甘蓝型油菜MPK4抗菌核病功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核盘菌(Sclertinia sclerotiorum (Lib.)de Bary)引起的菌核病是油菜的一种最主要的病害,在中国和世界其他地方导致巨大的经济损失,至今未培育出高抗油菜品种,尚未找到有效的高抗材料。尽管化学农药的使用对菌核病具有一定的限制作用,但因农药残留以及缺乏及时准确的预测预报方法使得化学农药防效不高。目前,在重要的经济作物上已尝试采用基因工程来防治病害,然而,因为对菌核病的植物防卫分子机制尚不清楚,所以限制了利用基因工程方法来培育抗菌核病的油菜品种。
     研究已表明,植物MAPKs (mitogen-activated protein kinases)在植物防卫中起作用,可能是病害防卫反应信号传导链中一种新的成分。本研究克隆鉴定了一个编码甘蓝型油菜(Brassica napus)MPK4(BnMPK4)的基因,并将该基因转入油菜,研究了转基因植株的抗病性及相关的分子机制。
     首先克隆了BnMPK4的cDNA。DNAMAN软件分析发现这个cDNA的最终开放阅读编码框架编码373个氨基酸;BnMPK4与拟南芥、烟草、水稻和玉米的MPK4同源性分别为95%、85%、82%和81%,含有一个保守的氨基酸基序T201E202Y203,在其C-terminal extension含有一个共同的锚定区域CD domain。MAPK序列比对表明,BnMPK4属于TEY亚型B组。
     用抗病信号分子甲基茉莉酸(MeJA)、水杨酸(SA)类似物苯丙噻重氮(BTH)或核盘菌致病因子草酸等化学物质分别处理油菜品种中双9号,采用荧光定量PCR方法测定BnMPK4在各种化学物质诱导后的表达量,结果表明,BTH和草酸快速诱导该基因上调表达,而MeJA抑制其表达。
     对两个菌核病抗性不同的油菜品种接种S. sclerotiorum后,实时定量PCR实验结果显示,当核盘菌侵染6 h时,BnMPK4的转录水平在抗病品种中双9号中显著升高,在感病品种84039中下调表达;防卫素基因PDF1.2的表达也出现类似的现象,在抗病品种中上调,在感病品种中下调。
     为了进一步研究BnMPK4的抗菌核病功能,构建了植物表达载体pG4A-BnMPK4,并且转化油菜品种84039。除草剂(Bar)筛选、PCR、Southern blotting和Northern blotting检测后,选择5棵过表达BnMPK4油菜转基因植株作进一步研究。离体接种和活体接种抗病鉴定实验表明,转基因植株明显增强菌核病抗性;病斑发展logistic分析显示,转基因植株对核盘菌抗性增强是由于侵染延迟和病斑扩展慢造成的;Trypan blue组织染色实验调查显示,BnMPK4的过表达抑制了核盘菌的生长。相对于非转基因植株,转基因植株也提高了对灰霉病菌Botrytis cinerea的抗性。
     为了研究BnMPK4转基因植株的抗菌核病机理,采用定量RT-PCR调查转基因植株中植物防卫标记基因的表达变化。结果显示,当BnMPK4高表达时,PDF1.2(茉莉酸途径的标记基因)的表达水平显著提高,而PR-1(水杨酸途径的标记基因)下调表达。DAB(3,3-diaminobenzidine)组织染色实验表明,BnMPK4的过表达降低H2O2积累。外源H2O2处理转基因植株导致增强对菌核病和灰霉病的敏感性。这些结果表明MPK4正调控JA介导的防卫反应。本文提出BnMPK4和JA介导的防卫反应在油菜抗菌核病中具有重要的作用。
Sclertinia sclerotiorum (Lib.) de Bary causes a highly destructive disease in oilseed rape, resulting in a tremendous seed yield loss in China and other regions of the world. No immune or highly resistant cultivars of oilseed rape have been reported to date, and few genetic sources of resistance to the pathogen are available to breeders. Control of the disease depends heavily on application of fungicides to the crop, but this is expensive and can be ineffective due to the difficulties associated with applying sprays to thick canopies and a lack of suitable forecasting methods to enable timely application of fungicides. So far, attempts have been made to engineer disease resistance in economically important crop plants. However, the molecular basis of plant defense to this pathogen remains poorly understood, which restricts engineering resistance by transgenic approaches.
     Plant mitogen-activated protein kinases (MAPKs) have been implicated in plant defense as a new component of the defense signaling pathways. In the study, we isolated a Brassica napus MPK4 (BnMPK4),and over-expressed the gene in oilseed rape to investigate its function in resistance to S. sclerotiorum and its resistance mechanism.
     A cDNA clone encoding a mitogen-activated protein kinase Brassica napus MPK4 (BnMPK4) was isolated. DNAMAN program analysis show that the entire open reading frame of the cloned cDNA encodes a protein of 373 amino acid residues that exhibit 95%, 85%, 82% and 81% identity with Arabidopsis, tobacco, rice and maize MPK4. BnMPK4 contain conserved amino acid motif (T201E202Y203) and a CD domain in its C-terminal extension. The MAPK alignment using the ClustalX programs indicated that BnMPK4 belonged to B subgroup of The TEY subtype.
     Using quantitative RT-PCR, we analyzed BnMPK4 expression changes in oilseed rape after treatment with the chemicals BTH, MeJA or oxalic acid. The results showed that BnMPK4 expression were promptly activated by BTH and suppressed by MeJA. The gene expression was promptly activated in OA treatment.
     Using quantitative RT-PCR, we found that BnMPK4 along with PDF1.2 are inducible in a resistant line Zhangshuang 9, but consistently suppressed in a susceptible line 84039 after inoculation with S. sclerotiorum.
     To further determine whether BnMPK4 functions in defense responses to the necrotrophic fungus S. sclerotiorum, we constructed a plant transformation vector pG4A-BnMPK4. The cv. 84039 was chosen as the recipient for transformation. Five independent transgenic oilseed rape lines over-expressing BnMPK4 were generated and confirmed by PCR, Southern blot and northern blot. These results showed that the gene BnMPK4 has been inserted into the genome of the recipient and its RNA level was much higher in all five transgenic lines than the untransformed.
     Transgenic oilseed rape over-expressing BnMPK4 markedly enhanced resistance to S. sclerotiorum. Logistic analysis of lesion development after inoculation showed that enhanced resistance in the transgenic plants would be committed by both delay of lesion occurrence and slow lesion expansion rate. By using trypan blue staining, we found that over-expression of BnMPK4 inhibited the growth of S. sclerotiorum in oilseed rape. Inoculation experiment also indicated that transgenic plants gain enhanced resistance to Botrytis cinerea.
     To further investigate mechanism of BnMPK4 in Resistance to Sclerotinia Sclerotiorum, analysis of expression changes of defense-marker genes were carried out by quantitative RT-PCR. Results showed high levels of BnMPK4 activity activate PDF1.2 but suppress PR-1 in the absence of induction by chemicals or pathogen treatment. By using 3,3-diaminobenzidine (DAB) staining, we found that transgenic plants constitutively decreased H2O2 production. H2O2 treatment to the transgenic plants resulted in enhanced susceptibility to both S. sclerotiorum and B. cinerea. These results supported the idea that MPK4 positively regulate jasmonic acid (JA)-mediated defense response, which plays an important role in resistance to S. sclerotiorum in oilseed rape.
引文
1陈玉卿等,芸薹属油菜种质资源抗(耐)菌核病,病毒病的的鉴定.中国油料, 1993, 2.
    2董祥柏,葡萄糖氧化酶基因和草酸氧化酶基因在甘蓝型油菜中的表达研究[中国农科院硕士学位论文].2004。
    3黄永菊,甘蓝型油菜菌核病抗性的遗传研究(J).中国油料作物学报, 2000, 22(4):1-5.
    4贾建航,王斌,植物抗病基因克隆研究进展.生物工程进展.2002, 20(1):21-26.
    5兰萍,张谷丰,张夕林,油菜菌核病发生规律、影响因子和油菜损失率测定(J).植物保护, 1999, 225(1):24-26
    6蓝海燕,王长海,张丽华等,导入β-1,3-葡聚糖酶基因及几丁质酶基因的转基因可育油菜及其抗菌核病的研究[J].生物工程学报,2000,16(2):142-146.
    7李方球,官春云,油菜菌核病抗性鉴定、抗性机理及抗性遗传育种研究进展.作物研究,2001,3:85-92.
    8李国庆,王道本,姜道宏,周启等,莴苣上发现一种新的核盘菌菌核病.植物病理学报, 1998,
    28:249-255.
    9李加纳,湛利,梁颖.甘蓝型黄籽油菜的研究与思考.见:食物与能源安全战略中的中国油料.北京:中国农业科技出版社,2004,29-39.
    10刘澄清,杜德志,邹崇顺等,甘蓝型油菜的抗病性及其遗传效应研究(J).中国农业科学, 1991,
    24(31):43-49.
    11刘仁虎,.油菜杂种优势分子标记剖析及菌核病抗性相关基因筛选[华中农业大学博士研究生学位论文].2003。
    12刘仁虎.赵建伟.肖勇.孟金陵,.拟南芥cDNA芯片和油菜-拟南芥比较作图相结合筛选甘蓝型油菜抗菌核病先验基因.2006
    13刘胜毅, Fitt B. D. L.等.油菜防御素和草酸氧化酶基因的克隆与诱导表达水平研究.中国油料作物学报, 2004, 26(3):43-49.
    14刘胜毅,周必文,潘家荣,吴正卿.抗感菌核病油菜品种对草酸的吸收和转运差异.中国油料, 1997, 28(1):50-52.
    15刘胜毅,周必文,潘家荣.油菜对毒素草酸的吸收代谢与抗病机理(J).植物病理学报, 1998, 28(1): 33-37.
    16刘胜毅等.油菜抗菌核病扩展的遗传分析.中国油料作物学报, 2003, 25(1):54-58.
    17倪守延,王文翠.油菜菌核病病菌营养生理研究(J).安徽农业大学学报, 1995, (3):246-250.
    18王道本译。核盘菌论丛.北京,农业大学出版社, 1986, 1-20.
    19王志兴,刘昱辉,孙敬三,贾士荣.葡萄糖氧化酶基因的克隆及其在转基因烟草中的表达.自然科学通报, 2003, 13(3): 248-252.
    20吴纯仁,刘后利.油菜菌核病致病机理的研究: 11病菌侵染过程的组织病理学PI.中国油料, 1990(1):44-46.
    21熊秋芳等,抗感菌核病油菜品种几种酶活性对草酸处理的响应.华中农业大学学报, 1998,1:10-13.
    22杨谦,R.T.V.Fox,核盘菌在亚麻上侵染致病的微观过程.植物病理学报, 1996, 26(4):325-329.
    23杨谦,核盘菌侵入油菜超微结构及侵染机制的研究(J).植物病理学报, 1994, 24(3):245-249.
    24张洁夫,陈就卿.油菜种质资源抗(耐)菌核病性筛选与鉴定.江苏农业科学, 1994, 2.
    25中国农科院油料作物研究所,油菜菌核病.北京,农业出版社, 1979.
    26周乐聪等.油菜品种资源对菌核病的抗性鉴定(J),中国油料, 1994(增刊):69-72.
    27朱军,遗传模型分析方法[M].北京:中国农业出版社,1997.56-87.
    28 Abawi GS, Grogan, RG, Source of primary inoculum and effects of temperature and moisture on infection of beans by Whetzetinia sclerotiorum. Phytopathology 1975, 65, 300-9.
    29 Achbani EH, Vear F, Tourvieille De Labrouhe D, Resistance of sunflower (Helianthus annuus L.) to terminal bud attack by Sclerotinia sclerotiorum (Lib.) de Bary. Eur J Plant Pathol 1996, 102:421–429.
    30 Agrios, G.N., Plant Pathology. 1988,(London: Academic Press).
    31 Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W. L., Gomez-Gomez, L., Boller, T., Ausubel, F. M., and Sheen, J. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 2002, 415:977-983.
    32 Audenaert, K., De Meyer., and G.B., H?fte, M.M. Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol. 2002, 128:491-501.
    33 Baldwin IT, Schmelz EA, Zhang Z-P, Effects of octadecanoid metabolites and inhibitors on induced nicotine accumulation in Nicotiana sylvestris. J Chem Ecol 1996, 22: 61-74.
    34 Bannai, H., Tamada, Y., Maruyama, O., Nakai, K., and Miyano, S. Extensive feature detection of N-terminal protein sorting signals, Bioinformatics 2002, 18:298-305.
    35 Baswana K. S, Inheritance of stem rot in cauliflower. Euphytica 1991, 57:93-96.
    36 Bateman DF & Basham HG, Degradation of plant cell walls and membranes by microbial enzymes. In: Heitefuss R, Williams PH. eds Physiological Plant Pathology. Berlin, Germany: Springer-Verlag, 1976, 316-355.
    37 Baudouin E, Charpenteau M, Ranjeva R, Ranty B, A 45-kDa protein kinase related to mitogen-activated protein kinase is activated in tobacco cells treated with a phorbol ester. Planta, 2002, 214: 400-405.
    38 Bell E, Creelman RA, Mullet JE. A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proc Natl Acad Sci 1995, 92(19):8675-9.
    39 Bell E, Mullet JE, Characterization of an Arabidopsis lipoxygenase gene responsive to methyl jasmonate and wounding.Plant Physiol. 1993, 103(4):1133-7.
    40 Berrocal-Lobo, M., Molina, A., and Solano, R, Constitutive expression of ETHYLENE-RESPONSE-FACTOR 1 in Arabidopsis confers resistance to seversl necrotrophic fungi. Plant J 2002, 29:23-32.
    41 B?gre L, Ligterink W, Meskiene I, Barker P J, Heberle-Bors E, Huskisson N S, Wounding inducesthe rapid and transient activation of a specific MAP kinase pathway. Plant Cell 1997, 9: 75-83.
    42 Bogrel L , Ligterink W , Heberle Bors E, et al,M echano senso rs in p lants[J ]. Nature, 1996, 383: 489-490.
    43 Boland, G. J., and Hall, R. Index of plant hosts of Sclerotinia sclerotiorum. Can. J. Plant Pathol. 1994, 16:93-108.
    44 Bolwell, G.P., Butt, V.S., Davies, D.R., and Zimmerlin, A. The origin of the oxidative burst in plants. Free Rad. Res. Comm. 1995, 23,517-532
    45 Brader, G., Djamei, A., Teige, M., Palva, T. E., and Hirt, H. The MAP Kinase Kinase MKK2 Affects Disease Resistance in Arabidopsis. Mol. Plant–Microbe Interact. 2007, 20:589-596.
    46 Bradley DJ, Kjellbom P, Lamb CJ. Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell. 1992, 70(1):21-30.
    47 Brodersen, P., Petersen, M., Nielsen, H. B., Zhu, S., Newman M.-A., Shokat K. M., Rietz S., Parker J., and Mund J. Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J 2006, 47:532-546.
    48 Broglie, K., I. Chet, M. Holliday, R. Cressman, P. Biddle, S. Knowlton, C. J. Mauvais, and R. Broglie. Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 1991, 254: 1194-1197.
    49 Brun HB, Jouan B, Plessis J. Proprietes preventives et curatives de la Procymidone et du Benomyl dans la lutte contre Selerotinia selerotiorum sur colza. In: Prdcfcrfmjfi ofthe Si.\ih Inwrnational Rapeseed Congress, Paris. France. 1983, 17-19.
    50 Brunel D, Froger N, Pelletier G. Development of amplified consensus genetic markers (ACGM) in Brassica napus from Arabidopsis thaliana sequences of known biological function. Genome, 1999, 42(3): 387-402.
    51 Burnett E C, Desikan R, Moser R C, Neill S J, ABA activation of an MAP kinase in Pisum sativum epidermal peels correlates with stomatal responses to ABA. J Exp Bot, 2000, 51 : 197-205.
    52 Büschges, R., Hollricher, K., Panstruga, P., Simons, G., Wolter, M., Frijters, A., var Daelen, R., van der Lee, T., Diergaarde, P., Groenendijk, J., Topsch, S., Vos, P., Salamini, F., and Schulze-Lefert, P., The barley Mlo gene: A nove1 control element of plant pathogen resistance. Cell 1997, 88, 695-705.
    53 Cao H, Bowling SA,Gordon S,Dong X. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. .Plant Cell 1994, 6:1583-1592.
    54 Cao H.Glazebrook J,Clark JD,Volko S,Dong X. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 1997, 88:57-63.
    55 Caracuel Z, Casanova C, Roncero MI, Di Pietro A, Ramos J. pH response transcription factor PacC controls salt stress tolerance and expression of the P-Type Na+ -ATPase Ena1 in Fusarium oxysporum. Eukaryot Cell. 2003, 2(6):1246-52.
    56 Carr R A, McDonald B E. Rapeseed in changing world: processing and utilization. GCIRC Eight Intl. Rapeseed Congress Saskatoon, 1991, 1: 39-56.
    57 Cavell A C, Lydiate D J, Parkin I A, Dean C, Trick M. Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome, 1998, 41(1): 62-9.
    58 Cessna SG, Searsa VE, Dickman MB and Low PS. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell 2000, 12: 2191–2199.
    59 Chen W.S., Chiu, C.C., Liu, H.Y., Lee, T.L., Chen, J.T., Lin, C.C., Wu, Y.J. and Chang, H.Y. Gene transfer via pollen-tube pathway for anti-fusarium wilt in watermelon. Biochem. Mol. Biol. Int. 1998, 46:1201-1209.
    60 Chern M-S, Fitzgerald HA, Yadav RC, Canlas PE, Dong X, Ronald PC, Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis.Plant J. 2001, 27:101-13.
    61 Clough, S.J., Fengler, K.A., Yu, I.C., Lippok, B., Smith, R.K. Jr, Bent, A.F. The Arabidopsis dnd1'defense, no death' gene encodes a mutated cyclic nucleotide-gated ion channel. Proc. Natl Acad. Sci. 2000, 97:9323–9328.
    62 Coronado M J, Gonzalez-Melendi P, Segui J M, Ramirez C, Rarany I, Testillano P S, Risueno M C, MAPK entry into the nucleus at specific interchromatin domains in plant differentiation and proliferation processes. J Struct Biol, 2002, 140 : 200-213.
    63 Davis R . Signal transduction by the JN K group of MAP kinase. Cell, 2000, 103: 239-252.
    64 de Bary A, Comparative Morphology and Biotogy ofthe Fungi. Mycetozoa and Bacteria. Oxford, UK; 1887, Clarendon Press.
    65 De la Pena A., L?rz, H. and Schell, J. Transgenic rye plants obtained by injecting DNA into young floral tillers. Nature 1987, 235:274-276.
    66 del Pozo, O., Pedley, K. F., and Martin, G. B. MAPKKKαis a positive regulator of cell death associated with both plant immunity and disease. EMBO (Eur. Mol. Biol. Organ.) 2004, 23:3072-3082.
    67 Delaney TP, Friedrich L, Ryals JA. Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc. Natl. Acad. Sci. USA 1995, 92:6602-6
    68 DeLong A, Mockaitis K, Christensen S, Protein phosphorylation in the delivery of and response to auxin signals. Plant Mol Biol 2002, 49 : 285-303.
    69 Desikan, R., Hancock, J. T., Ichimura, K., Shinozaki, K., and Neill, S.J. Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol, 2001, 126: 1579-158.
    70 Despres C, Chubak C, Rochon A, Clark R, Bethune T, et al,The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 2003, 15;2181-91.
    71 Despres C, Delong C, Glaze S, Liu E , Fobert PR. The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell 2000, 12:279-90.
    72 Dickman, M. B., Park, Y. K., Oltersdorf, T., Li, W., Clemente, T., and French, R, Abrogation of disease development in plants expressing animalantiapoptotic genes. Proc. Natl. Acad. Sci. 2001, 98:6957-6962.
    73 Dickson M. H, Breeding for resistance to Sclerotinia sclerotiorum in Brassica oleracea Acta-Horticulturae 1996, 407:103-108.
    74 Doke, N. Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal wall components of Phytophthora infestam and specific inhibition of the reaction by suppressors of hypersensitivity. Physiol. Plant Pathol. 1983, 23:359-367.
    75 Doke, N., and Ohashi, Y. lnvolvement of an O*- generating system in the induction of necrotic lesions on tobacco leaves infected with tobacco mosaic virus. Physiol. MOI. Plant Pathol. 1988, 32,163-175.
    76 Dong, X. SA, JA, ethylene, and disease resistance in plants. Curr. Opin. Plant Biol. 1998, 1: 316-323.
    77 Dong, X., Ji R., Guo, X., Foster, S. J., Chen, H., Dong, C., Liu, Y., Hu, Q., and Liu, S. Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape. Planta 2008. 228:331–340(Doi:10.1007/s00425-008-0740-2).
    78 Elad, Y. The use of antioxidants (free radical scavengers) to control grey mould (Botrytis cinerea) and white mould (Sclerotinia sclerotiorum) in various crops. Plant Pathol. 1992, 41:417-426.
    79 Ellis C,Karafyllidis I, Wasternack C, Turner JG, The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene response. Plant Cell 2002, 14:1557-66.
    80 Ellis J G,Lawrence G J,Luck J E,Dodds P N, Identification of regions in alleles of the flax nlst resistance gefle L that determine diferences in gene-for-gene specificity.Plant Cell, 1999, 11:495-506.
    81 Falk A, Feys BJ, Frost LN, Jones JDG, Daniels MJ,Parker JE. EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipase. Proc. Natl. Acad. Sci. USA 1999, 96:3292-97.
    82 Fan W, Dong X, in vivo interaction between NPR1 and transcription faction TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell 2002, 14:1377-89.
    83 Felsenstein J. Mathematics vs. Evolution: Mathematical Evolutionary Theory. Science 1989, 246:941-942.
    84 Felton GW, Korth KL, Bi JL, Wesley SY, Huhman DV, et al, Inverse relationship between systemic resistrnce of plants to microorganisms and to insect herbivory. Curr. Biol. 1999, 9:317-20.
    85 Ferrari, S., Plotnikova, J. M., De Lorenzo, G., and Ausubel, F. M, Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant J. 2003, 35:193-205.
    86 Feys, B. J., Parker, J. E. Interplay of signaling pathways in plant disease resistance. Trends Genet. 2000, 16:449-455.
    87 Fristensky B., Balcerzak M., He D. and Zhang P. Expressed sequence tags from the defenseresponse of Brassica napus to Leptosphaeria maculans 1999, http://www.bspp.org.uk/mppol/1999/0301FRIST
    88 Frye, C. A., Tang, D. D., and Innes, R. W. Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc. Natl. Acad. Sci. 2001, 98:373-378.
    89 Gentzbittel et al,Cloning of Molecular Markers for Disease Resistance in Sunflower. Chem. Appl. Genet. 1998, 96:519-525.
    90 Girke T, Todd J, Ruuska S, et al,Microarray analysis of developing Arabidopsis seeds. Plant Physiol, 2000, 124(4): 1570-1581
    91 Glazebrook J, Rogers EE, Ausubel FM. Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics 1996, 143:973-82.
    92 Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 2005, 43:205-227.
    93 Glazebrook J. Genes controlling expression of defense responses in Arabidopsis. Curr Opin Plant Biol. 1999, 2:280-6.
    94 Glazebrook, J. Genes controlling expression of defense responses in Arabidopsis status. Curr. Opin. Plant Biol. 4, 2001, 301–308.
    95 Glazebrook, J., Chen, W., Estes, B., Chang, H.-S., Nawrath, C., Métraux, J.-P., Zhu, T., and Katagiri, F. Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J. 2003, 34:217-228.
    96 Gomi K., Ogawa, D., Katou, S., Kamada, H., Nakajima, N., Saji, H., Soyano, T., Sasabe, M., Machida, Y., Mitsuhara, I., Ohashi, Y., and Seo, S. A mitogen-activated protein kinase NtMPK4 activated by SIPKK is required for jasmonic acid signaling and involved in ozone tolerance via stomatal movement in tobacco. Plant Cell Physiol. 2005, 46:1902-14.
    97 Govrin, E. M., and Levine, A. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr. Biol. 2000, 10:751-757.
    98 Grant J. J., Yun, B., and Loake, G. J, Oxidative burst and cognate redox signaling reported by luciferase imaging: identification of a signal network that functions independently of ethylene, SA and MeJA but is dependent on MAPKK activity. Plant J. 2000, 24:569-582.
    99 Greenberg J T, Programmed cell death in plant-pathogen interactions. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48: 525-545.
    100 Greenberg J T,Silvernum F P,Liang H, Uneoupling salicylic acid-dependent cell death and defeme-related responses from disease resistance in the Arabidopsis mutant acd5. Genetics,2000, 156:341-350.
    101 Grison, R., Grezes-Besset, B., Schneider, M., Lucante, N., Olsen, L., Leguay, J.-J., and Toppan, A. Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene. Nat. Biotechnol. 1996, 14:643-646.
    102 Groom L A, Sneddon A A, Alessi D R, Dowd S, Keyse S M, Differential regulation of the MAP, SAP, and RK/p38 kinases by Pyst1, a novel cytosolic dual-specificity phosphatase. EMBO J , 1996,15 : 3621-3632.
    103 Grumont R J, Rasko J E J, Strasser A, Gerondakis S, Activation of the mitogen-activated protein kinase pathway induces transcription of PAC-1 phosphatase gene. Mol Cell Biol, 1996, 16 : 2913-2921.
    104 Guo, X., and Stotz H. U. Defense against Sclerotinia sclerotiorum in Arabidopsis is dependent on jasmonic acid, salicylic acid, and ethylene signaling. Mol. Plant-Microbe Interact. 2007, 20:1384-1395.
    105 Gustin M C, A lbertyn J , A lexander M , et al, MAP kinase pathways in the yeast Saccharomyces cerevisiae [J ]. Microbiol Mol Biol Rev, 1998, 62: 1264-1300.
    106 Halliwell, B., and Gutteridge, J.M.C..R ole of free radicals and catalytic metal ions in human disease: An overview. Methods Enzymol. 1990, 186, 1-85.
    107 Hammerschmidt, R. Induced disease resistance: How do induced plants stop pathogens? Physiol. Mol. Plant Pathol. 1999, 55:77-84.
    108 Hammond-Kosack K.E., Parker J.E. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol. 2003, 14:177-93.
    109 Haring M A, Siderius M, Jonak C, Hirt H, Walton K M, Musgrave A, Tyrosine phosphatase signaling in a lower plant: cell cycle and oxidative stress-regulated expression of the Chlamydomonas eugametos VH-PTP13 gene. Plant J , 1995, 7: 981-987.
    110 Heil M. Ecological costs of induced resistance. Curr. Opin. Plant Biol. 2002, 5:345-50.
    111 Heil M. Bostock RM. Induced systemic resistance (ISR) against pathogens im the context of induced plant defenses. Ann. Bot. 2002, 89:503-12.
    112 Holub, E. B., J. L. Beynon, and I. R. Crute, Phenotypic and genotypic characterization of interactions between isolates of Peronospora parasitica and accessions of Arabidopsis thaliana.. Mol. Plant-Microbe Interact. 1994, 7:223-239.
    113 Hu C.Y. and Wang, L. In planta soybean transformation technologies developed in China: procedure, confirmation and field performance. In Vitro Cell. Dev. Biol.-Plant, 1999, 35:417-420.
    114 Hu, X., Bidney, D. L., Yalpani, N., Duvick, J. P., Crasta, O., Folkerts, O., and Lu, G. Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflowers. Plant Physiol. 2003, 133:170-181.
    115 Huttly A K, Phlllips A L, Gibberellin-regulated expression in oat aleurone cells of two kinases that show homology to MAP kinase and a ribosomal protein kinase. Plant Mol Biol, 1995, 27 : 1043-1052.
    116 Ichimura, K., Casais C., Peck, S. C., Shinozaki, K., and Shirasu, K. MEKK1 Is Required for MPK4 Activation and Regulates Tissue-specific and Temperature-dependent Cell Death in Arabidopsis. J. Biol. Chem. 2006, 281: 36969-36976.
    117 Ichimura, K., Tena, G., Henry, Y., Zhang, Z., Hirt, H., Wilson, C., Morris, P., Mundy, J., Innes, R., Ecker, J., Scheel, D., Klessig, D. F., Machida, Y., Mundy, J., Ohashi, J., and Walker, J. C. Mitogen-activated protein kinase cascades in plants: a new nomenclature, Trends Plant Sci. 2002,7:301-308.
    118 Ishikawa M, Soyano T, Nishihama R, Machida Y, The NPK1 mitogen-activated protein kinase kinase kinase contains a functional nuclear localization signal at the binding site for the NACK1 kinesin-like protein. The Plant J , 2002, 32: 789-798.
    119 Jabs T, Tsch?pe M, Colling C, Elicitor-stimulated ion fluxes and O -2 from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc Natl Acad Sci USA, 1997, 94 : 4800-4805.
    120 Janzik I, Macheroux P, Amrhein N, Schaller A. LeSBT1, a subtilase from tomato plants. Overexpression in insect cells, purification, and characterization. J Biol Chem. 2000, 275(7):5193-9.
    121 Jia Y, Martin G B. Rapid transcript accumulation of pathogenesis related genes during an incompatible interaction in bacterial speck disease resistant tomato plants. Plant Mol Biol, 1999, 40: 455-465.
    122 Jiang Y, Li Z, Schwarz E M, Lin A, Guan K, Ulevitch R J, Han J, Structure-function studies of p38 mitogenactivated protein kinase. Loop 12 influences substrate specificity and autophosphorylation, but not upstream kinase selection. J Biol Chem, 1997, 272 : 11096~11102
    123 Jing Li, Günter Brader, and E. Tapio Palva.. TheWRKY70 Transcription Factor: A Node of Convergence for Jasmonate-Mediated and Salicylate-Mediated Signals in Plant Defense. Plant Cell. 2004, 16, 319–331.
    124 Jirage D, Tootle TL, Reuber TL, Frost LN, Feys BJ, et al, Arabidopsis thaliana PAD4 encodes a lapase-like gene that is important for salicylic acid signaling. Proc. Natl. Acad. Sci. USA 1999, 96:13583-88.
    125 Johnson C, Boden E, Arias J, Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in Arabidopsis. Plant cell 2003, 15:1846-58
    126 Jonak C, Kiegerl S, Ligterink W, Barker P J, Huskisson N S, Hirt H, Stress signaling in plants: a mitogenactivated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci USA, 1996, 93 : 11274-11279.
    127 Jonak C, Pay A, B ?gre L, Hirt H, Heberle-Bors E, The plant homologue of MAP kinase is expressed in a cellcycle dependent and organ-specific manner. Plant J, 1993, 3 : 611~617.
    128 Kesarwani M., Azam M., Natarajan K. Mehta A. and Datta A. Oxalate decarboxylase from Collybia velutipes molecular cloning and its overexpression to confer resistance to fungal infection in transgeneic tobacco and tomato. J Biol Chem, 2000, 275:7230-7238.
    129 Kessmann H,Staub T,Hofmann C,et al, Induction of systemic acquired disease resistance in plants by chemicals.Ann Rev phytopathol, 1994, 32:439-459.
    130 Kiegerl S, Cardinale F, Siligan C, et al, SIMKK, a Mitogen activated protein kinase (MAPK) kinase, is a specific activato r of the salt stress-induced MAPK, SIMK[J ]. Plant Cell, 2000, 12: 2247-2258.
    131 Kim HS, Delaney TP. Over-expression of TGA5, which encodes a bZIP transcription factor thatinteracts with NIM1/NPR1, conferes SAR-independent resistance in Arabidopsis thaliana to peronospora parasitica. Plant J. 2002, 32:151-63.
    132 Kim, K. S., Min, J.-Y., and Dickman, M. B. Oxalic Acid Is an Elicitor of Plant Programmed Cell Death during Sclerotinia sclerotiorum Disease Development. Mol. Plant–Microbe Interact. 2008, 21:605-612.
    133 Kinkema M, Fan W, Dong X. Nuclear localization of NPR1 is required for activation of PR gene expression. Plant cell 2000, 12:2339-50.
    134 Klessig D F, Durner J , Noed R, et al, Nitric oxide and salicylic acid signaling in plant defense [J ]. Proc Natl Acad Sc i USA, 2000, 97: 8849-8855.
    135 Knetsch M L W, Wang M, Snaar-Jagalska B E, Heimovaara-Dijkstra S, Abscisic acid induces mitogen-activated protein kinase activation in barley aleurone protoplasts. The Plant Cell, 1996, 8 : 1061~1067
    136 Kole C, Quijada P, Michaels SD, Amasino RM, Osborn TC: Evidence for homology of flowering-time genes VFR2 from Brassica rapa and FLC from Arabidopsis thaliana. Theor Appl Genet, 2001, 102:425-430.
    137 Kovtun Y, Ch iuW L , Tena G, et al,2000, Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants [ J ]. Proc Natl Acad Sc i USA, 97: 2940-2945.
    138 Kovtun Y, Chiu W L, Zeng W, Sheen J, 1998. Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature, 395: 716-720.
    139 Kovtun, Y., Chiu, W. L., Tena, G., and Sheen, J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl. Acad. Sci. 2000, 97: 2940-2945.
    140 Kunkel BN, Brooks DM. Cross talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol. 2002, 5:325-31.
    141 Kyte, J., and Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982,157:105-132.
    142 Lan T.-H. and Paterson A. H. Comparative mapping of QTLs determining the plant size of Brassica oleracea. Theor Appl Genet 2001, 103:383–397.
    143 Lan TH, Paterson AH. Comparative evolution of QTLs sculpting the curd of Brassica oleracea. Genetics, 2000, 155:1927-1954.
    144 Lebel E, Heifetz P, Thorne L, Uknes S, Ryals J, Ward E. Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J. 1998, 16:223-33.
    145 Leberer E, Harcus D, Dignard D, Johnson L, Ushinsky S, Thomas DY, Schr?ppel K. Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans. Mol Microbiol. 2001, 42(3):673-87.
    146 Lee H-I, Leon J, Raskin I, Biosynthesis and metabolism of salicylic acid. Proc.Natl.Acad. Sci. USA 1995, 92:4076-79.
    147 Leon J, Shulaev V, Yalpani N, Lawton MA, Raskin I, Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis. Proc Natl Acad Sci USA 1995, 92:10413–10417.
    148 Li L, Li C, Lee GI, Howe GA. Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc Natl Acad Sci. 2002, 99(9):6416-21.
    149 Ligterink W, Kroj T, zur Nieden U, Hirt H, Scheel D, Receptor-mediated activation of a MAP kinase in pathogen defense of plants. Science, 1997, 276 :2054-2057.
    150 Lin X., Kaul, S., Rounsley, S. et al, Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 1999, 402:761-768.
    151 Link V, Sinha A K, Vashista P, Hofmann M G, Proels R K, Ehness R, Roitsch T, A heat-activated MAP kinase in tomato: a possible regulator of the heat stress response. FEBS Lett, 2002, 531: 179-183.
    152 Liu Y, Schiff M, Marathe R, Dinesh-kumar SP, Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J. 2002, 30:415-29
    153 Liu, S., Liu, R., Latunde-Dada, A. O., Cools, H. J., Foster, S. J., Huang, Y. J., and Fitt, B. D. L. Comparison of Leptosphaeria biglobosa-induced and chemically induced systemic resistance to L. maculans in Brassica napus. Chinese Science Bulletin 2006, 52:1053-1062.
    154 Liu, S., Wang, H., Zhang, J., Fitt, B. D. L., Xu, Z., Evans, N., Liu, Y., Yang, W., and Guo, X. In vitro mutation and selection of doubled-haploid Brassica napus lines with improved resistance to Sclerotinia sclerotiorum. Plant Cell Rep. 2005, 24:133-144.
    155 Livak, K. J., and Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC(T)) method. Methods. 2001, 25:402–408.
    156 Lodish H, Berk A, Zipursky S L, Matsudaira P, Baltimore D, Darnell J, Molecular Cell Biology. New York: W. H. Freeman and Company, 2000, 880-881.
    157 Lorenze O, Piqueras R, Sanchez-Serrano JJ, Solano R. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant dafense. Plant Cell 2003, 15:165-78.
    158 Lu G. Engineering White Mold Resistance in Oilseed Crops. First International Conference on Legume Genetics and Genomics: Translation to Crop Improvement at Minneapolis-St. Paul, MN. 2002, 54.
    159 Lumsden RD. Pectolytic enzymes of S. sclerotirum and their location in infected bean. Can J Bot, 1976, 54: 2630-2641.
    160 Lumsden, R. D. Histology and physiology of pathogenesis in plant diseases caused by Sclerotinia species. Phytopathology 1979, 69: 890-896.
    161 Luo, Z.X. and Wu, R., A simple method for the transformation of rice via the pollentube pathway. Plant Mol. Biol. Rep. 1989, 7: 69-77.
    162 Madhani H D, Fink G R. The riddle of MA P k inase signaling specificity. Trends Genet, 1998, 14: 151-155.
    163 Madhani, H. D., Styles, C. A., and Fink, G. R, MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell 1997, 91:673-684.
    164 Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, et al, The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat. Genet. 2000, 26:403-10
    165 Mao, H., Dong, C., Su Z., Ji, R., Guo, X., and Liu, S. Analysis of a set of 14,549 Brassica napus unique ESTs and signature genes related to Sclerotinia resistance. In: Proceedings of the 12th International Rapeseed Congress, Vol II, Biotechnology, Science Press USA Inc., 2007, 138-140.
    166 MAPK Group( Ichimura K et al,) , Mitogen-activated protein kinase cascade in plants: a new nomenclature. Trends Plant Sci, 2002, 7:301-308.
    167 Marshall C J, Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signalregulated kinase activation. Cell, 1995, 80: 179-185.
    168 Martin G B, Functional analysis of plant disease resistanee genes and their downstream efectors. Curr. Opin Plant Biol,1999, 2:273-279.
    169 Martinez, C., Blanc, F., Le Claire, E., Besnard, O., Nicole, M., and Baccou, J.-C. Salicylic acid and ethylene pathways are differentially activated in melon cotyledons by active or heat-denatured cellulase from Trichoderma longibrachiatum. Plant Physiol. 2001, 127:334-344.
    170 Mathews, et al, "Regeneration of Shoots from Brassica Juncea (Linn) Czern and Coss Cells Transformed by Agrobacterium tumefaciens and Expression of Nopaline Dehydrogenase Genes," Plant Science 1985, 39:49-54.
    171 Mayer, K., Schüller, C., Wambutt, R., et al, Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature 1999, 402:769-77.
    172 McDowell, J.M., Dangl, J.L. Signal transduction in the plant immune response. Trends Biochem. Sci. 2000, 25:79-82.
    173 McDowell,J.M.,and Woffenden,B.J. plant disease resistance genes: recent insights and potential applications.Trends Biotechnol. 2003, 21:178-183.
    174 Mengiste, T., Chen, X., Salmeron, J., and Dietrich, R. The BOTRYTIS SUSCEPTIBLE1 Gene Encodes an R2R3MYB Transcription Factor Protein That Is Required for Biotic and Abiotic Stress Responses in Arabidopsis. Plant Cell 2003, 15:2551-2565.
    175 Menke, L.H., van, Pelt, J.A., Pieterse, CMJ., and Klessig, D.F, Silencing of mitrogen-activated protein kinase MPK6 comprises disease resistance in Arabidopsis. Plant Cell 2004, 16:897-907.
    176 Mikolajzyk M , Awotunde O S, Muszynska G, et al, Osmotic stress induces rapid activation of a salicylic acid induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells [ J ]. Plant Cell, 2000, 12: 165-178.
    177 Mizoguchi T, Irie K, Hirayama T, et al, A gene encoding a m itogen activated protein kinase kinase kinase is induced simultaneously with gene for a mitogen activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in A rabidopsis thaliana [J ]. Proc Natl Acad Sc i USA, 1996, 93: 765-769.
    178 Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and S6 ribosomal protein kinase by touch, cold, and water stressin Arabidopsis thaliana. Proc Natl Acad Sci USA , 1996, 93 : 765-769.
    179 Morris P C, Guerrier D, L eung J , et al, Cloning and characterization of MEK1, an Arabidopsis gene encoding a homologue of MAP kinase [J ]. PlantMol Biol, 1997, 35: 1057-1064.
    180 Mueller, D.S., et al, Efficacy of fungicides on Sclerotinia sclerotiorum and their potential control of Sclertoinia stem rot on soybean. Plant Dis. 2002, 86:26-31.
    181 Nakagami, H., Soukupová, H., Schikora, A. Zársk, V., and Hirt H, A mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. J. Biol. Chem. 2006, 281: 38697-38704.
    182 Nakashima M, The expression pattern of the gene for NPK1 protein kinase related to mitogen-activated protein kinase kinase kinase (MAPKKK) in tobacco plant :corelation with cell proliferation. Plant cell Physiol, 1998, 39: 690~700.
    183 Nawrath C, Heck S, Parinthawong N, Metraux J-P. EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell 2002, 14:275-86.
    184 Niggeweg R, Thurow C, Kegler C, Gatz C. Tobacco transcription factor TGA2.2 is the main component of as-1-binding factor ASF-1 and is involved in salicylic acid- and auxin-inducible expression of as-1-containing target promoters. J. Biol. Chem. 2000, 275:19897-905.
    185 Norman-Setterblad, C., Vidal, S., and Palva, E. T. Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Mol. Plant–Microbe Interact. 2000, 13:430-438.
    186 Novikova G V, Moshkov I E, Smith A R, Hall M A, The effect of ethylene on MAPKinase-like activity in Arabidopsis thaliana. FEBS Lett, 2000, 474 : 29~32.
    187 Nürnberger T, Nennstiel D, Jabs T, Sacks WR, Hahlbrock K, Scheel D, High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 1994, 78:449–460.
    188 Payne, R. W., the Guide to GENSTAT: Part 2. Oxford, 2000, UK: Oxford University Press.
    189 Pedley, K. F., and Martin, G. B. Role of mitogen-activated protein kinases in plant immunity. Curr. Opin. Plant Biol. 2005, 8:541-547.
    190 Pena-Cortes H, Fisahn J, Willmitzer L, et al, Signals involved in wound-induced proteinase inhibitorⅡgene expression in tomato and patoto plants [J]. Proc Natl Acad Sci 1995, 92:4106~4133
    191 Peng, M., and KuC, J. Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology 1992,.82, 696-699.
    192 Penninckx, I. A., Eggermont, K., Terras, F. R. G., Thomma, B. P., De Samblanx, G. W., Buchala, A., MétrauxMe′traux, J.-P., Manners, J. M., and BroekaertBroekaert, W. F. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 1996, 8:2309–2323.
    193 Petersen, M., Brodersen, P., Naested, H. Andreasson E., Lindhart, U., Johansen, B., Nielsen, H. B.,Lacy, M., Austin, M. J., Parker, J. E., Sharma, S. B., Klessig, D. F., Martienssen, R. Mattsson, O., Jensen, A. B., and Mundy J. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 2000, 103:1111-1120.
    194 Petersen, M., Brodersen, P., Naested, H. Andreasson E., Lindhart, U., Johansen, B., Nielsen, H. B., Lacy, M., Austin, M. J., Parker, J. E., Sharma, S. B., Klessig, D. F., Martienssen, R. Mattsson, O., Jensen, A. B., and Mundy J. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 2000, 103:1111-1120.
    195 Pieterse CMJ, Van Wees SCM, Hoffland E, van Pelt JA, van Loon LC. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 1996, 8:1225-37.
    196 Pieterse CMJ, Van Wees SCM, van Pelt JA, Knoestor M, Laan R, et al, A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 1998, 10:1571-80.
    197 Pontier D, Miao Z-H, Lam E. Tans-dominant suppression of plant TGA factor reveals their negative and positive roles in plant defense responses. Plant J. 2001, 27:529-38
    198 Purdy, L.H. Sclerotinia sclerotiorum: history, diseases, symptomatology, host range, geographic distribution and impact, Phytopathology 1979, 69:875-880.
    199 Rasmussen JB, Hammerschmidt R, Zook MN, Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syingae pv. Syingae. Plant Physiol. 1991, 97:1342-47.
    200 Rate D N,Cuenca J V,Bowman G R,Gummn D S,Greenberg J T, The gain-of-function Arabidopsis aed6 mutant reveals novel regulation, and function of the salicylic acid signaling pathway in controlling cell death,defenses,and cell growth.Plant Cell,1999, 11:1695—1708.
    201 Reijans M, Lascaris R, Groeneger AO, Wittenberg A, Wesselink E, van Oeveren J, de Wit E, Boorsma A, Voetdijk B, van der Spek H, Grivell LA, Simons G. Quantitative comparison of cDNA-AFLP, microarrays, and GeneChip expression data in Saccharomyces cerevisiae. Genomics. 2003, 82:606-18.
    202 Ren, D., Liu, Y., Yang, K. Y., Han, L., Mao, G., Glazebrook, J., and Zhang, S. A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc. Natl. Acad. Sci. 2008, 105:5638-5643.
    203 Reymond P, Farmer E E, Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol, 1998, 1: 404~411.
    204 Richard M. B., Richard K., Jennifer S. Thaler, Philip D. Weyman1 and David G. Signal interactions in induced resistance to pathogens and insect herbivores. European Journal of Plant Pathology 2001, 107: 103–111, 2001.
    205 Rollins JA, Dickman MB. Increase in Endogenous and Exogenous Cyclic AMP Levels Inhibits Sclerotial Development in Sclerotinia sclerotiorum. Appl Environ Microbiol. 1998, 64:2539-44.
    206 Rollins JA, Dickman MB. pH signaling in Sclerotinia sclerotiorum: identification of a pacC/RIM1 homolog. Appl Environ Microbiol. 2001, 67:75-81.
    207 Romeis, T., Piedras, P., Zhang, S., Klessig, D.F., Hirt, H., and Jones, J.D. Rapid Avr9- and Cf-9-dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell 1999, 11:273-287.
    208 Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD.Systemic Acquired Resistance. Plant Cell 1996,8:1809-1819.
    209 Ryan C.A. and Moura DS. Systemic wound signaling in plants: a new perception. Proc Natl Acad Sci U S A. 2002, 99(10):6519-20.
    210 Ryan CA, Moura DS. Systemic wound signaling in plants: a new perception. Proc Natl Acad Sci 2002, 99(10):6519-20.
    211 Ryols J, Weymann K, Lawton K, Friedrich L, Ellis D, et al, The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor IkB. Plant Cell 1997, 9:425-39
    212 Saitou N., and Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4(4):406-25.
    213 Salanoubat M., Lemcke, K., Rieger, M., et al, Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana. Nature 2000, 408:820-822.
    214 Sangwan V, Dhindsa R S, In vivo and in vitro activation of temperature-responsive plant map kinases. FEBS Lett, 2002, 531 : 561-564
    215 Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, et al, Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. USA 2000, 97:11655-60
    216 Sells M A , Chernoff J. Emerging from the Pak: the p212activeted p ro tein k inase family [ J ]. Trends Cell Biol, 1997, 7: 162-167.
    217 Sembdner G., and Parthier B. The biochemistry and the physiological and molecular actions ofjasmonates. Annu Rev. Plant Physiol 1993, 44:569-589
    218 Seo S, Okamoto M, Seto H, Ishizuka K, Sano H, Ohashi Y, Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science, 1995, 270 : 1988-1992.
    219 Seo S, Sano H, Ohash i Y. Jasmonic acid in wound signal transduction pathways[J]. Physical Plant, 1997, 101: 740-745.
    220 Seo S, Sano H, Ohash i Y. Jasmonate based wound signal transduction requires activation of WIPK, a tobacco m itogen activated protein kinase [ J ]. Plant Cell, 1999,11: 289-298.
    221 Seo S., Okamoto, M., Seto, H., Ishizuka, K., Sano, H., and Ohashi, Y. Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science 1995, 270(5244):1988-92.
    222 Shah J, Tsui F, Klessig DF. Characterization of a salicylic acid-insensitive mutant (sai1) of Arabidopsis thaliana identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mol. Plant Microbe. Interact. 1997, 10:69-78.
    223 Shirano Y, Kachroo P, Shah J, Klessig DF. A gain-of-function mutation in an Arabidopsis toll interleukin 1 recepor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results enhanced disease resistance. Plant Cell 2002, 14:3149-62.
    224 Singh R.B, and Singh U.F. A modified method for testing pathogenicity of ascospores Sclerotinia sclerotiorum. Mycologia. 1979, 71:646-648.
    225 Song FM , Goodman R M. OsBIMK1, a riceMAP kinase gene involved in disease resistance responses[J ]. Planta, 2002, 215:997-1005.
    226 Song W Y, Wang G L , Chen L L , et al,A receptor kinase like protein encoded by the rice disease resistance gene, Xa21 [J]. Science, 1995, 270: 1804-1806.
    227 Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Van Pelt JA, et al, NPR1 modulates cross-talk between salicylate- and jasmonate-deoendent defense pathways through a novel function in the cytosol. Plant Cell 2003, 15:760-70.
    228 Staswick PE, Tiryaki I, Rowe ML. Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 2002, 14:1405-15
    229 Staswick PE, Tiryaki I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 2004, 16:2117-27.
    230 Stintzi A, Weber H, Reymond P, Browse J, Farmer EE. Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc Natl Acad Sci 2001, 98(22):12837-42.
    231 Stratmann JW , Ryan C A. Myelin basic protein kinase activity in tomato leaves is induced system ically by wounding and increase in response to system in and polysaccharide elicitors[J ]. Proc Natl Acad Sc i USA, 1997, 94: 11085-11089.
    232 Suarez-Rodriguez, M. C., Adams-Phillips, L., Liu, Y., Wang, H., Su, SH., Jester, P. J., Zhang, S., Bent, A. F., and Krysan, P. J. MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants. Plant Physiol. 2007, 143:661-9.
    233 Suzuki K, Yane A, Shinshi H. Slow and prolonged activation of HiP47 protein kinase during hypersensitive cell death in a culture of tobacco cells[J ]. Plant Physiol. 1999, 119: 1465-1470.
    234 Takemoto, D., Hardham, A. R., and Jones, D. A. Differences in cell death induction by Phytophthora Elicitins are determined by signal components downstream of MAP kinase kinase in different species of Nicotiana and cultivars of Brassica rapa and Raphanus sativus. Plant Physiol. 2005, 138:1491-504.
    235 Taylor A T S, Kim J, Low P S, Involvement of mitogen-activated protein kinase activation in the signaltransduction pathways of the soya bean oxidative burst. Biochem, 2001, 355 : 795-803.
    236 Teutonic R A, Osborn T C. Mapping of RFLP and qualitative trait loci in Brassica napus and comparison to the linkage maps of B. napus, B. oleracea, and Arabidopsis thaliana. Thero Appl Genet, 1994, 89:885-894.
    237 The Arabidopsis Genome Initiative, Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408 : 796-815.
    238 Thomma B P,Penninckx 1 A,Broekaert w F,CamlYltle B P, The complexity of disease signaling in Arabidopsis.Curr opin, Immunol. 2001, 13:63-68.
    239 Thomma BPHJ, Eggermont K, Penninckx LAMA, Mauch-Mani B, Vogelsang R, et al,Separatejasmonate-dependent and slicylate- dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci. USA 1998, 95:15107-11
    240 Thompson, J. D., Higgins, D. G., and Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22:4673-80.
    241 Thormann CE, Romero J, Namtet J, OsbornTC, Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of Brassica napus L. Theor Appl Genet, 1996, 93:282–286.
    242 Tian AG, Wang J, Cui P, Han YJ, Xu H, Cong LJ, Huang XG, Wang XL, Jiao YZ, Wang BJ, Wang YJ, Zhang JS, Chen SY. Characterization of soybean genomic features by analysis of its expressed sequence tags. Theor Appl Genet. 2004, 108:903-13.
    243 Tjokrokusumo D., Heinrich, T., Wylie, S., Potter, R. and McComb, J. Vacuum infiltration of Petunia hybrida pollen with Agrobacterium tumefaciens to achieve plant transformation. Plant Cell Rep. 2000, 19:792-797.
    244 Toal E S,Jones P W. Induction of systemic resistance to Sclerotinia sclerotiorum by oxalic acid in oilseed rape.Plant Pathology, 1999, 48:759-767.
    245 Tournier C, W h itmarsh A J , Cavanagh J , et al, The M KK7 gene encodes a group of CJun NH terminal kinase kinases [ J ]. Mol Cell Biol, 1999, 19: 1569-1581.
    246 van Loon AJ, Mantingh A, Serlier EK, Kroon G, Mooyaart EL, Huisjes HJ. Randomised controlled trial of magnetic-resonance pelvimetry in breech presentation at term. Lancet. 1997, 350:1799-804.
    247 Wang J., Li, Y. and Liang, C. Recovery of transgenic plants by pollen-mediated transformation in Brassica juncea. Transgenic Res. 2007, Online ( http://www.springerlink. com/content/176n6tqk1rv7r680/fulltext.html).
    248 Wang, Z. X., Liu, Y. H., Sun, J. S., and Jia, S. R. Cloning of glucose oxidase gene and expression in tobacco plants. Progress in Nat. Sci. 2003, 13:248-252.
    249 Widmann C, Gibson S, JarpeM B, et al, Mitogen activated protein kinase: conservation of a three kinase module from yeast to human [J ]. Physiol Rev, 1999, 79: 143-180.
    250 Wildermuth MC, Dewdney J, Wu G, Ausubel FM. Isochorismate synthase is required to synthesize salicylic acid for plant defense. Nature 2001, 414:562-65.
    251 Wilson C, Anglmayer R, Vicente O, Heberle-Bors E, Molecular cloning, functional expression in Escherichia coll, and characterization of multiple mitogen-activated protein kinase from tobacco. Eur J Biochem, 1995, ,233 : 249~257.
    252 Wu, G.S., B.J. Shortt, E.B. Lawrence, E.B. Levine, K.C. Fitzsimmons & D.M. Shah, Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants.Plant Cell 1995, 7: 1357–1368.
    253 Wu, J., Hettenhausen, C., Meldau, S., and Baldwin, I. T. Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant cell 2007, 19:1096-122.
    254 Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG. COI1:an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 1998, 280:1091-94
    255 Xu G.-S., Rao, Y.-Q., Chen, Y., Zhang, C.-Y., and Meng J.-L. Genetic Transformation of Brassica napus with in planta Method. Acta. agronomicasin. 2004, 30:1-5.
    256 Yalamanchili R D, Stratmann J W, Ultraviolet-B activates components of the systemin signaling pathway in Lycopersicon peruvianum suspension-cultured cells. J Biol Chem, 2002, 277: 28424~28430.
    257 Yang K Y, Liu Y, Zhang S, Activation of a mitogen-activated protein kinase pathway is involved in diserse resistance in tobacco. PNAS, 2001, 98: 741~746.
    258 Yano A , Suzuk i K, U ch im iya H, et al, Induction of hypersensitive cell death by a fungal p ro tein in cultures of tobacco cells [ J ]. Mol Plant-Microbe Interact, 1998, 11: 115-123.
    259 Zhang S, Du H, Klessing D F. A ctivation of the tobacco S IP k inase by Bo th a cell wall2derived carbohydrate elicito r and purified p ro teinaceous elicitins from Phytopathora spp [J ]. Plant Cell, 1998, 10: 435-450.
    260 Zhang S, Klessig D F, Salicylic acid activatives a 48-kD MAP kinase in tobacco. The Plant Cell, 1997, 9: 809~824.
    261 Zhang S, Klessig D F, MAPK cascades in plant defense signaling. Trends Plant Sci, 2001, 6 : 520~527.
    262 Zhang S, Klessig D F. The tobacco wounding activated mitogen activated protein kinase is encoding by SIPK [J ]. Proc Natl Acad Sci USA, 1998, 95: 7225-7230.
    263 Zhang S, Liu Y, Klessig D F, Multiple levels of tobacco WIPK activation during the induction of cell death by fungal elicitins. Plant J, 2000, 23 : 339~347.
    264 Zhang Y, Fan W, Kinkema M, Li X, Dong X. Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc. Natl. Acad. Sci. USA 1999, 96:6523-28.
    265 Zhang Y, Goritschnig S, Dong X, Li X. A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell 2003, 15:2636-46.
    266 Zhang, X., Dai, Y., Xiong, Y., DeFraia, C., Li, J., Dong, X., and Mou, Z. Overexpression of Arabidopsis MAP kinase kinase 7 leads to activation of plant basal and systemic acquired resistance. Plant J. 2007, 52:1066-79.
    267 Zhang, Z., Collinge, D.B., and Thordal-Christensen, H. Germin-like oxalate oxidase, a H,O,-producing enzyme, accumulates in barley attacked by the powdery mildew fungus. Plant J. 1995, 8,139-145.
    268 Zhao J. Meng J. Detection of loci controlling seed glucosinolate content and their association with Sclerotinia resistance in Brassica napus. Plant Breeding 122, 19-23.
    269 Zhao, J., Wang, J., An L., Doerge, R. W., Chen Z. J., Grau C. R. Meng , J., and Osborn T. C. Analysis of gene expression profiles in response to Sclerotinia sclerotiorum in Brassica napus.Planta 2007, 227:13-24.
    270 Zhen J.Z., Wu, Y.X., Wang, D.J., Zhang, J., Ma, Z.R. and Zhou, Z.Y, The exploration of the mechanism and genetic performance of the progenies gained from pollen-tube pathway transformation. Sci. Bull. (China)1998, 43: 561-566.
    271 Zhou J-M, Trifa Y, Silva H, Pontier D, Lam E, et al, NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol. Plant Microbe Interact. 2000, 13:191-202.