(oxygen free radical,OFR),改善痴呆模型小鼠学习记忆障碍,且毒副作用小,能透过血脑屏障(blood-brain barrier,BBB),有望成为预防和治疗AD的有效药物。
     基于以上研究背景,本研究采用行为学实验和电生理学实验的方法,研究蛇床子素对Aβ25-35诱导AD大鼠认知障碍及中枢可塑性的影响;采用柱前衍生化高效液相色谱紫外检测法研究蛇床子素对Aβ25-35诱导的AD大鼠海马中氨基酸类神经递质水平变化;采用HE染色、TUNEL染色、免疫组织化学染色方法和流式细胞技术研究蛇床子素对Aβ25-35诱导的AD大鼠海马神经元凋亡、凋亡相关蛋白表达及细胞周期的影响。具体内容如下:1蛇床子素对AD大鼠学习记忆的影响
     目的:采用一次性侧脑室注射聚集态Aβ_(25-35)建立AD大鼠模型,并以不同剂量的蛇床子素进行干预,观察蛇床子素对AD模型大鼠认知障碍的影响。
     方法:SD大鼠随机分4组:生理盐水对照组(control group),模型组(model group),蛇床子素12.5mg·kg~(~(-1))组(Ost1group),蛇床子素25.0mg·kg~(-1)组(Ost2group)。实验d1,模型组和蛇床子素组大鼠侧脑室注射聚集态Aβ25-35建立AD大鼠模型,对照组大鼠注射生理盐水。造模后对照组和模型组大鼠腹腔注射(peritoneal injection,ip)溶剂1mL·kg~(-1),蛇床子素组大鼠分别给予不同剂量蛇床子素,所有动物都连续给药14d。造模后d10-d14进行Morris水迷宫(morris water maze,MWM)实验,大鼠训练4d(d1-d4),记录动物找到站台的时间(逃避潜伏期)。最后一天训练后24h(d5),移走站台进行测试实验,记录大鼠在目标象限停留时间和穿过站台位点的次数。
     结果:随着训练天数的增加,各实验组潜伏期均不断缩短;d1各组间潜伏期相比无差异;模型组与对照组相比,潜伏期从实验d2起延长,目标象限搜寻时间百分率和穿过站台次数减少;蛇床子素组与模型组相比,d2起潜伏期明显缩短,目标象限搜寻时间百分率和穿过站台次数增加。
     小结:一次性侧脑室注射聚集态Aβ_(25-35),成功建立AD大鼠模型,出现空间学习记忆能力减退,蛇床子素具有改善AD大鼠学习记忆障碍的作用。2蛇床子素对AD大鼠海马HFS诱导LTP的影响
     目的:采用一次性侧脑室注射聚集态Aβ_(25-35)建立AD大鼠模型,并以不同剂量的蛇床子素进行干预,观察蛇床子素对AD模型大鼠中枢突触可塑性的影响。
     方法:大鼠造模d14,参照Pellegrino大鼠脑立体定位图谱中的定位方法定位刺激电极和记录电极,采用在体细胞外记录LTP的电生理学方法,观察蛇床子素对AD大鼠海马高频刺激(high-frequency stimulation,HFS)诱导的长时程增强(long-term potentiation, LTP)现象的影响。
     结果:各组在给予HFS后,PS幅值在观察的60min内明显增加,并形成LTP现象,但每组HFS后PS幅值增长的幅度不同;与对照组相比,模型组在HFS后60min内各时间点PS幅值减少;而蛇床子素治疗组较模型组PS幅值在高频刺激后的每个时间点升高。
     小结:AD模型大鼠海马出现HFS诱导LTP抑制,蛇床子素增强海马神经元的突触可塑性,逆转AD大鼠海马HFS诱导LTP的抑制,从细胞突触水平表明蛇床子素具有改善AD大鼠学习记忆障碍的作用。3蛇床子素对AD大鼠海马氨基酸水平的影响
     目的:观察AD大鼠海马氨基酸类神经递质水平变化,从中枢Glu/GABA学习记忆调节系统探讨蛇床子素改善AD大鼠学习记忆障碍的作用机制。
     方法:大鼠造模d14,采用柱前衍生化高效液相色谱法测定Asp, Glu,Gly和GABA含量,紫外检测波长是360nm。麻醉状态下脱臼处死大鼠,立即冰上分离海马并用甲醇和水(体积比1:1)制成10%匀浆,4℃离心10min (10000rpm),留存上清在-80℃冰箱用于测定氨基酸含量。测定前将标本复溶,以10000rpm低温高速离心10min,取上清200μL;加入200μL乙腈,混匀,10000rpm低温高速离心10min,沉淀蛋白;取上清液+200μL碳酸氢钠+100μL2,4-二硝基氟苯(DNFB),混匀;水浴60℃,暗中衍生1h;过滤后进样20μL,测定氨基酸含量。
     结果:与对照组比较,模型组大鼠海马中Asp、Glu、Gly和GABA含量及Glu/GABA比值显著升高,4种氨基酸中谷氨酸升高最为明显;与模型组比较,蛇床子素各剂量组Glu含量显著降低,Asp、Gly和GABA含量下降,但不具有统计学意义,蛇床子素各剂量组Glu/GABA比值较模型组显著降低,但都高于对照组。
     小结:一次性侧脑室注射Aβ_(25–35)建立AD大鼠模型,可导致大鼠海马内氨基酸类递质代谢紊乱,尤其是Glu水平和Glu/GABA比值显著升高,这将导致兴奋性毒性。蛇床子素可通过影响Glu/GABA学习记忆调控系统而抑制Glu的兴奋性毒性,对中枢神经元具有保护作用。
     4蛇床子素对AD大鼠海马神经元凋亡的影响
     目的:采用一次性侧脑室注射聚集态Aβ_(25-35)建立AD大鼠模型,并以不同剂量的蛇床子素进行干预,观察蛇床子素对AD大鼠海马细胞凋亡、凋亡相关蛋白表达及细胞周期的影响。
     方法:大鼠造模d14麻醉,肝素化生理盐水及4%多聚甲醛进行心脏灌注固定30min,快速断头取脑,切成厚度约3mm的组织块,4%多聚甲醛固定24h。然后进行脱水、透明、浸蜡、包埋、切片、贴片,分别进行苏木素-伊红染色、Bcl-2和Bax蛋白免疫组化法染色、TUNEL法染色。在光镜下观察切片并记录结果。另一部分大鼠在造模后d14断头处死取海马组织,制备单细胞悬液,70%预冷乙醇固定,4℃放置24h以上。50μg·mL~(-1)碘化丙啶液4℃衍生30min,流式细胞仪分析细胞周期。
     结果:①HE染色:对照组光镜下未见有明显病理改变;模型组海马神经细胞排列紊乱,部分神经细胞出现凋亡征象,视野内可见凋亡细胞;蛇床子素组海马结构接近对照组,凋亡细胞较模型组明显减少。②TUNEL法检测凋亡细胞:对照组极少见凋亡细胞;模型组视野内凋亡细胞与对照组比较明显增多;蛇床子素组与模型组比较,凋亡细胞数减少。③Bcl-2、Bax蛋白免疫组化法检测:对照组有极少量Bcl-2、Bax蛋白表达,与对照组比较,模型组Bcl-2,Bax蛋白表达都升高,Bax蛋白表达升高幅度更大,因此Bcl-2/Bax蛋白比值降低。蛇床子素组与模型组比较,Bcl-2蛋白表达增多,Bax蛋白表达减少,Bcl-2/Bax蛋白比值升高。④流式细胞仪检测细胞周期:模型组与对照组比较,模型组G_0/G_1期百分率升高,S期百分率降低,G_2/M期百分率升高,增值指数(proliferation index,PI)降低。蛇床子素治疗组与模型组比较,S期百分率和PI均显著升高,而G_2/M期百分率降低。
     小结:蛇床子素调节AD大鼠海马凋亡相关蛋白Bcl-2和Bax,升高Bcl-2/Bax蛋白比值,具有抗凋亡、保护海马神经元的作用。另外蛇床子素增加S期细胞百分率,促进G_2/M期细胞进一步分裂,增强细胞增殖活性,调节细胞周期,有利于维持海马正常的生理功能。
     结论:
     1本研究采用一次性侧脑室注射聚集态Aβ25-35,成功建立AD大鼠模型。模型大鼠出现AD征象:学习记忆能力减退;HFS诱导海马LTP的PS幅值降低;海马凋亡细胞增多;海马细胞增殖活性下降,细胞阻滞在G_2/M期;海马内Glu水平及Glu/GABA比值升高,产生兴奋性毒性。
     2蛇床子素改善AD大鼠学习记忆障碍,增强海马神经元的突触可塑性,从整体动物水平(行为学)及细胞突触水平(海马LTP)表明蛇床子素具有改善AD大鼠认知障碍的作用。
     3蛇床子素降低AD大鼠海马内Glu水平及Glu/GABA比值,调节Glu/GABA学习记忆调控系统,减弱Glu的兴奋性毒性,可能是其改善AD大鼠学习记忆障碍的作用机制之一。
     4蛇床子素通过调节AD大鼠海马凋亡相关蛋白Bcl-2和Bax,升高Bcl-2/Bax蛋白比值,具有抗凋亡、保护海马神经元的作用,可能是其改善AD大鼠学习记忆障碍的作用机制之一。
     5蛇床子素通过增加AD大鼠海马S期细胞百分率,促进G2/M期细胞进一步分裂,增强细胞增殖活性,调节细胞周期,有利于维持海马正常的生理功能,可能是其改善AD大鼠学习记忆障碍的作用机制之一。
Alzhe mer’s disease (AD) is chronic degenerative brain diseasecharacterized by progressive dementia and the main clinical manifestationsinclude memory loss, mental retardation and abnormal changes in behaviorand mood. According to the statistics, the incidence of AD is about10%incrowd of about65years old and rises up to47%in the population over85years of age. The survival time of patients with AD is expected to reach20years, but most of the cases after diagnosis can only survive8to10years, soAD has become the fourth killer to human’s health.With rapid aging of thepopulation, the development of effective interventions and medications to cureAD has become a hot issure in AD research,and also an anxious socialproblem.
     The proposed pathogenic mechanisms of AD generally include loss ofcholinergic function, oxidative stress, amyloid cascade, inflammatorymediators and steroid hormone deficiencies. In addition, excitotoxicity,apoptosis and dysregulation of cell cycle are in close relation to AD.Neurobiochemistry revealed that central amino acid neurotransmitters are inclose relaiton to learning and memory. Asp and Glu are excitatory amino acids,Gly and GABA are inhibitory amino acids and they are very import in thebalance of exitation and repression of the nervous system.The level of aminoacids in the centre becomes abnormal when AD happens, especially thebalance between Glu and GABA, which is the key point of neuron injury.Apoptosis is a significant path of neuron retrograde death, so the interferenceto apoptosis could be a possible new method to treatment of AD. Apoptosis isregulated by many kinds of genes and Bcl-2gene family is very importantcontrolling gene containing numerous members in which Bax promotesapoptosis and Bcl-2restrains apoptosis. Bcl-2/Bax is a balanced system— while Bax is redundant the apoptosis process is promoted and while Bcl-2isredundant the process is restrained. In recent years, with the deep study of cellcycle and the regulation, people found that the mechanism of AD is in relationto the regulation of cell cycle and proposed the cell cycle hypothesis about themechanism of AD. The adult neurons of central nervous system can enter cellcycle again when some component elements become abnormal in theregulation of the cell cycle, but neurons in mitosis anaphase will appear thefailure of cell division and cell cycle arrest finally and form some pathologicalfeatures of AD or neuron apoptosis.
     Osthole (7-methoxy-8-isopentenoxy-coumarin) is an ingredient oftraditional Chinese medicine (TCM) from natural product Cnidium monnieri(L.) Cusson, possesses a variety of pharmacological properties, includingantiosteoporotic, antihepatitic, antiallergic, antiseizure and antiproliferativefunctions and so on, and has been clinically used in the treatment of skindisease and gynecopathy for many years.We have engaged in the research ofosthole on improvement of learning and memory and anti-aging for manyyears.The previous studies showed that osthole can improve learning andmemory impairment in dementia model mouse via inhibitingacetylcholinesterase (AChE) activity or by enhancing the activities ofglutathione peroxidase (GSH-PX) and superoxide dismutase (SOD) andclearing oxygen free radical (OFR) in brain. Osthole can pass through theblood-brain barrier and its side effects are small, so it is expected to becomethe effective drug to prevent and treat AD.
     Based on these profiles,the study investigated the effects of osthole oncognitive impairment and central synaptic plasticity of AD rats induced byAβ25-35via behavioral and electrophysiological experiment method,observedthe effects of osthole on contents of amino acids in hippocampus of AD ratsinduced by Aβ25-35via pre-column derivatization high performance liquidchromatography and researched the effects of osthole on neuronal apoptosis,protein expression related to apoptosis and cell cycle in hippocampus of ADrats induced by Aβ25-35via HE, TUNEL and immunohistochemical staining method and flow cytometry. The specific contents as follows:1Effects of osthole on learning and memory of AD rats
     Objective: We aimed to investigate the effects of osthole on cognitiveimpairment of AD rats induced by once intracerebroventricular (i.c.v.)injection of Aβ_(25-35).
     Methods: SD rats were randomly assigned to control, model, low-doseosthole (12.5mg·kg~(-1), Ost1), and high-dose osthole (25.0mg·kg~(-1), Ost2)group. On the first day of the experiment, an intracerebroventricular (i.c.v.)injection of Aβ25-35was administrated to establish AD rat model. After i.c.v.injection, control and model group rats were intraperitoneally injected withsolvent1mL·kg~(-1), and osthole treatment group rats were intraperitoneallyadministered with osthole. All animals were administered continuously for14days. Morris water maze test was performed from day10to14after injectionof Aβ_(25-35). Rats were trained four days (d1-d4) and the escape latency wasrecorded. Twenty-four hours after the last training day (d5), a probe trial wasmade under the condition of removing the platform and the residence time inthe target quadrant and the number of crossing the platform site wererecorded.
     Results: With the increase of training day, the escape latenciescontinuously reduced in each experimental group, and there was no differencebetween the groups on the first day of training. Compared with control group,model group displayed longer escape latency from d2and lower percentage oftarget quadrant searching time and fewer number of crossing platform (inprobe trial). Compared with model group, osthole groups showed shorterescape latency fron d2and higher percentage of target quadrant searching timeand more number of crossing platform.
     Summary: The study indicated the establishment of AD rat model byonce i.c.v. injection of Aβ_(25-35)is successful. The model rats showed learningand memory decline and osthole improved the learning and memoryimpairment of AD rats.2Effects of osthole on hippocampal LTP induced by HFS of AD rats
     Objective: We aimed to investigate the effects of osthole on centralsynaptic plasticity of AD rats induced by once intracerebroventricular (i.c.v.)injection of Aβ_(25-35).
     Methods: Electrophysiological test was conducted on day14after modelestablishment. According to Pellegrino stereotaxic atlas of rat brain,positioned stimulating and recording electrode. We adoptedelectrophysiological methods of extracellular recording in vivo to observe theeffects of osthole on hippocampal long-term potentiation (LTP) phenomenoninduced by high frequency stimulus (HFS) of AD rats induced by onceintracerebroventricular (i.c.v.) injection of Aβ_(25-35).
     Results: In all groups, the PS amplitude obviously increased during the60min observation and the LTP phenomenon was induced by HFS, but thegrowth extent of PS amplitude was different in each group. The PS amplitudein model group was lower than that in control group, while the PS amplitudein osthole groups was higher than that in model group on each time point afterHFS.
     Summary: Our experiments discovered that AD model rats appeared theinhibitory action of LTP induced by HFS, osthole could enhance neuronalsynaptic plasticity in the hippocampus and reversed the inhibitory action ofLTP induced by HFS of AD rats, which indicated osthole could improvelearning and memory impairment of AD rats from cell synaptic level.3Effects of osthole on level of hippocampal amino acids of AD rats
     Objective: We aimed to observe the effects of osthole on level ofhippocampal amino acids of AD rats and investigate the mechanism of ostholeon cognitive impairment of AD rats from Glu/GABA learning and memoryregulatory system.
     Methods: Amino acids determination was conducted on day14afterestablishment of AD model.The levels of Asp, Glu, Gly and GABA weredetermined by pre-column derivatization high performance liquidchromatography (HPLC) and the wavelength of the ultraviolet detection was360nm. Rats were executed after anesthesia and the hippocampus tissues were separated on ice. Made10%homogenate with methanol and distilled water(1:1V/V) and centrifuged with10000rpm speed for10min. The supernatantswere stored at-80℃.The specimens were dissolved before determination andcentrifuged with10000rpm speed for10min at low temperature. Acetonitrile200μL and supernatant200μL were mixed and centrifuged with10000rpmspeed for10min at low temperature to precipitate protein. The supernatant,sodium hydrogen carbonate200μL and2,4-dinitrofluorobenzene100μL weremixed and derived for1h in60℃water bath. The whole process should payattention to avoid light. Finally the sample was filtered and taken out20μLliquid to determine the contents of amino acids.
     Results: Compared with control group, the contents of Asp, Glu, Gly,GABA and the ratio of Glu/GABA obviously increased in model group. Theincrease extent of Glu was more than those of other amino acids. Comparedwith model group, the contents of Glu in osthole groups decreased withsignificant difference, and the contents of other amino acids decreased withoutsignificant difference.The ratios of Glu/GABA in osthole groups decreasedcompared with that in model group, while higher than that in control group.
     Summary: HPLC results showed that the establishment of AD rat modelby i.c.v. injection of Aβ_(25-35)could give rise to the metabolic disturbance ofamino acid transmitters in hippocampus and the increasion of Glu content andGlu/GABA ratio, which resulted in excitotoxicity. Osthole could inhibit theexcitotoxicity of Glu by regulate the Glu/GABA learning and memoryregulatory system and possessed the protective action to central neurons.4Effects of osthole on neuronal apoptosis of AD rats
     Objective: We aimed to investigate the effects of osthole onhippocampal neuronal apoptosis, protein expression related to apoptosis andcell cycle of AD rats.
     Methods: Rats were anesthetized on day14after establishment of ADmodel and perfused heart with heparinized normal saline and4%paraformaldehyde for30minutes. Decapitation and brain extraction wereperformed quickly.Cut the brain into pieces of3mm and fixed the tissues with 4%paraformaldehyde for24hours. Dehydration, lucidification, steeping wax,embedding, slicing and coating were performed in order andhematoxylin-eosine staining, Bcl-2and Bax immunohistochemistry stainingand TUNEL staining were also performed respectively. Slides were observedwith light microscope and results were recorded. Another part of rats wereexecuted to obtain hippocampus tissues on day14after model establishment.Made the monoplast suspension and fixed them with70%precooling alcoholfor more than24hours at4℃. Derived with propidium iodide of50μg·mL-1for30minutes at4℃and analyzed the cell cycle with flow cytometry.
     Results:①HE staining: No remarkable neuronal abnormalities in thehippocampus of the control group rats were observed, while the slides ofmodel group showed the disorder of neurons array, some neurons appearedapoptosis signs and some apoptotic cells was observed in vision. While theneurons in the osthole group were close to those of control group and thenumber of apoptotic cells was decreased compared to the number in modelgroup.②Apoptosis detected with TUNEL: There were few apoptotic cells inthe control group and much more apoptotic cells in the model group than thosein the control group. There were fewer apoptotic cells in the osthole groupthan those in the model group.③Bcl-2and Bax detected withimmunohistochemistry: There were an extremely small quantitiy of Bcl-2andBax positive cells in the control group. Compared with the control group, BothBcl-2and Bax expression increased, the Bax expression increased much morethan Bcl-2expression and so Bcl-2/Bax ratio decreased in the model group.Compared with the model group, Bcl-2expression increased, Bax expressiondecreased and Bcl-2/Bax ratio increased in the osthole group.④Cell cycledetected with flow cytometry: Compared with the control group,the G0/G1stage percentage increased, the S stage percentage decreased, the G_2/M stagepercentage increased and proliferation index decreased in the modelgroup.Compared with the model group, both the S stage percentage and PIincreased and the G_2/M stage percentage decreased in the osthole groups.
     Summary: Osthole could increase the Bcl-2/Bax ratio by regulating Bcl-2and Bax, proteins related to apoptosis, inhibit apoptosis, and protecthippocampus neurons. Moreover, osthole could increase the percentage of Sphase cells, promote the G_2/M phase cells to divide further, strengthen theproliferation activity of cells, regulate cell cycle and benefit to themaintenance of normal physiological function of hippocampus.
     Conclusions:
     1The study constructed the AD rat model establiahment via once i.c.v.injection of Aβ_(25-35)is successful.The model rats showed AD signs: learningand memory impairment, decrease of the PS amplitude of hippocampalLTP induced by HFS, increase of hippocampal apoptosis cells, decrease ofthe proliferation activity of hippocampus cells, cell retardation at G_2/Mphase, increase of Glu and Glu/GABA ratio leading to excitotoxicity.
     2Osthole can improve the learning and memory impairment and strenghenthe synaptic plasticity in hippocampus of AD rats, which indicated thatosthole has the effect of improving the cognitive disorder of AD ratsimproved from the level of whole animal and cell synapsis.
     3Osthole can cut down the level of Glu and the Glu/GABA ratio inhippocampus of AD rats, regulate the Glu/GABA learning and memoryregulatory system, and decrease the excitotoxicity of Glu, which may beits one of the mechanisms of improving learning and memory impairmentof AD rats.
     4Osthole can increase the Bcl-2/Bax ratio by regulating Bcl-2and Bax,proteins related to apoptosis, inhibit apoptosis and protect hippocampusneurons, which may be its one of the mechanisms of improving learningand memory disorder of AD rats.
     5Osthole can regulate cell cycle and benefit to the maintenance of normalphysiological function of hippocampus by increasing the percentage of Sphase cells, promoting the G_2/M phase cells to divide further andstrengthening the proliferation activity of cells, which may be its one ofthe mechanisms of improving learning and memory disturbance of ADrats.
引文
1Yankner BA.Mechanisms of neuronal degeneration in Alzheimer’sdisease[J].Neuron,1996,16(5):921-932
    2Morris RG,Garrud P,Rawlins JN,et al. Place navigation i mpaired in ratswith hippocampal lesions [J]. Nature,1982,297(5868):681-683
    3胡镜清,温泽淮,赖世隆. Morris水迷宫检测的记忆属性与方法学初探[J].广州中医药大学学报,2000,17(2):117-119
    4Ko FN, Wu TS, Liou MJ, et al. Inhibition of platelet thrombozaneformation and phosphoinositides breakdown by osthole from Angelicapuberscens [J]. Thromb Haemost,1989,62(3):996-999
    5Xu XM, Zhang Y, Qu D, et al. Osthole induces G2/M arrest and apoptosisin lung cancer A549cells by modulating PI3K/Akt pathway [J]. J Exp ClinCancer Res.2011,30(1):33
    6Nakamura T, Kodama N, Arai Y,et al. Inhibitory effect of oxycoumarinsisolated from the Thai medicinal plant Clausena guillauminii on theinflammation mediators, iNOS, TNF-alpha, and COX-2expression inmouse macrophage RAW264.7[J]. J Nat Med,2009,63(1):21-27
    7Hsieh MT, Hsieh CL, Wang WH, et al. Osthole improves aspects of spatialperformance in ovariectomized rats [J]. Am J Chin Med,2004,32(1):11-20
    8Zhang JJ, Xue J, Wang HB, et al. Osthole improves alcohol-induced fattyliver in mice by reduction of hepatic oxidative stress[J].Phytother Res,2011,25(5):638-643
    9Shen LX, Zhang DS, Zhang L, et al. Action of osthol on learning andmemory and its mechanism analysis[J].Acta Pharmaceutica Sinica,1999,34(6):405-409
    10Shen LX, Jin LQ, Zhang DS, et al. Effect of osthol on memory impairmentof mice in AlCl3-induced acute senile model [J]. Acta PharmaceuticaSinica,2002,37(3):178-180
    11Jing W, Guo F, Cheng L, et al. Arginine vasopressin prevents amyloid betaprotein-induced impairment of long-term potentiation in rat hippocampusin vivo [J]. Neurosci Lett,2009,450(3):306-310
    12Yamaguchi Y,Kawashima S.Effects of amyloid-beta-(25-35) on passiveavoidance.Radial-arm maze learning and choline acetyltransferase activityin the rat [J]. Eur J Pharmacol,2001,412(3):265-272
    13Rich NJ, Van Landingham JW, Figueiroa S, et al. Chronic caloricrestriction reduces tissue damage and improves spatial memory in a ratmodel of traumatic brain injury [J]. J Neurosci Res,2010,88(13):2933-2939
    14Zhang WW, Sun QX, Liu YH, et al. Chronic administration of Liu WeiDihuang protects rat’s brain against D-galactose-induced impairment ofcholinergic system [J]. Acta Physiologica Sinica,2011,63(3):245-255
    15Yan JJ, Kim DH, Moon YS, et al. Protection against beta-amyloidpeptide-induced memory impairment with long-term administration ofextract of Angelica gigas or decursinol in mice [J]. ProgNeuropsychopharmacol Biol Psychiatry,2004,28(1):25-30
    16Pike CJ, Walencewicz-Wasserman AJ, Kosmoski J, et al. Structure-activityanalyses of beta-amyloid peptides: Contributions of the beta25-35regionto aggregation and neurotoxicity [J]. J Neurochem,1995,64(1):253-265
    17Fang F, Liu GT. Protective effects of compound FLZ on beta-amyloidpeptide-(25-35)-induced mouse hippocampal injury and learning andmemory impairment [J]. Acta Pharmacol Sin,2006,27(6):651-658
    18Morris RGM.Spatial localization does not require the presence of localcues[J].Leam Motiv,1998,12:239-241
    19陈罗西,郭玲玲,李亮.Morris水迷宫的应用及相关检测指标分析[J].辽宁中医药大学学报,2008,10(8):55-57
    20郑红,王文,刘渝,等.重复Morris水迷宫训练提高大鼠空间学习记忆能力确不影响空间记忆能力[J].神经解剖学杂志,2007,23(6):590-592
    21Um MY, Choi WH, Aan JY, et al. Protective effect of Polygonummultiflorum Thunb on amyloid beta-peptide25-35induced cognitivedeficits in mice [J]. J Ethnopharmacol,2006,104(1-2):144-148
    1Bliss TV. LTP and spatial learning [J]. J Physiol Paris,1996,90(5-6):335
    2Tang YP,Shimizu E,Dube GR,et al. Genetic enhancement of learningand memory in mice [J]. Nature,1999,401(6748):63-69
    3Malenka RC, Bear MF.LTP and LTD: an embarrassment ofriches[J].Neuron,2004,44(1):5-21
    4吕和平,任爱红,武晓洛,等.海马在学习记忆中的作用研究进展[J].洛阳医专学报,2002,20(4):354-355
    5Kinney GG, Patino P, Mermet-Bouvier Y, Cognition-enhancing drugsincrease stimulated hippocampal theta rhythm amplitude in theurethane-anesthetized rat [J]. Pharmacol Exp Ther,1999,291(1):99-106
    6Vertes RP. Hippocampal theta rhythm: a tag for short-termmemory[J].Hippocampus,2005,15(7):923-935
    7Zhang JM, Wu MN, Qi JS, et al. Amyloid beta-protein fragment31-35suppresses long-term potentiation in hippocampal CA1region of rats invivo [J]. Synapse,2006,60(4):307-313
    8Wang W, Zheng LL, Wang F,et al.Tanshinone IIA attenuates neuronaldamage and the impairment of long-term potentiation induced byhydrogen peroxide[J]. J Ethnopharmacol,2011,34(1)147-155
    9Chen QS, Kagan BL., Hirakura Y,et al. Impairment of hippocampallong-term potentiation by Alzheimer amyloid beta-peptides[J].J NeurosciRes,2000,60(1):65-72
    10张守信主编,神经生物学[M].北京:科学出版社.2002:508-520
    11Bliss TVP, Lomo T. Long-lasting potentiation of synaptic transmission inthe dentate area of the anesthetized rabbit following stimulation of theperforant path [J]. J Physiol (Lond),1973,232(2):331-356
    12Bliss TVP, Gardner-Medwin AR. Long-lasting potentiation of synaptictransmission in the dentate area of the unanesthetized rabbit followingstimulation of the perforant path [J]. J Physiol (Lond),1973,232(2):357-374
    13Thompson RF. Neural mechanisms of classical conditioning in mammals[J]. Philos Trans R Soc Lond (Biol),1990,329(1253):161-170
    14Berger TW. Long-term potentiation of hippocampal synaptic transmissionaccelerates behavioral learning [J]. Science,1984,224:627
    15韩太真.突触可塑性与长时程增强现象的研究进展[J].西安交通大学学报,2005,4(26):305-308,315
    16杨晓梅,宿宝贵.学习记忆的理想模型-LTP研究的新进展[J].解剖学研究,2001,9(1):62-64
    17Xu L,Holscher C Anwyl R,et al.Glucocorticoid receptor and protein/RNAsynthesis-dependent mechanisms underlie the control of synaptic plasticityby stress[J]. Proc Natl Acad USA,1998,95(6):3204-3208
    18Freir DB, Holscher C, Herron CE. Blockade of long-term potentiation bybeta-amyloid peptides in the CA1region of the rat hippocampus in vivo[J]. J Neurophysiol,2001,85(2):708-713
    19Freir DB, Costello DA, Herron CE. A beta25-35-induced depression oflong-term potentiation in area CA1in vivo and in vitro is attenuated byverapamil [J]. J Neurophysiol,2003,89(6):3061-3069
    20Chen QS, Kagan BL, Hirakura Y,et al. Impairment of hippocampallong-term potentiation by Alzheimer amyloid beta peptides[J].J NeurosciRes,2000,60(1):65-72
    21宗志红,陈井阳,孟晓娜.等.铝暴露对大鼠海马CA1区长时程增强及α-CaMKⅡ活性的影响[J].中国医科大学学报,2007,36(6):636-637
    22周蓉,崔胜忠,谢桂琴,等.NMDA受体对纹状体长时程增强和强直刺激后c-fos表达的影响[J].南京医科大学学报(自然科学版),2007,27(11):1205-1209
    23Wang Q, Rowan MJ, Anwyl R. Beta-amyloid-mediated inhibition ofNMDA receptor-dependent long-term potentiation induction involvesactivation of microglia and stimulation of inducible nitric oxide synthaseand superoxide [J]. J Neurosci,2004,24:6049-6056
    24景玉宏.学习记忆及机制探讨[J].兰州医学院学报,2001,27(2):50-51
    25吴建清.学习、记忆的神经细胞学基础[J].湖北民族学院学报·医学版,2006,23(4):52-54
    1Scott HL,Pow DV,Tannenberg AE,et al. Aberrant expression of theglutamate transporter excitatory amino acid transporter1(EAAT1) inAlzheimer's disease [J]. J Neurosci,2002,22(3):206
    2张向阳,刘玉庆,孔庆胜.大鼠学习记忆能力与特定脑区某些氨基酸含量的相关性[J].中国行为医学科学,2005,14(1):56-57
    3宋泰.高效液相色谱法检测小鼠脑组织中氨基酸类神经递质[J].吉林农业科技学院院报,2009,18(4):18-20
    4尹柏双,高利,张帆. RP-HPLC法检测大鼠海马组织中4种氨基酸类神经递质含量的研究[J].河南农业科学,2009,(5):119-124
    5付宜和,杨国庆,龚道芬,等.2,4-二硝基氟苯柱前衍生化法测定复方氨基酸注射液LC色谱条件的优化[J].药物分析杂志,2005,25(7):762-764
    6周建军,张宏杰,李新生.2,4-二硝基氟苯衍生法测定游离氨基酸方法的优化[J].氨基酸和生物资源,2000,22(4):59-62
    7边春香,孙志红,李莉.反相高效液相色谱法测定血清中的游离氨基酸[J].色谱,2005,23(3):317
    8万绍军,徐玫,工荔,等.反相高效液相色谱-柱前衍生化法测定复方板蓝根颗粒中氨基酸的含量[J].中药材,2005,28(7):594-596
    9万绍军,杨浩,耿秀梅.柱前衍生化反相高效液相色谱法测定板蓝根中的氨基酸[J].色谱,2005,23(4):408-410
    10钱广生,苏旭,刘三康,等.柱前衍生化-HPLC测定田参氨基酸胶囊中10种氨基的量[J].华西药学杂志,2005,202:145-147
    11王继生,邱宗荫,李惠芝,等.茅莓总皂苷对局灶性脑缺血再灌注大鼠兴奋性氨基酸含量的影响[J].中国医院药学杂志,2007,27(8):1029-1031
    12刘巧凤,金清华,申贤淑,等.氨基酸对脑海马突触效应和学习记忆的影响[J].中国临床康复,2006,10(34):158-159
    13Annalisa B, Zulma D, Jorge MR, et al. Properties of glutamate receptors ofAlzheimer's disease brain transplanted to frog oocytes [J]. PNAS,2007,104(2):2956-2960
    14王平,刘玲,石学敏,等.加味温胆汤对SAM-P/10老化痴呆鼠3个脑区兴奋性氨基酸的影响[J].中国医院药学杂志,2002,22(11):645-648
    15Procter AW, Lowe SL, Palmer AM, et al. Topographical distribution ofneurochemical changes in Alzheimer’s disease [J]. J NeurolSci,1988,84(2-3):125-140
    16Tarbit I, Perry EK, Perry RH, et al. Hippocampal free amino acids inAlzheimer’s disease [J]. J Neurochem,1980,35(5):1246-1249
    17Perry EK, Atack JR, Perry RH, et al. Intralaminar neurochemicaldistributions in human midtemporal cortex: comparison betweenAlzheimer’s disease and the normal [J]. J Neurochem,1984,42(5):1402-1410
    18Elison DW, Beal MF, Mazurek MF, et al. A postmortem study of aminoacid neurotransmitters in Alzheimer’s disease [J]. Ann Neurol,1986,20(5):616-621
    19Sasaki H, Muromoto O, Komzowa I, et al. Regional distribution of aminoacid transmitters in postmortem brains of presenile and senile dementia ofAlzheimer type [J]. Ann Neurol,1986,19(3):263-269
    20Annalisa B, Zulma D, Jorge MR, et al. Properties of glutamate receptors ofAlzheimer's disease brain transplanted to frog oocytes [J]. PNAS,2007,104(8):2956-2960
    21王平,刘玲,石学敏,等.加味温胆汤对SAM-P/10老化痴呆鼠3个脑区兴奋性氨基酸的影响[J].中国医院药学杂志,2002,22(11):645-648
    22Pita-Almenar JD, Collado MS,Colbert CM, et al. Different mechanismsexist for the plasticity of glutamate reuptake during early long-termpotentiation (LTP) and late LTP [J]. J Neurosci,2006,26(41):10461-10471
    23Schuler V,Luscher C,Blanchet C,et al. Epilepsy,hyperalgesia,impairedmemory,and coss of pre-and postsynaptic GABA(B) responses in micelacking GABA(B(1))[J].Neuron,2001,31(1):47-58
    24Chitoshi T,Yoshior I.Normal formation of the postsynaptic elements ofGABAergic synapses in the reeler cerebellum[J].Developmental BrainResearch,2003,145(2):197-211
    25Malcangio M,Bowory NG.GABA and its receptor in the spinalcord[J].Trends Pharmacol Sci,1996,17:457-426
    26包新民,舒斯云,王虹.γ-氨基丁酸及其受体在大鼠纹状体边缘区的表达[J].第一军医大学学报,2002,22(11):961-965
    27张向阳,刘玉庆,孔庆胜.大鼠学习记忆能力与特定脑区某些氨基酸含量的相关性[J].中国行为医学科学,2005,14(1):56-57
    28钱亦华,王晓玲,朱淑娟,等.β-淀粉样蛋白增加基底前脑神经元对谷氨酸易感性研究[J].西安交通大学学报(医学版),2005,26(6):536-540
    29Nakagami Y, Oda T. Glutamate exacerbates amyloid beta1-42induceimpairment of long-term potentiation in rat hippocampal slices [J]. JpnPharmacol,2002,88(2):223-226
    30Louzada PR Jr, Paula Lima AC, de Mello FG,et al. Dual role ofglutmatergic neurotransmission on amyloid beta(1-42) aggregation andneurotoxicity in embryonic avian retina [J].Neurosci Lett,2001,301(1):59-63
    31张士善,张力,张丹参.脑内Glu/GABA学习记忆调节系统[J].药学学报,1997,32(8):638-640
    32崔瑛,颜正华,侯士良,等.熟地黄对动物学习记忆障碍及中枢氨基酸递质、受体的影响[J].中国中药杂志,2003,28(9):862-866
    1Hengartner MO. The biochemistry of apoptosis,[J].Nature,2000,407(6805):770-776
    2Raynaud F, Marcilhac A.Implication of calpain in neuronal apoptosis: Apossible regulation of Alzheimer's disease [J].FEBS J,2006,273(15):3437-3443
    3Lange ML,Cenini G,Piroddi M,et al.Loss of phospholipid asymmetry andelevated brain apoptotic protein levels in subjects with amnestic mildcognitive impairment and Alzheimer’s disease[J].Neurobiology ofDisease,2008,29(3):456-464
    4Recuero M,Serrano E,Bullido MJ,et al.Abeta production as consequenceof cellular death of a human neuroblastoma overexpressing APP[J].FEBSLett,2004,570(1-3):114-118
    5Clementi ME,Pezzotti M,Orsini F, et al. Alzheimer's amyloidbeta-peptide(1-42)induces cell death in human neuroblastoma viaBax/Bcl-2ratio increase:an intriguing role for methionine35[J].BiochemBiophys Res Commun,2006,342(1):206-213
    6Perier C, Tieu K, Guégan C, et al. Complex I deficiency primesBax-dependent neuronal apoptosis through mitochondrial oxidativedamage [J].Proc Natl Acad Sci USA,2005,102(52):19126-19131
    7Becker EB,BonniA.Beyond proliferation-cell cycle control of neuronaIsurvival and differentiation in the developing mammalian brain[J].SeminCell Dev Biol,2005,16(3):439-448
    88Love S.Neuronal experssion of cell cycle-related proteins after brainischaemia in man [J]. Neurosci Lett,2003,353(1):29-32
    9Osuga H,Osuga S,Wang F,et a1.Cyclin-dependent kinases as a therapeutictarget for stroke[J]. Proc Natl Acad Sci USA,2000,97(18):10254-10259
    10朱粹青,孙凤艳,曹小定.阿尔茨海默病神经退行性变形与细胞周期[J].国外医学老年医学分册,2001,22(3):105-108
    11贾建军,王鲁宁,汤洪川,等.淀粉样β蛋白变性与阿尔茨海默病:发病机制与病理现状[J].中国临床康复,2004,8(16):3106-3107
    12Roberds SL, Anderson J, Basi G, et al. BALE knockout mice arehealthydespite lacking the primary beta-secretase activity in brain: implicationsfor Alzheimer s disease therapeutics [J]. Hum Mol Genet,2001,10(12):1317-1324
    13Ivacko JA, Sun R, Silverstein FS.Hypoxic-ischemic brain injury inducesan acute microglial reaction in perinatal rats [J]. PediatrRes,1996,39(1):39-47
    14Ganter S, Northoff H, Mannel D, et al. Growth control of culturedmicroglia [J]. J Neurosci Res,1992,33(2):218-230
    15Lange ML,Cenini G,Piroddi M,et al.Loss of phospholipid asymmetry andelevated brain apoptotic protein levels in subjects with amnestic mildcognitive impairment and Alzheimer disease[J].Neurobiology ofDisease,2008,29(3):456-464
    16Raynaud F, Marcilhac A.Implication of calpain in neuronal apoptosis: Apossible regulation of Alzheimer's disease [J].FEBS J,2006,273(15):3437-3443
    17Yu HL,Li L,Zhang XH,et al.Neuroprotective effects of genistein and folicacid on apoptosis of rat cultured cortical neurons induced by beta-amyloid31-35[J].Br J Nutr,2009,(3):1-8
    18Nabeshima T, Nitta A.Memory impairment and neuronal dysfunctioninduced by β-amyloid protein in rats [J]. Tohoku J Exp Med,1994,174(3):241-249
    19Maurice T, Lockhart BP,Privat A.Amnesia induced in mice by centrallyadministered β-amyloid peptides involves cholinergic dysfunction[J].BrainRes,1996,706(2):181-193
    20Gavrieli Y,Sheran Y,Ben-Sasson SA.Identifieation of Progranllned celldeath in situ via specific labelling of nuclear DNA fragmentation[J].J CellBiol,1992,119(3):493-450
    21Ji HJ, Hu JF, Wang YH, et al. Osthole improves chronic cerebralhypoperfusion induced cognitive deficits and neuronal damage inhippocampus [J]. Eur J Pharmacol,2010,636(1-3):96-101
    22He Y, Qu S, Wang J, He X, et al. Neuroprotective effects of ostholepretreatment against traumatic brain injury in rats [J]. Brain Res,2012,1433:127-136
    23Shimohama S, Fujimoto S, Sumida Y, et al. Differential expression of ratbrain Bcl-2family proteins in development and aging [J]. BiochemBiophys Res Commun,1998,252(1):92-96
    24Sims NR, Muyderman H.Mitochondria, oxidative metabolism and celldeath in stroke [J]. Biochim Biophys Acta,2010,1802(1):80-91
    25Cantarella G, Uberti D, Carsana T, et al. Neutralization of TRAIL deathpathway protects human neuronal cell line from beta-amyloidtoxicity[J].Cell Death Differ,2003,10(1):134-141
    26Selznick LA, Zheng TS, Flavell RA, et al. Amyloid beta-induced neuronaldeath is bax-dependent but caspase-independent [J]. J Neuropathol ExpNeurol,2000,59(4):271-279
    27MacGibbon GA, Lawlor PA, Sirimanne ES, et al. Bax expression inmammalian neurons undergoing apoptosis, and in Alzheimer's diseasehippocampus [J]. Brain Res,1997,750(1-2):223-234
    28Su JH, Satou T, Anderson AJ, et al. Up-regulation of Bcl-2is associatedwith neuronal DNA damage in Alzheimer's disease [J]. Neuroreport,1996,7(2):437-440
    29Perier C, Tieu K, Guégan C, et al. Complex I deficiency primesBax-dependent neuronal apoptosis through mitochondrial oxidativedamage [J].Proc Natl Acad Sci USA,2005,102(52):19126-19131
    30Zhu XH, Li SJ, Hu HH, et al. Neuroprotective effects of Xiao-Xu-Mingdecoction against ischemic neuronal injury in vivo and in vitro [J]. JEthnopharmacol,2010,127(1):38-46
    31Zhang H, Li Q, Li Z, et al.The protection of Bcl-2overexpression on ratcortical neuronal injury caused by analogous ischemia/reperfusion in vitro[J]. Neurosci Res,2008,62(2):140-146
    32Hetz C, Vitte PA, Bombrun A, et al. Bax channel inhibitors preventmitochondrion-mediated apoptosis and protect neurons in a model ofglobal brain ischemia [J]. J Biol Chem,2005,280(52):42960-42970
    33冷闻辉,于明,陈加俊,等.MCI-186对阿尔茨海默病大鼠海马神经细胞增殖和细胞周期的影响[J].中国实验诊断学,2011,15(3):381-383
    34Darzynkiewicz Z,Bedner E,Smolewski P.Flow cytometry in analysis ofcell cycle and apoptosis[J].Semin Hematol,2001,38(2):179-193
    35Nagy Z. The dysregulation of the cell cycle and the diagnosisofAlzheimer’s disease [J]. Biochim BiophysActa,2007,1772(4):402-408
    36Yang Y, Varvel NH, Lamb BT, et a.l Ectopic Cell Cycle EventsLinkHuman Alzheimer’s Disease and Amyloid Precursor ProteinTransgenicMouseModels[J]. J Neurosci,2006,26(3):775-784
    37Never RL, McPhie DL. Dysfunction of amyloid precursor proteinsignaling in neurons leads toDNA synthesis and apoptosis [J]. BiochimBiophys Acta,2007,1772(4):430-437
    1Martin SJ, MorrisRG. Cortical plasticity: it’s all the range [J]. Curr Biol,2001,11(2):57-59
    2张守信,金连弘主编.神经生物学[M].科学出版社.2002:508-520
    3Bliss TVP,Lomo T.Long-lasting potentiation of synaptic transmission inthe dentate area of the anesthetized rabbit following stimulation of theperforant path[J].J Physiol (Lond),1973,232(2):331-356
    4Bliss TV, Collingridge GL. A synaptic model of memory: long-termpotentiation in the hippocampus [J]. Nature,1993,361(6407):31-39
    5Afford S, Frenguelly BG, Schofield JG, et al. Characterization of Ca2+Signal induced in hippocampus CAI neurons by the synaptic activation ofNMDA receptors [J]. J Physiol,1993,469:693-716
    6Morris R, Collingridge G. Expending the potential [J]. Nature,1993,364:104
    7Tsien JZ. Linking Hebb’s coincidence-detection tomemory forma tion [J].Curr Opin Neurobiol2000,10(2):266-273
    8赵永才.吴耿安,黄亨奋.运动与记忆:N-甲基-D-天冬氨酸受体和谷氨酸在学习记忆中的作用[J].中国临床康复,2005,7(38):101-103
    9董爱荣,谭小丹,苏永春,等.NMDA依赖的突触长时程增强和长时程抑制模型与仿真研究[J].第四军医大学学报,2005,26(16):1529-1532
    10Isaac JT, Nicoll RA, Malenka RC. Silent glutamatergic synapses in themammalian brain[J].Can J Physiol Pharmacol,1999,77:735-737
    11Isaac JT, Nicoll RA, Malenka RC. Evidence for silent synapses:implications for the expression of LTP [J]. Neuron,1995,15:427-434
    12Shi SH,Cheng T,JanL Y,et al.The immunoglobulin family member dendritearborzation and synapse maturation1(Dasm1) controls excitatory synapsematuration [J].Proc Natl Sci USA,2004,101(36):13346-13351
    13Bear MF. A synaptic basis for memory storage in the cerebral cortex. ProcNatl Acad Sci USA1996,93(24):13453-13459
    14Brotolotto ZA,Clarke VR,Delany CM,et al.Kainate receptors are involvedin synaptic plasticity[J].Nature,1999,402(6759):297-301
    15张挺,李丽琴. α2肾上腺素受体的结构及其生物学功能[J].生命的化学,2006,26(3):266-270
    16Gibbs ME, Summers RJ. Role of adrenoceptor subtypes in memoryconsolidation [J]. Prog Neurobiol,2002,67(5):345-391
    1717Bramham CR, Bacher-Svendsen K, Sarvey JM, LTP in the lateralperforant path is β-adrenergic receptor-dependent [J].NeuroReport,1997,8(3):719-724
    18Gelinas JN, Tenorio G, Lemon N, et al. β-Adrenergic receptor activationduring distinct patterns of stimulation critically modulates thePKA-dependence of LTP in the mouse hippocampus [J]. LearnMem,2008.15(5):281-289
    19Starke K, Presynaptic autoreceptors in the third decade: focus onα2-adrenoceptors [J].J Neurochem,2001,78(4):685-693
    20Haapalinna A, MacDonald E, Viitamaa T, et al. Comparison of the effectsof acute and subchronic administration of atipamezole on reaction tonovelty and active avoidance learning in rats [J]. Naunyn SchmiedebergsArch Pharmacol,1999,359(3):194-203
    21Sirvio J, Riekkinen JP, Ekonsalo T,et al. The effects of dexmedetomidine,an alpha2agonist, on learning and memory, assessed using passiveavoidance and water maze tasks in rats [J]. Neuropharmacology,1992,31(2):163-168
    22Schuler V,Luscher C,Blanchet C,et al. Epilepsy,hyperalgesia,impairedmemory,and coss of pre-and postsynaptic GABA(B) responses in micelacking GABA(B(1))[J].Neuron,2001,31(1):47-58
    23Chitoshi T,Yoshior I.Normal formation of the postsynaptic elements ofGABAergic synapses in the reeler cerebellum[J].Developmental BrainResearch,2003,145(2):197-211
    24Malcangio M,Bowory NG.GABA and its receptor in the spinalcord[J].Trends pharmacol sci,1996,17:457-426
    25包新民,舒斯云,王虹.γ-氨基丁酸及其受体在大鼠纹状体边缘区的表达[J].第一军医大学学报,2002,22(11):961-965
    26Fujii S,Jia Y,Yang A,et a1.Nicotine reverses GABAergic inhibition oflong-term potentiation induction in the hippocampal CAl region [J].BrainRes,2000,863(1-2):259-265
    27Jones S,Yakel JL.Functional nicotinic ACh receptors on intemeurom in therat hippocampus [J].J Physiol,1997,504(3):603-610
    28Fujii S,Ji Z,Morita N,et a1.Acute and chronic nicotine exposuredifferentially facilitate the induction of LTP [J].Brain Res,1999,846(1):137-143
    29冯春生,王云,麻海春,等.中枢神经元烟碱受体在异氟醚抑制大鼠海马突触长时程增强效应中的作用[J].中华医学杂志,2009,89(31):2206-2214
    30Rebola N,Lujan R,Cunha RA,et a1.Adenosine A2Areceptors are essentialfor long-term potentiation of NMDA-EPSCs at hippocampal mossy fibersynapses[J].Neuron,2008,57(1):121
    31Fontinha BM,Di69enes MJ,Ribeiro JA,et a1.Enhancement of long-termpotentiation by brain-derived neurotrophic factor requires adenosine A2Areceptor activation by endogenous adenosine[J].Neuropharmacology,2008,54(6):924
    32Wentz CT,Magavi SS.Caffeine alters proliferation of neuronal precursorsin the adult hippocampus[J].Neuropharmacology,2009,56(6-7):994
    33李玮,朱佩芳,周元国.腺苷A2A受体的矛盾作用:保护还是加重损伤[J].生理科学进展.2006,37(3):225
    34Takahashi RN,Pamplona FA,Prediger RD.Adenosine receptor antagonistsfor cognitive dysfunction:a review of nimal studies[J].FrontBiosci,2008,13:2614-2632
    35Cunha GM,Canas PM,Melo CS,et a1.Adenosine A2Aeceptor blockadeprevents memory dysfunction caused y beta-amyloid peptidea but not byscopolamine or MK801[J].Exp Neurol,2008,210(2):776-781
    36Coleman CG.Baghdoyan HA,Lydic R.Dialysis delivery of an adenosineA2A agonist into the pontine reticular folrmation of C57BL/6J mouseincreases pontine acetylcholine release and sleep[J].J Neurochem,2006,96(6):1750
    37李玮,索丽丽,蒋晓江.腺苷A2A受体对学习记忆功能的双向调节作用[J].重庆医学,2009,38(10):1175-1179
    38Takahashi RN,Pamplona FA,Prediger RD.Adenosine receptor antagonistsfor cognitive dysfunction:a review of animal studies[J].FrontBiosci,2008,13:2614-2632
    39张丹参,任雷鸣,张力.腺苷A1受体阻断剂对学习记忆的影响与胆碱能神经的关系[J].中国药科大学学报,2006,37(1):63-66
    40张丹参,任雷鸣,张力.腺苷A1受体和NMDA受体在海马齿状回突触传递活动中的关系[J].药学学报,2004,39(4):245-249
    41Grewal SS,Horgan AM,York RD,et al.Neuronal calcium activates a Rapland B-Raf signaling pathway via the cyclic adenosine monophosphatedependent protein kinase[J].J Biol Chem,2000,275(5):3722-3728
    42Impey S,Obrietan K,Wong ST,et al.Cross talk between ERK and PKA isrequired for CA2+stimulation of CREB-dependent transcription and ERKnuclear translocation[J].Neuron,1998,24(4):869-883
    43Grzegorzewskab M, Przybyloa M, Litynska A, et al. Chemically-inducedlong-term potentiation in rat motor cortex involves activation ofextracellular signal-regulated kinase cascade[J].Brain Res,2004,1021(2):192-199
    44Esteben JA,Shi SH,Wilson C et a1.PKA phosphorylation of AMPAreceptor subunits controls synaptic trafficking underlying plasticity[J].NatNeurosci,2003,6:136-143
    45Munno DW,Prince DJ,Syed NI.Synapse number and synaptic efficacy areregulated by presynaptic cAMP and protein kinaseA[J].JNeurosci,2003,23(10):4146-4155
    46Yasuda H,Barth AL,Stellwagen D,et al.A developmental switch in thesignaling cascades for LTP induction[J].Nat Neurosci,2003,6(1):13-16
    47Linden DJ,Murakami K,Routtenberg A.A newly discovered protein kinaseC activator (oleic acid)cnhaoc-es long term potentiation in the intacthippocampus[J].Brain Res,1986,379(2):358-363
    48Ling DS,Benardo LS,Serrano PA, et a1.Protein kinase Mzeta is necessaryand sufficient for LTP maintenance[J].Nat Neurosci,2002,5(4):289-290
    49Roche KW,O’Brien RJ,Mammen AL, et a1.Characterization of multiplephosphorylation sites on the AMPA receptor GiuR1subunit[J].Neuron,1996,16(6):1179-1188
    50Fukunaga K,Miyamoto E.Current studies on a working model of CaMkinase II in hippocampal long-term potentiation and memory[J].Jpn JPharmacol,1999,79(1):7-15
    51Moriguchi S, Han F, Nakagawasai O, et al. Decreasedcalcium/calmodulin-dependent protein kinase II and protein kinase Cactivities mediate impairment of hippocampal long-term potentiation inthe olfactory bulbectomized mice[J].J Neurochem,2006,97(1):22-29
    52Giese KP,Fedorov NB,Filipkowski RK,et a1.Autophosphorylation atThr286of the alpha calcium-calmodulin kinase11in LTP andlearning[J].Science,1998,279(5352):870-873
    53Sanhuesa M,McIntyre CC, Lisman JE.Reversal of synaptic memory byCa2+/calmodulin-dependent protein kinase II inhibitor[J].JNeurosci.2007,27(19):5190-5199
    54殷文娟,祁金顺.海马LTP/LTD诱导中CaMKⅡ磷酸化水平的变化[J].陕西医药杂志,2009,38(4):331-334
    55Miyamoto E.Molecular mechanism of neuronal plasticity: induction andmaintenance of long-term potentiation in the hippocampus[J].J PharmacolSci,2006,100(5)1433-442
    56BREDT D S, NICOLL R A. AMPA receptor trafficking at excitatorysynapses [J]. Neuron,2003,40(2):361-379
    57Pratt KG, Watt AJ, Griffith LC, et al. Activity-dependent remodeling ofpresynaptic inputsby postsynaptic expression ofactivated CaMKII [J]. JNeuron,2003,39(2):269-281
    58Frankland PW, O’Brien C, Ohno M, et a1. Alpha-CaMKll-dependentplasticity in the cortex is required for permanent memory [J].Nature,2001,4ll(6835):309-313
    59Kaplan MP, Abel T. Genetic approaches to the study of synaptic plasticityand memory storage [J]. CNS Spectr,2003,8(8):597-610
    60Raymond CR. LTP forms1,2and3: different mechanisms for the “long”in long-term potentiation [J]. Trends Neurosci,2007,30(4):167-175
    61Ling DS, Benardo LS, Sacktor TC. Protein kinase Mzeta enhancesexcitatory synaptic transmission by increasing the number of activepostsynaptic AMPA receptors [J]. Hippocampus,2006;16(5):443-452
    62Andreas Vlachos, Nicola Maggio,Peter Jedlicka. A mechanism for the roleof PKM i n long-term memory [J]. Communicative&Integrative Biology,2008,1(2):190-191
    63Sacktor TC, Mzeta PK. LTP maintenance, and the dynamic molecularbiology of memory storage [J]. Prog Brain Res,2008,169:27-40
    64Dere E, Frisch C, Souza-Silva MA, et al. Unaltered radialmazeperformance and brain acetylcholine of the endothelial nitricoxidesynthase knock out mouse[J].Neuroscience,2001,107(4):561-570
    65Hartlage-Rubsamen M, Schliebs R. Rat basal forebrain cholinergic lesionaffects neuronal nitric oxide synthase activity in hippocampal andneocortical target regions [J]. Brain Res,2001,889(12):155-164
    66汪洋,徐波,胡志刚,等.海马NO变化对学习记忆的影响机制探析[J].安徽体育科技,2007,28(6):64-66
    67Verma A, Hirsch DJ, Glatt CE, et al. Carbon monoxide: a putative neuralmessenger [J]. science,1993,259(5093):381-384
    68Shinomura T, Nakao S, Mori K. Reduction of depolarization-inducedglulamate release by heme oxygenase inhibitor: possible role of carbonmonoxide in synaptic transmission [J]. Neurosci Lett,1994,166(2):131-134
    69姚柏春,袁华,黄翔,等.喂饲绞股蓝皂苷对Aβ1-40注射海马后大鼠脑内COX活性和线粒体超微结构变化的影响[J].中国老年学杂志,2005,10(25):1193-1195
    70Nathanson GA, Scavone C, Scanlon C, et al. The cellular Na+pump as asite of action for carbon monoxide and glutamate: a mechanism forlong-term modulation of cellular activity [J]. Neuro,1995,14(4):781-794
    71董军,陆大祥,颜壳,等.血小板激活因子对大鼠海马脑片CA1区LTP的作用[J].中国应用生理学杂志,2005,21(2):133-136
    72Pláteník J, Kuramoto N, Yoneda Y. Molecular mechanisms associated withlong-term consolidation of the NMDA signals [J]. Life Science,2000,67(4):335-364
    73Williams JH, Errington ML, Lynch MA, et al.Arachidonic acid induces along-term activity-dependent enhancement of synaptic transmission in thehippocampus [J]. Nature,1989,341(6244):739-742
    74Schoenherr CJ,Anderson DJ.The neuron-restrictive silencer factor(NRSF):a coordinate repressor of multiple neuron-specific genes[J].Science,1995,267(5202):1360-1363
    75崔博,吴铭权.声应激所致即刻早期基因表达变化研究进展[J].中国公共卫生,20062,2(10):1268-1269
    76徐虹,韩太真,陈耀文,等.与长时程增强相关的基因表达的研究进展[J].生理科学进展,2001,32(2):174-176
    77吴建清.学习、记忆的神经细胞学基础[J].湖北民族学院学报(医学版),2006,23(4):52-54
    78Gase P, FleischmalIn A, Hvalby O, et a1. Mice with a fralknock-in into thec-fos locus show impaired spatial but regular contextual learning andnormal LTP [J]. Brain Res Mol Brain Res,2001,130(1-2):16-22
    79Guzowski JF, Lyford GL, Stevenson GD, et al. Inhibition ofactivity-dependent are protein expression in the rat hippocampus impairsthe maintenance of long-term potentiation and consolidation of long-termmemory[J].J Neurosci,2000,20(11):3993-4001
    80Bozon B, Davis S, Laroche S. Regulated transcription of theimmediate-early gene Zif268: mechanisms and dosage-dependent functionin synaptic plasticity and memory formation [J]. Hippocampus,2002,12(5):570-577
    81Jones MW,Errington ML,French PJ,et al.A requirement for the immediateearly gene Zif268in the expression of late LTP and long-termmemories[J].Nature neuroscience,2001,4(3):289-296
    82Li L,Carter J,Gao X,et al.The neuroplasticity-associatedare gene is a directtranscriptional target of early growth response (Egr) transcriptionfactors[J].Molecular and cellular biology,2005,25(23):10286-10300
    83Kojima M, Takei N, Numakawa T,et al.Biological characterization andoptical imaging of brain-derived neurotrophic factor2green fluorescentprotein suggest an activity-dependent local release obrain2derivedneurotrophic factor in neurites of cultured hippocampal neurons[J].JNeurosci Res,2001,64(1):1-10
    84Zakharenko SS, Patterson SL, Dragatsis I, et al. Presynaptic BDNFrequired for a presynaptic but not postsynaptic component of LTP athippocampal CA1-CA3synapses [J]. Neuron,2003,39(6):975-990
    85Blum R,Kafitz KW,Konnerth A,et al.Neurotrophin-evoke depolarizationrequires the sodium channel Nav [J].Nature,2002,419(6908):687-693
    86Escobar ML,Figueroa GY,Gomez PA.In vivo in sular cortex LTP in ducedby brain-derived neurotrophic factor[J].Brain Res,2003,991(12):274-279
    87Mu JS, Li WP, Yao ZB, et al. Deprivation of endogenous brain-derivedneurotrophic factors results in impairment of spatial learning and memoryin adult rats[J].Brain Res,1999,835(2):259-265
    88张帅军,牛英鹏.脑源性神经营养因子对逗动技能突触传递长时程增强的调节[J].唐山师范学院学报,2011,33(5):80-83
    89冯昊,陆利民,黄莺.阻断NMDA受体可增强皮质酮对海马脑源性神经营养因子表达的抑制:cAMP反应元件结合蛋白的作用[J].生理学报,2005,57(5):537-544
    90Mertz K, Koscheck T, Schilling K.Brain derived neurotrophic factormodulates dendritic morphology of cerebellar basket and stellatecells.Aninviron study[J].Neur Science,2000,97(2):303-310
    91FrenchS J,Trevor Humby T, Horner H,et al.Hippocampal neurotrophin andtrk receptor mRNA levels are altered by local administration of nicotine,carbachol and pilocarpine [J].Molecular Brain Res.1999,67(1):124-136
    92李满生,徐厚谦,金华,等.寿聪胶囊对老年性痴呆模型大鼠行为学及ATP酶学的影响[J].中医研究,2006,19(1):15-17
    93Wang Y, Haughey NT, Mattson MP, et al. Dual effects of ATP on rathippocampal synaptic plasticity [J]. Neuroreport,2004,15(4):633-636
    94宫庆娟,黄乔东,陈金生,等.ATP在海马CA1区长时程增强中的作用及机制[J].现代医院,2011,11(8):8-12
    95Lim W, Isaac JT.ATP hydrolysis is required for the rapid regulation ofAMPA receptors during basal synaptic transmission and long-termsynaptic plasticity [J]. Neuropharmacology,2005,48(7):949-955
    96Sato K, Morimoto K, Suemaru S, et al. Increased synapsinimmunoreativity during long-term potentiation in rat hippocampus [J].Brain Res,2000,872(1-2):219-222
    97宿宝贵,潘三强,韩辉,等.大鼠海马结构在空间辨别性学习记忆时突触素表达的变化[J].中国病理生理杂志,2000,16(5):421-423
    98廖敏,刘能保,张敏海,等.慢性捆绑应激致大鼠学习记忆受损及海马神经元突触素和突触后致密物95表达的变化[J].华中科技大学学报(医学版),2003,32(4):367-370
    99Honer WG, Falkai P, Chen C, et a.l Synaptic and plasticity-associatedproteins in anterior frontal cortex in severe mentaillness[J]. Neuroscience,1999,91(4):1245-1255100Mori N, Morii H. SGG10-related neuronal growth-associated proteins in
    neural development, plasticity, degeneration and aging [J]. J Neurosci Res,
    2002,70(3):264-273