高层建筑结构地震失效模式优化及损伤控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近二十年来,我国建筑业迅猛发展,建造了一大批高层和超高层建筑;另一方面,我国位于世界两大地震带的交界处,地壳运动活跃,地震灾害非常严重。高层建筑结构体型庞大、体系受力复杂、人员财产密集,其震害会比一般建筑结构严重得多。历次震害分析表明,结构倒塌是造成人员伤亡和经济损失的根本原因,因此研究强震作用下高层建筑结构的损伤演化规律和破坏倒塌机制,控制结构损伤过程和失效破坏模式,避免结构发生整体倒塌,对提高高层建筑的抗震安全性、减轻或避免高层建筑的震害具有重要理论意义和工程价值。本文针对高层钢框架结构、钢框架—钢板剪力墙结构以及钢—混凝土混合结构,深入研究了基于结构地震失效模式优化的灾变过程控制和基于MR阻尼器的结构非线性损伤控制,建立了高层建筑结构地震失效模式优化及损伤控制理论与方法。主要研究工作和创新成果如下:
     (1)高层钢结构基于等抗震性能的失效模式优化设计。基于构件和结构的抗震性能指标,提出了高层建筑结构各类构件基于等抗震性能的失效模式优化设计方法。以结构损伤指数为约束方程,结构抗震性能指标为目标函数,结构参数为优化变量的多次优化迭代,使结构各类构件抗震性能指标收敛于预设值,进而达到结构各类构件等抗震性能的目的。分别以一9层钢框架结构的单目标优化设计和一15层钢框架—钢板剪力墙结构的多目标优化设计为例,数值分析了优化前后结构的动力响应和损伤发展过程。结果表明:优化设计后结构各层的层间位移和损伤分布更均匀,结构的薄弱部位不再出现,材料强度得到充分发挥,结构用钢量降低,结构整体抗震性能得以提高。
     (2)高层建筑结构基于MR阻尼器的非线性地震损伤控制理论。推导了基于中心差分法的控制方程,并基于LS-DYNA有限元程序二次开发了结构的半主动控制平台,实现了高层建筑结构基于MR阻尼器的非线性地震损伤控制系统与结构一体化的建模、分析与设计。分别以一9层的钢框架结构和一15层的钢框架—钢板剪力墙结构为例,数值分析了控制前后结构的动力响应和损伤发展过程。结果表明:所开发的半主动控制平台计算稳定、速度快、精度高;采用MR阻尼器控制后的结构层间位移、残余变形和损伤指数等都明显减小,结构损伤分布范围更广,结构整体抗震性能明显提高,但当地震动峰值加速度增大到一定程度后,受MR阻尼器出力水平限制,结构损伤控制效果降低。
     (3)高层钢—混凝土混合结构基于MR阻尼器的非线性地震损伤控制。提出了钢筋混凝土剪力墙的损伤准则,以强震下一15层的钢—混凝土混合结构为例,数值分析了未安装阻尼器、在核心筒与钢框架之间安装阻尼器以及在钢框架柱之间安装阻尼器三种情况下结构的动力响应和损伤发展过程。结果表明:MR阻尼器可在一定程度上控制结构层间位移、基底剪力和损伤发展;两种阻尼器安装方案具有相近的控制效果,但均不能抑制结构薄弱部位的产生;所分析工况中,钢框架均处于弹性受力阶段,而混凝土核心筒均发生较严重的破坏,这与MR阻尼器需要结构产生一定的层间位移才能起到控制效果相矛盾,因此,钢—混凝土结构的整体抗震性能由混凝土核心筒控制。
     (4)钢—混凝土结构非线性地震损伤控制模型试验。试验研究了不同强度地震作用下,半主动控制、Passive on控制、Passive off控制对结构动力响应的控制效果。结果表明:Passive on和半主动控制的结构比Passive off和无控的结构优越;MR阻尼器具有很好的耗能能力,Passive on和半主动控制下MR阻尼器耗能能力约为Passive off的2~3倍;结构频率下降都发生在无控或者Passive off对应的工况,表明MR阻尼器能较好地控制结构损伤的产生和发展。基于二次开发的钢材和混凝土单轴弹塑性损伤本构模型,建立了能定量描述结构损伤发展过程的等效纤维单元模型,通过振动台试验验证了模型的求解精度。此外,提出一种应用试验测得的应变反演相应部位应力和损伤发展的方法,该方法能获得材料应力和损伤发展过程。
In the recent two decades, the construction industry has been rapidly developedin China, and a large number of tall building structures have been built. However,China is located at the convergent boundaries of two worst seismic zones, so thecrustal movement is very active and the earthquake disaster is very serious. Since tallbuildings are characterized with large size, complex loading state and high density ofproperty and population, the earthquake disaster of such buildings is usually far moreserious than that of other buildings. Previous earthquakes have demonstrated that thecollapse of building structures is the primary cause for casualty and economic loss.Therefore, for the tall building structures under large earthquake, the study on damageprocess law and collapse mechanism, controlling the damage process and failuremode, and prevention from global structural collapse is of great theoreticalsignificance and engineering value in terms of increasing the structural seismic safety,reducing or preventing seismic disaster.
     In this dissertation, focusing on the steel frame structure, steel frame-steel plateshear wall structure and steel-concrete structure, the catastrophic process controlthrough failure mode optimization and the nonlinear seismic damage control usingMR dampers are intensively studied, and the failure mode optimization method anddamage control theory of tall buildings under seismic excitations are proposed. Inspecific, the innovations and achievements can be summarizes as follows:
     (1) An equivalent seismic performance optimization design method of tallbuilding structures is proposed based on the seismic performance indices of structuralmember and structure. By employing the damage index as the constraints, SPI as theobjective function and parameters of structural members as the optimization variables,the optimization is realized through multi-step iterations until the SPIs are convergentto the expected values so as to achieve the goal that each type of the structuralmembers has the same seismic performance. Taking a single-objective optimization ofa9-story steel frame and a multi-objective optimization of a15-story steel frame-steelplate shear wall (SPSW) structure as examples, the structural dynamic responses anddamage process before and after the optimization are numerically analyzed. It isindicated that the relative displacements and damage distribution of the optimized structure is uniform, the structural weaknesses and damage concentration are avoided,the material strength are extensively utilized, the steel usage is reduced and the globalseismic performance of buildings is significantly increased.
     (2) A nonlinear seismic damage control strategy of tall building structures usingMR dampers is proposed. The basic control equation based on central differencemethod is derived, the semi-active control platform is developed through thesecondary development of LS-DYNA program, and the structure and the nonlinearsemi-active control system integrated modeling, analysis and design are realized.Taking a9-story steel frame and a15-story steel frame-steel plate shear wall (SPSW)structure as examples, the dynamic responses and damage process of the structureswith and without MR dampers are analyzed, results indicate that the control platformis numerically stable with fast solution speed and high precise. The relativedisplacement, residual displacement and damage of each story are all significantlyreduced, the damage distribution is more extender, and the global seismicperformance is increased after MR damper is employed. However, because of thelimit output force capacity of the MR dampers, the control effectiveness decreaseswith the earthquake intensities.
     (3) The nonlinear seismic damage control strategy of steel-concrete hybridstructure using MR dampers is studied, and the damage criterion of reinforcedconcrete shear wall is proposed. Tanking a15-story steel-concrete hybrid structureunder large earthquake as a numerical example, the dynamic responses and damageprocess of the structure without MR dampers, with MR dampers located between steelframe and concrete tube, and with MR dampers installed between the columns of steelframe are analyzed. It is indicated that MR dampers can effectively control the storydrift, story shear force and damage process; the two styles of MR damper allocationhave similar control effectiveness, but both cannot restrain the weaknesses anddamage distribution. In all conditions, the steel frame is elastic while the concrete coretube is seriously damaged, which is not coincident with the control mechanism thatMR damper produce control force passively when certain inter-storey relativedisplacement occurs. The global seismic performance of steel-concrete hybridstructure is controlled by the concrete core tube.
     (4) The nonlinear seismic damage control of the scaled model structure is studiedthrough shaking table tests. Under different earthquake excitations, a series of shakingtable tests with semi-active control, Passive on control, Passive off control are conducted. It is indicated that the semi-active control and Passive on control are moreeffective than that of the uncontrolled and the Passive off control ones, the energydissipation capacity of the MR damper of semi-active and Passive on control is of2~3times’ excellence as that of the Passive off control ones, and the structural damagemainly increase during the Passive off and the uncontrolled cases, which proves thatthe MR dampers-based damage control is effective. Moreover, the uniaxialelastic-plastic damage material model of steel and concrete are developed through thesecondary development of LS-DYNA program, the equivalent fiber element modelwhich can quantitatively simulate the damage process of structure is developed, andthe simulation precision is verifies by the shaking table tests. An inversion strategy ofusing the measured strains to calculate the stress and damage process at thecorresponding position where strain gauges are attached is proposed, this methodmakes the most of the measured strain data to get the material stress and damageevolution process.
引文
[1]胡聿贤.地震工程学(第二版)[M].北京:地震出版社,2006.
    [2]Fatemi A, Yang L. Cumulative fatigue damage and life prediction theories: asurvey of the state of the art for homogeneous materials [J]. International Journal ofFatigue,1998,20(1):9-34.
    [3]Kachanov LM. Time of the rupture process under creep conditions[J]. Izv. Ak ad.Nauk. SSSR Otd. Tech. Nauk.,1958,8:26-31.
    [4]Chen WF, Saaleb AF. Constitutive equations for engineering materials. v.2,plasticity and modeling [M]. New York: Wiley,1982.
    [5]Chaboche JL. Continuum damage mechanics: part I-general concepts [J]. Journalof Applied Mechanics,1988,55(1):59-64.
    [6]Chaboche JL. Continuum damage mechanics: part II-damage growth, crackinitiation, and crack growth [J]. Journal of Applied Mechanics,1988,55(1):65-72.
    [7]Lemaitre J. A continuous damage mechanics model for ductile fracture [J]. Journalof Engineering Materials and Technology,1985,107(1):83-89.
    [8]Lemaitre J. How to use damage mechanics [J]. Nuclear Engineering and Design,1984,80(2):233-245.
    [9]Lemaitre J. Local approach of fracture [J]. Engineering Fracture Mechanics,1986,25(5-6):523-637.
    [10]Lemaitre J. Micro-mechanics of crack initiation [J]. International Journal ofFracture,1990,42(1):87-99.
    [11]Lemaitre J. One damage law for different mechanisms [J]. ComputationalMechanics,1997,20(1-2):84-88.
    [12]Tai WH, Yang BX. A new damage mechanics criterion for ductile fracture [J].Engineering Fracture Mechanics,1987,27(4):371-378.
    [13]Tai WH. Plastic damage and ductile fracture in mild steels [J]. EngineeringFracture Mechanics,1990,37(4):853-880.
    [14]Wang TJ. Unified CDM model and local criterion for ductile fracture-I. unifiedCDM model for ductile fracture [J]. Engineering Fracture Mechanics,1992,42(1):177-183.
    [15]Wang TJ. Unified CDM model and local criterion for ductile fracture-II. Ductilefracture local criterion based on the CDM model [J]. Engineering FractureMechanics,1992,42(1):185-193.
    [16]Wang TJ. Further investigation of a new continuum damage mechanics criterionfor ductile fracture: experimental verification and applications [J]. EngineeringFracture Mechanics,1994,48(2):217-230.
    [17]Chow CL, Wang J. An anisotropic theory of continuum damage mechanics forductile fracture [J]. Engineering Fracture Mechanics,1987,27(5):547-558.
    [18]Shen ZY, Dong B. An experiment-based cumulative damage mechanics model ofsteel under cyclic loading [J]. Advances in Structural Engineering,1997,1(1):39-46.
    [19]Bonora N. A nonlinear CDM model for ductile failure [J]. Engineering FractureMechanics,1997,58(1-2):11-28.
    [20]Pirondi A, Bonora N. Modeling ductile damage under fully reversed cycling [J].Computational Materials Science,2003,26:129-141.
    [21]Pirondi A, Bonora N. Simulation of failure under cyclic plastic loading bydamage models [J]. International Journal of Plasticity,2006,22(11):2146-2170.
    [22]LS-DYNA. Keyword user's manual [M]. Livermore, California: LivermoreSoftware Technology Corporation,2006.
    [23]Mazars J. A description of micro-and macro-scale damage of concrete structures[J]. Engineering Fracuture Mechanics,1986,25(5-6):729-737.
    [24]Mazars J, Pijaudier-Cabot G. Continous damage theory: Application to concrete[J].ASCE Journal of Engineering Mechanics,1989,115(2):345-365.
    [25]Faria R, Oliver J,Cervera M. Modeling material failure in concrete structuresunder cyclic actions[J].Journal of Structural Engineering,2004,130(12):1997-2005.
    [26]Cervera M, Oliver J, Faria R. Seismic evaluation of concrete dams via continuumdamage models [J].1995,24(9):1225-1245.
    [27]Comi C, Perego U. Fracture energy based bi-dissipative damage model forconcrete [J].2001,38(36-37):6427-6454.
    [28]李正,李忠献.一种修正的混凝土弹性损伤本构模型及其应用[J].工程力学,2011,28(8):145-150.
    [29]Ju JW. On energy-based coupled elastoplastic damage theories: constitutivemodeling and computational aspects [J].International Journal of Solids andStructrues,1989,25(7):803-833.
    [30]Yazdani S, Schreyer HL. Combined plasticity and damage mechanics model forplain concrete [J]. ASCE Journal of Engineering Mechanics,1990,116(7):1435-1450.
    [31]Faria R, Oliver J. A rate dependent plastic-damage constitutive model for largescale computations in concrete structures [M]. Spain: CIMNE,1993:18-19.
    [32]Lee J, Fenves GL. Plastic-damage model for cyclic loading of concrete structures[J].ASCE Journal of Engineering Mechanics,1998,124(8):892-900.
    [33]Lee J, Fenves GL. A plastic-damage concrete model for earthquake analysis ofdams [J]. Earthquake Engineering and Structural Dynamics,1998,27(9):937-956.
    [34]Gatuingt F, Pijaudier G. Coupled damage and plasticity modeling in transientdynamic analysis of concrete [J]. International Journal for Numerical andAnalytical Methods in Geomechanics,2002,26(1):1-24.
    [35]Jefferson AD. Craft-a plastic-damage-contact model for concrete. I Model theoryand thermodynamic consideration [J]. International Journal of Solids andStructures,2003,40(22):5973-5999.
    [36]Jefferson AD. Craft-a plastic-damage-contact model for concrete. II Modelimplementation with implicit return-mapping algorithm and consistent tangentmatrix [J]. International Journal of Solids and Structures,2003,40(22):6001-6022.
    [37]Jason L, Huerta A, Pijaudier-Cabot G, et al. An elastic plastic damage formulationfor concrete: Application to elementary tests and comparison with an isotropicdamage model [J]. Computer Methods in Applied mechanics and engineering,2006,195(52):7077-7092.
    [38]李杰,吴建营.混凝土弹塑性损伤本构模型研究, I:基本公式[J].土木工程学报,2005,38(9):14-20.
    [39]吴建营,李杰.混凝土弹塑性损伤本构模型研究, II:数值计算和试验验证[J].土木工程学报,2005,38(9):21-27.
    [40]Grassl P, Jirasek M. Damage-plastic model for concrete failure [J]. InternationalJournal of Solids and Structures,2006,43(22-23):7166-7196.
    [41]Voyiadjis GZ, Taqieddin ZN, Kattan PI. Anisotropic damage-plasticity model forconcrete [J]. International Journal of Plasticity,2008,24(10):1946-1965.
    [42]Cicekli U, Voyiadjis GZ, Abu Al-Rub RK. A plasticity and anisotropic damagemodel for plain concrete [J]. International Journal of Plasticity,2007,23(10-11):1874-1900.
    [43]Salari MR, Saeb S, Willam KJ. Patchet SJ, Carrasco RC. A coupled elastoplasticdamage model for geomaterials [J]. Computer Methods in Applied Mechanicsand Engineering,2004,193(27-29):2625-2643.
    [44]李正,李忠献.基于修正弹塑性损伤模型的钢筋混凝土高桥墩地震损伤分析[J].土木工程学报,2011,44(7):71-76.
    [45]Oritz MA. constitutive theory for the inelastic behavior of concrete [J].Mechanicsof Materials,1985,4(1):67-93.
    [46]Imran I, Pantazopoulu SJ. Plasticity model for concrete under triaxialcompression [J].Journal of Engineering Mechanics,2001,127(3):281-290.
    [47]Menzel A, Ekh M, Runesson K, Steinmann P. A framework for multiplicativeelastoplasticity with kinematic hardening coupled to anisotropic damage[J].International Journal of Plasticity,2005,21(3):397-434.
    [48]Kratzig WB, Polling R. An elasto-plastic damage model for reinforced concretewith minimum number of material parameters [J]. Computers and Structures,2004,82(15-16):1201-1215.
    [49]Lubliner J, Oliver J, Oller S, Onate E. A plastic-damage model for concrete [J].International Journal of Solids and Structures,1989,25(3):299-326.
    [50]Anaiev S, Ozbolt J. Plastic-damage model for concrete in principal directions[C]//Fracture Mechanics of Concrete Structures. Colorado, USA:2004:271-278.
    [51]Williams MS, Sexsmith RG. Seismic damage indices for concrete structures: astate-of-the-art review [J]. Earthquake Spectra,1995,11(2):319-349.
    [52]Park YJ, Ang HS. Mechanistic seismic damage model for reinforced concrete [J].Journal of Structure Engineering, ASCE,1985,111(4):722-739.
    [53]王东升,冯启民,王国新.考虑低周疲劳寿命的改进Park-Ang地震损伤模型[J].土木工程学报,2004,37(11):41-49.
    [54]陈林之,蒋欢军,吕西林.修正的钢筋混凝土结构Park-Ang损伤模型[J].同济大学学报(自然科学版),2010,38(8):1103-1107.
    [55]吕杨,徐龙河,李忠献,丁阳.钢筋混凝土柱基于能量阈值的损伤准则[J].工程力学,2011,28(5):84-89.
    [56]Roufaiel MSL, Meyer C. Analytical modeling of hysteretic behavior of RCframes [J]. Journal of Structural Engineering,1987,113(3):429-444.
    [57]Kawashima K, Koyama T. Effect of number of loading cycles on dynamiccharacteristics of reinforced concrete bridge pier columns [J]. StructuralEngineering and Earthquake Engineering,1988,5(1):183-191.
    [58]Chung YS, Meyer C, Shinozuka M. Modeling of concrete damage [J]. ACIStructural Journal,1989,86(3):259-271.
    [59]Lai SS, Will GT, Otani S. Model for inelastic biaxial bending of concretemembers [J]. Journal of Structural Engineering,1984,110(11):2563-2584.
    [60]Banon H, Biggs JM, Irvine HM. Seismic damage in reinforced concrete frames[J]. Journal of Structural Engineering,1981,107(9):1713-1729.
    [61]Roufaiel MSL, Meyer C. Reliability of concrete frames damaged by earthquakes[J]. Journal of Structural Engineering, ASCE,1987,113(3):445-457.
    [62]李洪泉,贲庆国,于之绰,张跃强,吕西林.钢框架结构在地震作用下累计损伤分析及试验研究[J].建筑结构学报,2004,25(3):69-74.
    [63]Kunnath SK, Reinhorn AM, Park YJ. Analytical modeling of inelastic seismicresponse of RC structures [J]. Journal of Structural Engineering, ASCE,1990,116(4):996-1017.
    [64]Mork KJ. Response analysis of reinforced concrete structures under seismicexcitation [J]. Earthquake Engineering and Structural Dynamics,1991,23(1):33-48.
    [65]刁波,李淑春,叶英华.反复荷载作用下混凝土异形柱结构累积损伤分析及试验研究[J].建筑结构学报,2008,29(1):57-63.
    [66]曲哲,叶列平.基于有效累积滞回耗能的钢筋混凝土构件承载力退化模型[J].工程力学,2011,28(6):45-51.
    [67]Colombo A, Negro P. A damage index of generalized applicability [J].Engineering Structures,2005,27(8):1164-1174.
    [68]Elenas A. Correlation between seismic acceleration parameters and overallstructural damage indices of buildings [J]. Soil Dynamics and EarthquakeEngineering,2000,20(1-4):93-100.
    [69]杜修力,欧进萍.建筑结构地震破坏评估模型[J].世界地震工程,1991,7(3):52-58.
    [70]吴波,欧进萍.钢筋混凝土结构在主余震作用下的反应与损伤分析[J].建筑结构学报,1993,14(10):45-53.
    [71]吕杨,徐龙河,李忠献,丁阳.应用纤维单元模型的钢筋混凝土框架结构损伤与失效分析[J].天津大学学报,2011,44(10):925-929.
    [72]Wongprasert N, Symans MD. Application of a genetic algorithm for optimaldamper distribution within the nonlinear seismic benchmark building [J]. Journalof Engineering Mechanics, ASCE,2004,130(4):401-406.
    [73]Pezeshk S. Design of framed structures: an integrated non-linear analysis andoptimal minimum weight design [J]. International Journal for NumericalMethods in Engineering,1998,41(3):459-471.
    [74]Schmit LA. Structural design by systematic synthesis [C]. Proceedings of the2ndConference on Electronic Computation, ASCE, New York, USA,1960.105-122.
    [75]Chan CM, Zou XK. Elastic and inelastic drift performance optimization forreinforced concrete buildings under earthquake loads [J]. EarthquakeEngineering and Structural Dynamics,2004,33(8):929-950.
    [76]Ganzerli S, Pantelides CP, Reaveley LD. Performance-based design usingstructural optimization [J]. Earthquake Engineering and Structural Dynamics,2000,29(11):1677-1690.
    [77]Esteva L, Diaz-Lopez O, Garcia-Perez J, et al. Life-cycle optimization in theestablishment of performance-acceptance parameters for seismic design [J].Structural Safety,2002,24(2-4):187-204.
    [78]Fragiadakis M, Papadrakakis M. Performance-based optimum seismic design ofreinforced concrete structures [J]. Earthquake Engineering and StructuralDynamics,2008,37(6):825-844.
    [79]Liu M, Burns SA, Wen YK. Optimal seismic design of steel frame buildingsbased on life cycle cost considerations [J]. Earthquake Engineering andStructural Dynamics,2003,32(9):1313-1332.
    [80]Liu M, Burns SA, Wen YK. Multi objective optimization for performance-basedseismic design of steel moment frame structures [J]. Earthquake Engineering andStructural Dynamics,2005,34(3):289-306.
    [81]Beck JL, Chan E, Irfanoglu A, et al. Multi-criteria optimal structural design underuncertainty[J]. Earthquake Engineering and Structural Dynamics,1999,28(7):741-761.
    [82]Zou XK, Chan CM, Li G, et al. Multiobjective optimization forperformance-based design of reinforced concrete frames [J]. Journal of StructuralEngineering,2007,133(10):1462-1474.
    [83]Papadopoulos V, Lagaros ND. Vulnerability-based robust design optimization ofimperfect shell structures [J]. Structural Safety,2009,31(6):475-482.
    [84]Pourzeynali S, Zarif M. Multi-objective optimization of seismically isolatedhigh-rise building structures using genetic algorithms [J]. Journal of Sound andVibration,2008,311(3-5):1141-1160.
    [85]Gholizadeh S, Salajegheh E. Optimal design of structures subjected to timehistory loading by swarm intelligence and an advanced metamodel [J]. ComputerMethods in Applied Mechanics and Engineering,2009,198(37-40):2936-2949.
    [86]Safari D, Maheri MR, Maheri A. Optimum design of steel frames using amultiple-deme GA with improved reproduction operators [J]. Journal ofConstructional Steel Research,2011,67(8):1232-1243.
    [87]Mohammadi RK, El Naggar MH, Moghaddam H. Optimum strength distributionfor seismic resistant shear buildings [J]. International Journal of Solids andStructures,2004,41(22-23):6597-6612.
    [88]Kim J, Seo Y. Seismic design of low-rise steel frames with buckling-restrainedbraces [J]. Engineering Structure,2004,26(5):543-551.
    [89]Teran-Gilmore A, Virto-Cambray N. Preliminary design of low-rise buildingsstiffened with buckling-restrained braces by a displacement-based approach [J].Earthquake Spectra,2009,25(1):185-211.
    [90]Oviedo JA, Midorikawa M, Asari T. Earthquake response of ten-storystory-drift-controlled reinforced concrete frames with hysteretic dampers [J].Engineering Structures,2010,32(6):1735-1746.
    [91]Hajirasouliha I, Asadi P, Pilakoutas K. An efficient performance-based seismicdesign method for reinforced concrete frames [J]. Earthquake Engineering andStructural Dynamic,2011, DOI:10.1002/eqe.1150.
    [92]Soong TT, Spencer BF Jr. Supplemental energy dissipation: state-of-the-art andstate-of-practice [J]. Engineering Structures,2002,24(3):243-259.
    [93]杨飏,欧进萍.导管架式海洋平台磁流变阻尼隔震结构的模型试验[J].振动与冲击,2006,25(5):1-5.
    [94]李惠,刘敏,欧进萍等.斜拉索磁流变智能阻尼器控制系统分析与设计[J].中国公路学报,2005,18(4):37-41.
    [95]何旭辉,陈政清,黄方林.洞庭湖大桥斜拉索减振试验研究[J].振动工程学报,2002,15(4):447-450.
    [96]Li H, Liu M, Li JH, et al. Vibration control of stay cables of the Shandongbinzhou yellow river highway bridge using magnetorheological fluid dampers [J].Journal of Bridge Engineering,2007,12(4):401-409.
    [97]Stanway R, Sproston JL, Stevens NG. Non-linear identification of anelectrorheological vibration damper [C]. Proceedings of the Seventh IFAC/IFORS Symposium, IFAC Proceedings Series. York, England,1985.195-200.
    [98]Stanway R, Sposton JL, Stevens NG. Non-linear modeling of an electro-rheological vibration damper [J]. Journal of Electrostatics,1987,20(2):167-184.
    [99]Wen YK. Method of random vibration of hysteretic systems [J]. Journal ofEngineering Mechanics Division,1976,102(2):249-263.
    [100]周强,瞿伟廉.磁流变阻尼器的两种力学模型和试验验证[J].地震工程与工程振动,2002,22(4):144-150.
    [101]丁阳,张路,姚宇飞,李忠献.阻尼力双向调节磁流变阻尼器的性能测试与滞回模型[J].工程力学,2010,27(2):228-234.
    [102]丁阳,张路,姚宇飞,李忠献.全通道有效磁流变阻尼器的性能测试与滞回模型[J].振动工程学报,2010,23(1):31-36.
    [103]Xu LH, Li ZX. Semi-active multi-step predictive control of structures using MRdampers [J]. Earthquake Engineering and Structural Dynamics,2008,37(12):1435-1448.
    [104]徐龙河,李忠献,钱稼如.半主动预测控制系统的时滞与补偿[J].工程力学,2011,28(9):79-83.
    [105] Xu LH, Li ZX. Model predictive control strategies for protection of structuresduring earthquakes. Structural Engineering and Mechanics,2011,40(2):233-243.
    [106]Tzou HS, Chai WK. Design and testing of a hybrid polymericelectrostrictive/piezoelectric beam with bang-bang control [J]. MechanicalSystems and Signal Processing.2007,21(1):417-429.
    [107]Dyke SJ, Spencer BF Jr, Sain MK, et al. An experimental study of MR dampersfor seismic protection [J]. Smart Materials and Structures,1998,7(5):693-703.
    [108]欧进萍.结构振动控制-主动、半主动和智能控制[M].北京:科学出版社,2003.
    [109]Lin W, Li ZX, Ding Y. Trust-region based instantaneous optimal semi-activecontrol of long-span spatially extended structures with MRF-04K damper [J].Earthquake Engineering and Engineering Vibration,2008,7(4):447-464.
    [110]徐龙河,周云,李忠献.半主动控制装置在受控结构中的优化设置[J].地震工程与工程振动,2000,20(3):143-148.
    [111]贝伟明,李宏男.半主动控制装置在受控结构中的优化布置[J].防灾减灾工程学报,2006,26(1):28-33.
    [112]阎石,宁欣,王宁伟.磁流变阻尼器在受控结构中的优化布置[J].地震工程与工程振动,2004,24(3):175-178.
    [113]Benavent-Climent A. An energy-based method for seismic retrofit of existingframes using hysteretic dampers [J]. Solid Dynamics and EarthquakeEngineering,2011,31(10):1385-1396.
    [114]Ohtori Y, Spencer BF Jr, Dyke SJ. Benchmark control problems for seismicallyexcited nonlinear buildings [J]. Journal of Engineering Mechanics, ASCE,2004,130(4),366-385.
    [115]Yoshida O, Dyke SJ. Seismic control of a nonlinear benchmark building usingsmart dampers [J]. Journal of Engineering Mechanics, ASCE,2004,130(4):386–392.
    [116]Wongprasert N, Symans MD. Application of a genetic algorithm for optimaldamper distribution within the nonlinear seismic benchmark building [J]. Journalof Engineering Mechanics, ASCE,2004,130(4):401-406.
    [117]Shook D, Lin PY, Lin TK, Roschke PN. A comparative study in the semi-activecontrol of isolated structures [J]. Smart Materials and Structures,2007,16(4):1433-1446.
    [118]Dounis AI, Tiropanis P, Syrcos GP, Tseles D. Evolutionary fuzzy logic control ofbase-isolated structures in response to earthquake activity [J]. Structural Controland Health Monitoring,2007,14(1):62-82.
    [119]Wang YM, Dyke S. Smart system design for a3D base-isolated benchmarkbuilding [J]. Structural Control and Health Monitoring,2008,15(7):939-957.
    [120]Lin PY, Roschke PN, Loh CH. Hybrid base-isolation with magnetorheologicaldamper and fuzzy control [J]. Structural Control and Health Monitoring,2007,14(3):384-405.
    [121]Kim HS, Roschke PN. GA-fuzzy control of smart base isolated benchmarkbuilding using supervisory control technique [J]. Advanced in EngineeringSoftware,2007,38(7):453-465.
    [122]Lu KC, Loh CH, Yang JN, Lin PY. Decentralized sliding mode control of abuilding using MR dampers [J]. Smart Materials and Structures,2008,17(5):1-15.
    [123]Fan YC, Loh CH, Yang JN, Lin PY. Experimental performance evaluation of anequipment isolation using MR dampers [J]. Earthquake Engineering andStructural Dynamics,2009,38(3):285-305.
    [124]Sahasrabudhe SS, Nagarajaiah S. Semi-active control of sliding isolated bridgesusing MR dampers: an experimental and numerical study [J]. EarthquakeEngineering and Structural Dynamics,2005,35(8):965-983.
    [125]Choi KM, Jung HJ, Cho SW, Lee IW. Application of smart passive dampingsystem using MR damper to highway bridge structure [J]. Journal of MechanicalScience and Technology,2007,21(6):870-874.
    [126]Lee SK, Lee SH, Min KW, et al. Performance evaluation of an MR damper inbuilding structures considering soil-structure interaction effects [J]. StructuralDesign of Tall and Special Buildings,2009,18(1):105-115.
    [127]Li H, Wang J. Experiment investigation of the seismic control of a nonlinearsoil-structure system using MR dampers [J]. Smart Materials and Structures,2011,20(8):1-17.
    [128]Amini F, Shadlou M. Embedment effects of flexible foundations on control ofstructures [J]. Soli Dynamics and Earthquake Engineering,2011,31(8):1081-1093.
    [129]Gu R, Yazici H. Fuzzy logic control of a non-linear structural system againstearthquake induced vibration [J]. Journal of Vibration and Control,2007,13(11):1535-1551.
    [130]Rofooei FR, Monajemi-Nezhad S. Decentralized control of tall buildings [J].Structural Design of Tall and Special Buildings,2005,15(2):153-170.
    [131]李宏男,李瀛,李钢.地震作用下建筑结构的分散控制研究[J].土木工程学报,2008,41(9):27-33.
    [132]Ma TW, Xu NS, Tang Y. Decentralized robust control of building structuresunder seismic excitations [J]. Earthquake Engineering and Structural Dynamics,2008,37(1):121-140.
    [133]Wang Y, Lynch JP, Law KH. Decentralized H-infinity controller design forlarge-scale civil structures [J]. Earthquake Engineering and Structural Dynamics,2009,38(3):377-401.
    [134]Ma TW, Johansen J, Xu NS, et al. Improved decentralized method for control ofbuildings structures under seismic excitation [J]. Journal of EngineeringMechanics,2010,136(5):662-673.
    [135]Li H, Wang J, Song G, et al. An input-to-state stabilizing control approach fornon-linear structures under strong ground motions [J]. Structural Control andHealth Monitoring,2011,18(2):227-240.
    [136]Carrion JE, Spencer BF, Phillips BM. Real-time hybrid simulation for structuralcontrol performance assessment [J]. Earthquake Engineering and EngineeringVibration,2009,8(4):481-492.
    [137]Christenson R, Lin YZ, Emmons A, Bass B. Large-scale experimentalverification of semiactive control through real-time hybrid simulation [J]. Journalof Structural Engineering,134(4):522-534.
    [138]Park E, Min KW, Lee SK, Lee SH, Lee HJ, Moon SJ, Jung HJ. Real-time hybridtest on a semi-actively controlled building structure equipped with full-scale MRdampers [J]. Journal of Intelligent Material Systems and Structures,2010,21(18):1831-1850.
    [139]Phillips NM, Spencer BF Jr. Feedforward-feedback tracking control for real-timehybrid simulation [C]. Proceeding of the6th International Workshop onAdvanced Smart Material and Smart Structures Technology, ANCRiSST,2011,Dalian, China, July25-26,2011.
    [140]Tu JW, Liu J, Qu WL, Zhou Q, Cheng HB. Design and fabrication of500-kNlarge-scale MR damper [J]. Journal of Intelligent Material Systems andStructures,2011,22(5):475-487.
    [141]Wagg DJ, Neild SA. A review of non-linear structural control techniques [J].Proceedings of the Institution of Mechanical Engineers, Part C: Journal ofMechanical Engineering Science,2011,225(4):759-770.
    [142]Li ZX, Lv Y, Xu LH, et al. Seismic Damage Control of a Nonlinear BenchmarkBuilding Using MR Dampers [C].//Proceedings of the5th World Conference onStructural Control and Monitoring, Tokyo, Japan, July19-21,2010.
    [143]Xu LH, Lv Y, Li ZX, et al. Seismic failure control of buildings using MRdampers [C].//Proceedings of the11th International Symposium on StructuralEngineering, Guangzhou, China, December18-20,2010.
    [144]Yun SY, Hamburger RO, Cornell CA, Foutch DA. Seismic performaceevaluation for steel moment frames [J]. Journal of Structural Engineering, ASCE,2002,128(4):534-545.
    [145]Foutch DA, Yun SY. Modeling of steel moment frames for seismic loads [J].Journal of Construction Steel Research,2002,58(5-8):529-564.
    [146]Ye LP, Ma QL, Miao ZW, Guan H, Zhuge Y. Numerical and comparative studyof earthquake intensity indices in seismic analysis [J]. The Structural Design ofTall and Special Buildings,2011, DOI:10.1002/tal.693.
    [147]Jangid RS. Seismic response of isolated bridges [J]. Journal of bridgeengineering,2004,9(2):156-166.
    [148]Jangid RS. Equivalent linear stochastic seismic response of isolated bridges [J].Journal of Sound and Vibration,2008,309:805-822
    [149]Cofer WF. Documentation of strengths and weaknesses of current computeranalysis methods for seismic performance of reinforced concrete members [R].PEER Report1999/07, Pacific Earthquake Engineering Research Center,University of California, Berkeley, CA,1999.
    [150]Cofer WF, Zhang Y, McLean D I. A comparison of current computer analysismethods for seismic performance of reinforced concrete members [J]. FiniteElements in Analysis and Design,2002,38(9):835-861.
    [151]Taucer FF, Spacone E, Filippou F C. A fiber beam-column element for seismicresponse analysis of reinforced concrete structures [R]. EERC Report91/17,Earthquake Engineering Research Center, University of California, Bekerley, CA,1991.
    [152]Giberson MF. Two Nonlinear beams with definition of ductility [J]. Journal ofthe Structural Division, ASCE,1969,95(2):137-157.
    [153]Takizawa H. Notes on some basic problems in inelastic analysis of planar R/Cstructures [J]. Part I and Part II. Transaction of the architectural Institute of Japan,1976,240:51-62.1976,241:65-77.
    [154]Ambrisi AD, Filippou FC. Modeling of cyclic shear behavior in R/C members[J], Journal of Structural Engineering, ASCE,1999,125(10):1143-1150.
    [155]Powell GH, Chen PF.3D beam-column element with generalized plastic hinges[J]. Journal of Mechanical Engineering, ASCE,1986,112(7):627–641.
    [156]Sfakianakis M, Fardis MN. Bounding surface model for cyclic biaxial bendingof R/C sections [J]. Journal of Mechanical Engineering, ASCE,1991,117(12):2748-2769.
    [157]Soleimani D, Popov EP, Bertero VV. Hysteretic behavior of reinforced concretebeam-column subassemblages [J]. ACI Structural Journal,1979,96(3):327-335.
    [158]Roufaiel MSL, Meyer C. Analytical modeling of hysteretic behavior of R/Cframes [J]. Journal of Structural Engineering, ASCE,1987,113(3):429-444.
    [159]李康宁.结构三维弹塑性分析方法及计算机程序CANNY [J].四川建筑科学研究,2001,27(4):1-6.
    [160]汪梦甫.钢筋混凝土框剪结构非线性地震反应分析[J].工程力学,1999,16(4):136-143.
    [161]El-Tawil S, Deierlein GG. Stress-resultant plasticity for frame structures [J].Journal of Mechanical Engineering, ASCE,1998,124(12):1360-1370.
    [162]Spacone E, Ciampi V, Filippou FC. Mixed formulation of nonlinear beam finiteelement [J]. Computer and Structures,1996,58(1):71-83.
    [163]Spacone E, Filippou FC, Taucer FF. Fiber beam-column model for non-linearanalysis of R/C frames: part I. Formulation [J]. Earthquake Engineering andStructural Dynamics,1996,25:711-725.
    [164]Spacone E, Filippou FC, Taucer FF. Fiber beam-column model for non-linearanalysis of R/C frames: part II. Applications [J]. Earthquake Engineering andStructural Dynamics,1996,25:727-742.
    [165]Lai S, Will G, Otani S. Model for inelastic biaxial bending of concrete members[J]. Journal of Structural Engineering, ASCE,1984,110(ST11):2563-2584.
    [166]Saiidi M, Ghusn GE, Jiang Y. A five-spring element for biaxially bent R/Ccolumns [J]. Journal of Structural Engineering, ASCE,1989,115(2):398-416.
    [167]Jiang Y, Saiidi M. Four-spring element for cyclic response of R/C columns [J].Journal of Structural Engineering, ASCE,1990,116(4):1018-1029.
    [168]Kaba S, Mahin SA. Refined modeling of reinforced concrete columns forseismic analysis [R]. EERC Report84/03, Earthquake Engineering ResearchCenter, University of California, Berkeley,1984.
    [169]陈滔.基于有限单元柔度法的钢筋混凝土框架非弹性地震反应分析[D].重庆:重庆大学,2003.
    [170]禚一.钢筋混凝土桥梁精细化建模及地震碰撞分析[D].天津:天津大学,2010.
    [171]Paknahad M, Noorzaei J, Jaafar MS, et al. Analysis of shear wall structure usingoptimal membrane triangle element [J]. Finite Elements in Analysis and Design,2007,43:861-869.
    [172]Kim HS, Lee DG. Analysis of shear wall with openings using super elements [J].Engineering Structures,2003,25:981-991.
    [173]Inoue N, Yang KJ, Shibata A. Dynamic non-linear analysis of reinforcedconcrete shear wall by finite element method with explicit analytical procedure[J]. Earthquake Engineering and Structural Dynamics,1997,26:967-986.
    [174]Ghobarah A, Youssef M. Modelling of reinforced concrete structural walls [J].Engineering Structures,1999,21:912-923.
    [175]谢凡,沈蒲生.一种新型剪力墙多垂直杆单元模型:原理和应用[J].工程力学,2010,27(9):154-160.
    [176]吕西林,卢文生.纤维强单元模型在剪力墙结构非线性分析中的应用[J].力学季刊,2005,26(1):72-80.
    [177]朱杰江,郑琼,田堃.非线性剪力墙单元模型的改进及其应用[J].上海大学学报(自然科学版),2009,15(3):316-319.
    [178]Pang XBD, Hsu TTC. Behavior of reinforced concrete membrane elements inshear [J]. ACI Structural Journal,1995,92(6):665-677.
    [179]Pang XBD, Hsu TTC. Fixed angle softened truss model for reinforced concrete[J]. ACI Structural Journal,1996,93(2):197-207.
    [180]Hsu TTC, Zhu RRH. Softened membrane model for reinforced concreteelements in shear [J]. ACI Structural Journal,2002,99(4):460-469.
    [181]Mansour M, Hsu TTC. Behavior of reinforced concrete elements under cyclicshear. I: experiments [J]. Journal of Structural Engineering,2005,131(1):44-53.
    [182]Mansour M, Hsu TTC. Behavior of reinforced concrete elements under cyclicshear. II: theoretical model [J]. Journal of Structural Engineering,2005,131(1):54-65.
    [183]Mansour M, Lee JY, Hsu TTC. Cyclic stress-strain curves of concrete and steelbars in membrane elements [J]. Journal of Structural Engineering, ASCE,2001,127(12):1402-1411.
    [184]Zhu RH, Hsu TTC. Poisson effect of reinforced concrete membrane elements [J].ACI Structural Journal,2002,95(5):631-640.
    [185]Mo YL, Zhong JX, Hsu TTC. Seismic simulation of RC wall-type structures [J].Engineering Structures,2008,30(11):3167-3175.
    [186]Jeng CH, Hsu TTC. A softened membrane model for torsion in reinforcedconcrete members [J]. Engineering Structures,2009,31(9):1944-1954.
    [187]Vecchio FJ, Collins MP. The modified compression-field theory for reinforcedconcrete elements subjected to shear [J]. ACI Journal,1986,83(2):219-231.
    [188]Palermo D, Vecchio FJ. Behavior of three-dimensional reinforced concrete shearwalls [J]. ACI Structural Journal,2002,99(1):81-89.
    [189]Vecchio FJ. Disturbed stress field model for reinforced concrete: Formulation [J].Journal of Structural Engineering, ASCE,2000,126(9):1070-1077.
    [190]Vecchio FJ. Disturbed stress field model for reinforced concrete: Implementation[J]. Journal of Structural Engineering, ASCE,2001,127(1):12-20.
    [191]Vecchio FJ, Lai D, Shim W, Ng J. Disturbed stress field model for reinforcedconcrete: Validation [J]. Journal of Structural Engineering, ASCE,2001,127(4):350-358.
    [192]Guner S. Performance assessment of shear-critical reinforced concrete planeframes [D]. Toronto: University of Toronto,2008.
    [193]Thorburn LJ, Kulak GL, Montgomery CJ. Analysis of steel plate shear walls [R].No.107. Edmonton: Department of Civil Engineering, University of Alberta,1983.
    [194]Timler PA, Kulak GL. Experimental study of steel plate shear walls [R]. No.114.Edmonton: Department of Civil Engineering, University of Alberta,1983.
    [195]Shishkin JJ, Driver RG, Grondon GY. Analysis of steel plate shear walls usingthe modified strip model [R]. No.261. Edmonton: Department of CivilEngineering, University of Alberta,2005.
    [196]Elgaaly M, Cacesse V, Du C. Post buckling behavior of steel plate shear wallsunder cyclic loads [J]. Journal of Structural Engineering, ASCE,1993,119(2):588-605.
    [197]Rezai M. Seismic behaviour of steel plate shear walls by shake table testing [D].Vancouver: University of British Columbia,1999.
    [198]Elgaaly M, Liu Y. Analysis of thin steel plate shear walls [J]. Journal ofStructural Engineering, ASCE,1997,123(11):1487-1496.
    [199]Sabouri-Ghomi S, Ventura CW, Kharrazi MHK. Shear analysis and design ofductile steel plate walls [J]. Journal of Structural Engineering, ASCE,2005,131(6):878-889.
    [200]周明.非加劲与防屈曲钢板剪力墙结构设计方法研究[D].北京:清华大学,2009.
    [201]Salawu OS. Detection of structural damage through changes in frequency: areview [J]. Engineering Structures,1997,19(9):718-723.
    [202]Chopra AK. Dynamics of structures: theory and applications to earthquakeengineering [M]. Hong Kong: Pearson Education Asia Limited,2007.
    [203]Vamvatsikos DV, Cornell CA. Incremental dynamic analysis [J]. EarthquakeEngineering and Structural Dynamics,2002,31:491-514.
    [204]Zhou Y, Lu XL, Huang ZH, Bo Y. Seismic behavior of composite shear wallswith multi-embedded steel sections. part II: analysis [J]. The Structural Design ofTall and Special Buildings,2010,19(6):637-655.
    [205]Berman JW. Seismic behavior of code designed steel plate shear walls [J].Engineering Structures,2011,33(1):230-244.
    [206]AISC. Seismic provisions for structural steel buildings. ANSI/AISC341-05.American Institute of Steel Construction,2005.
    [207]Panagiotakos TB, Fardis MN. Deformations of reinforced concrete members atyielding and ultimate [J]. ACI Structural Journal,2001,98(2):135-218.
    [208]李忠献.工程结构试验理论与技术[M].天津:天津大学出版社,2004.
    [209]Susantha KAS, Ge HB, Usami T. Cyclic analysis and capacity prediction ofconcrete-filled steel box columns [J]. Earthquake Engineering and StructuralDynamics,2002,31(2):195-216.