泡沫夹芯复合材料界面破坏行为及增韧研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
界面是泡沫夹复合材料的一个重要组成部分,它决定着面板和芯体是否能够有效地协同承载。在实践应用中存在大量界面首先发生破坏并危及整体结构的现,结构的整体承载能力往往不是取决于面板和芯体材料的强度,而是取决于界面的强度和韧性。本文采用实验研究与数值模拟相结合的方法,对泡沫夹芯复合材料界面破坏模式、界面增韧、界面蠕变断裂行为以及界面裂纹曲折扩展路径开展了较为系统的研究。本文的研究工作是973计划课题(2006CB601205)和国家自然科学基金课题(10672027、90816025)中相关子课题研究内容的重要组成部分。本文研究工作主要内容包括:
     1.设计了泡沫夹芯复合材料梁界面断裂破坏双悬臂梁(DCB)试验方案,采用真空辅助树脂注射技术制备了含初始裂纹损伤的DCB试件,进而考察了准静态加载下具有不同芯体密度和弹性模量的DCB试件的界面断裂破坏模式,得到了界面裂纹沿界面破坏模式和曲折破坏模式的破坏特征。对不同的界面破坏模式进行了力学机理分析,指出面板/芯体弹性模量比是出现不同界面破坏模式的支配因素。
     2.基于单根短切纤维细观增韧机理分析,将复合材料层合板层间短切纤维增韧技术拓展到了泡沫夹芯复合材料界面增韧中。制备了短切纤维界面增韧的泡沫夹芯复合材料DCB试件,并对增韧和未增韧试件的界面承载能力和界面断裂韧性进行了测试和评价,结果显示增韧试件的界面断裂韧性和界面承载能力都得到了显著提高。此外,通过对具有不同芯体厚度的DCB试件界面断裂韧性测试结果的比较,探讨了界面断裂韧性随着芯体厚度变化的规律及其力学机理。
     3.基于数字图像相关法设计了一套精密的界面裂纹蠕变位移场测量系统,对恒定载荷作用下泡沫夹芯复合材料DCB试件界面裂纹尖端附近的蠕变位移场进行了测量,并从蠕变位移场中得到了界面裂纹断裂参数的蠕变响应及其特征。最后,比较了不同树脂体系对界面蠕变断裂行为的影响。
     4.基于可视准则推导了包含裂纹的物质点算法,通过算例验证了该方法在断裂参数计算以及裂纹扩展模拟问题中的有效性和精确性。利用本文提出的包含裂纹的物质点算法,对具有不同芯体密度的泡沫夹芯复合材料梁界面裂纹曲折破坏特征和完整的曲折扩展破坏路径进行了数值模拟,数值模拟得到的界面裂纹曲折破坏角、扩展路径以及扩展形貌与试验结果具有很好的一致性。
     本文研究方法和研究成果将为泡沫夹芯复合材料界面增韧工艺设计、界面止裂设计以及界面安全评估提供有益的参考。
The face/core interface plays an important role in structural performance of foam core sandwich composites. The overall load capacity of sandwich composites is often limited not by the strength of face material but by the strength and toughness of face/core interface. In this paper, the interfacial failure modes, interfacial toughness enhancement, interfacial creep fracture behavior as well as the interfacial crack kinking path in foam core sandwich composites are investigated experimenally and numerically under the framework of973Project (No.2006CB601205) and National Science Foundation in China (No.10672027, No.90816025).
     Related studies of this paper are summarized as follows:
     1. A double cantilever beam (DCB) test scheme is designed to investigate interfacial frature behavior of foam core sandwich composites. DCB specimens with artificial interfacial crack are manufactured using the vacuum assisted resin injection (VARI) process, and interfacial failure modes of DCB specimens with various foam core are experimentally examined. Two different failure modes of interfacial crack are observed during the test, and their characteristics are also obtained. Analysis is conducted on the mechanism of interfacial failure modes, and the result indicates that interfacial failure modes are mainly dominated by face/core modulus ratio of DCB specimens.
     2. According to the analysis results of meso-mechanism in chopped fiber toughening and the meso characteristics of foam core surface, an interfacial toughness enhancement method using relatively long chopped glass fibers is proposed. DCB specimens with and without interfacial enhancement are manufactured using VARI process. The interfacial load capacity and interfacial fracture toughness of specimens with and without interfacial enhancement are tested, and the results indicate that the interfacial toughness enhancement technique proposed by this paper can significantly promote the interfacial toughness as well as the interfacial load capacity of the foam core sandwich composites. In addition, the interfacial fracture toughness of specimens with various core thickness is also tested. It is found that the interfacial fracture toughness decreases with increasing core thickness, however, when core thickness is larger than20mm, the interfacial fracture toughness becomes a constant value. The mechanism of this phenomenon is discussed subsequently.
     3. Based on digital image correlation (DIC) technique, a precise measurement system is designed to investigate the interfacial creep fracture behavior of foam core sandwich composites. Creep displacement fields near interfacial crack tip of DCB specimens are measured by this system, and creep responses of interfacial fracture parameters are extracted from the creep displacement fields. The creep test results show that creep responses of interfacial fracture parameters present the characteristics of standard solid creep model.'At last, the influences of resin materials on interfacial creep fracture behavior are discussed in detail.
     4. For the sake of handling cracks in numerical simulation, material point method (MPM) algorithm with cracks is developed in which discontinuity was introduced into MPM by visibility rule. The methodology is validated by typical examples, and the results demonstrate the accuracy and efficiency of the algorithm. After that, the MPM algorithm with cracks proposed in this paper is employed to simulate interfacial crack kinking angles and crack kinking paths in DCB specimens with various foam core, and good accordance is found between numerical results and experimental observations.
     The method and conclusions presented in this paper would benefit the interface design and interface safety assessment of foam core sandwich composites.
引文
[1]沈观林,胡更开.复合材料力学[M].北京:清华大学出版社,2006.
    [2]王兴业,杨孚标,曾竟成,等.夹层结构复合材料设计原理及其应用[M].北京:化学工业出版社,2006.
    [3]Varvani-Farahani A. Composite Materials:Characterization, Fabrication and Application-Research Challenges and Directions[J]. Applied Composite Materials,2010, 17(2):63-67.
    [4]吴林志,泮世东.夹芯结构的设计及制备现状[J].中国材料进展,2009,28(4):40—45.
    [5]Wadley H N G. Cellular Matals Manufacturing[J]. Advanced Engineering Materials,2003, 4:726-733.
    [6]Huybrechts S M, Meink T E, Wegner P M, et al. Manufacturing Theory for Advanced Grid Stiffened Structures[J]. Composites Part A-Applied Science And Manufacturing,2002, 33:155-161.
    [7]Vaidya A S, Vaidya U K, Uddin N. Impact Response of Three Dimensional Multifunctional Sandwich Composite[J]. Materials Science & Engineering,2008,472:52-58.
    [8]Gibson L J, Ashby M F. Cellular Solids:Structures and Properties[M]. Cambridge: Cambridge University Press,1997.
    [9]Zenkert D. Damage tolerance of foam core sandwich construct ions[D]. Stockholm:The Royal Institute of Technology,1987.
    [10]Zenkert D. An Introduction to Sandwich Construct ion [M]. London:Engineering Materials Advisory Services,1995.
    [11]Daniel I M, Gdoutos E E, Wang K A, et al. Failure Modes of Composite Sandwich Beams [J]. International Journal of Damage Mechanics,2002,11:309-334.
    [12]Allen H G. Analysis and Design of Structural Sandwich Panels[M]. London:Pergamon Press,1969.
    [13]Hall D J, Robson B L. A Review of the Design and Materials Evaluation Programme for the GRP/foam Sandwich Composite Hull of the RAN Minehunter[J]. Composites,1984,15(4): 266-276.
    [14]Fairbairn W. An Account of the Construction of the Britannia and Conway Tubular Bridges[M]. London:J. Weale,1849.
    [15]卢子兴,郭宇.金属泡沫材料力学行为的研究概述[J].北京航空航天大学学报,2003,29(11):978-983.
    [16]胡培Rohacell技术手册[M].上海:德固赛公司,2005.
    [17]颜鸿斌,孙红卫,凌英,等.树脂基复合材料/泡沫塑料夹层结构成型技术研究进展[J].宇航材料工艺,2004,(1):12—15.
    [18]赵鹏飞,张元明,何颖,等.玻璃钢蒙皮/聚氨酯泡沫塑料夹芯结构无人机机翼制造,一、工艺方案设计[J].玻璃钢/复合材料,2001,(3):29—31.
    [19]赵鹏飞,张元明,何颖,等.玻璃钢蒙皮/聚氨酯泡沫塑料夹芯结构无人机机翼制造,二、制造工艺过程[J].玻璃钢/复合材料,2001,(4):37—39.
    [20]Reissner E. Small Bending and Stretching of Sandwich-Type Shells[R]. NACA RPT 975: 1950.
    [21]Hoff N J. Bending and Buckling of Rectangular Sandwich Plates[R]. NACA TN-2225:1950.
    [22]Stein M, Mayers J. A Small Deflection Theory for Curved Sandwich Plates[R]. NACA RPT 1008:1951.
    [23]Reissner E. Finite Deflection of Sandwich Plates[J]. Journal of Aerospace Science, 1948,15(7):435-440.
    [24]Wang C T. Principle and Application of Complementary Energy Method for Thin Homogeneous and Sandwich Plates and Shells with Finite Deflections[R]. NACA TN-2620: 1952.
    [25]Burton W S, Noor A K. Assessment of Computational Models for Sandwich Panels and Shells[J]. Computer Methods in Applied Mechanics and Engineering,1995,124(1-2): 125-151.
    [26]Reddy J N. A Simple Higher-Order Theory of Laminated Composite Plate[J]. Journal of Applied Mechanics,1984,51(4):745-752.
    [27]Touratier M. An Efficient Standard Plate Theory. International Journal of Engineering Science,1991,29(8):901-916.
    [28]Noor A K, Burton W S. Assessment of Shear Deformation Theories for Multilayered Composite Plates[J]. Applied Mechanics Reviews,1989,42(1):1-13.
    [29]Noor A K, Burton W S. Assessment of Computational Models for Multilayered Anisotropic Plates[J]. Composite Structures,1990,14(3):233-265.
    [30]Noor A K, Burton W S. Computational Models for Sandwich Panels and Shells [J]. Applied Mechanics Reviews,1996,49(3):155-199.
    [31]Reddy J N. Mechanics of Laminated Composite Plates:Theory and Analysis[M]. Boca Raton: CRC Press,1997.
    [32]Carrera E, Ciuffreda A. A Unified Formulation to Assess Theories of Multilayered Plates for Various Bending Problems[J]. Composite Structures,2005,69(3):271-293.
    [33]Carrera E. Historical Review of Zig-Zag Theories for Multilayered Plates and Shells[J]. Applied Mechanics Reviews,2003,56(3):287-308.
    [34]Hu H, Belouettar S, Potier-Ferry M, et al. Review and Assessment of Various Theories for Modeling Sandwich Composites[J]. Composite Structures,2008,84(3):282-292.
    [35]Burton W S, Noor A K. Three-dimensional solutions for thermomechanical stresses in sandwich panels and shells[J]. Journal of Engineering Mechanics,1994,120(10): 2044-2071.
    [36]Hanagud S, Chen H P, Sriram P. A study of the static post buckling behavior of composite sandwich plates[C]. Proceedings of International Conference on Rotorcraft Basic Research. Alexandria VA:Am Helicopter Society,1985.
    [37]Chamis C C, Aiello R A, Murthy P L N. Fiber composite sandwich thermostructural behavior:computational simulation[J]. Journal of Composites Technology & Research, 1988,10(3):93-99.
    [38]陈浩然.夹芯复合材料界面裂纹动态起裂和扩展机理的跨尺度研究[R].国家自然科学基金面上项目结题总结报告.2009
    [39]孙先念,刘书田Z-pins对层合复合材料非对称分层增韧作用参数分析一I型层间韧性[J].复合材料学报,2009,26(5):186-192.
    [40]杜龙,矫桂琼,黄涛,等Z-pin增强对泡沫夹层结构弯曲和振动性能的影响[J].材料科学与工艺,2009,17(6):741-745.
    [41]张风鹏,刘海,黄宝宗.冲击载荷作用下层间短纤维增韧研究[J].东北大学学报(自然科学版),2007,28(4):605-608.
    [42]Lingaiah K, Suryanarayana B G. Strength and stiffness of sandwich beams in bending[J] Experimental Mathematics,1991,31 (1):1-7.
    [43]Kao J S. Bending of circular sandwich plates due to asymmetric temperature distribution[J]. AIAA Journal,1970,8(5):951-954.
    [44]柳春图.夹层板方程的变换和四边简支矩形夹层板的变形问题[J].力学学报,1965,8(4):243-255.
    [45]Monforton G R, Ibrahim I M. Analysis of sandwich plates with unbalanced cross-ply faces[J]. International Journal of Mechanical Sciences,1975,17(3):227-238.
    [46]Holt P J, Webber J P H. Exact solutions to some honeycomb sandwich beam, plate and shell problems[J]. Journal of Strain Analysis for Engineering Design,1982,17(1): 1-8.
    [47]Grigolyuk E I, Kornev V M. Asymptotic analysis of the equations of sandwich plate and shell theory[J]. Mechanics of Solids,1976,11(4):125-130.
    [48]Ha K H. Finite element analysis of sandwich plates:An overview[J]. Computers &Structures,1990,37(4):397—403.
    [49]Rao Y V K S, Nakra B C. Theory of vibratory bending of unsymmetrical sandwich plates [J]. Archives of Mechnics,1973,25(2):213-225.
    [50]Mirza S, Singh A V. Axisymmetric vibration of circular sandwich plates[J]. AIAA Journal,1974,12(10):1418-1420.
    [51]Paydar N, Adams R. Transverse vibration of annular sandwich plates with linear thickness variation[J]. Journal of Sound and Vibration,1989,131(2):259-263.
    [52]Rao K M, Meyer-Piening H R. Vibration analysis of FRP faced sandwich plates using hybrid-stress finite element method[J]. Computers & Structures,1991,41(2):177-188.
    [53]Wilkins J D J, Bert C W, Egle D M. Free vibrations of orthotropic sandwich conical shells with various boundary conditions[J]. Journal of Sound and Vibration,1970, 13(2):211-228.
    [54]Ahmed K M. Static and dynamic analysis of sandwich structures by the method of finite elements[J]. Journal of Sound and Vibration,1971,18(1):75-91.
    [55]Rao Y V K S, Sinha P K. Vibrations of sandwich plates under uniaxial compression[J]. AIAA Journal,1974,12(9):1282-1284.
    [56]Sinha P K, Rath A K. Frequencies of free vibration of axially compressed orthotropic sandwich plates[J]. Journal of Sound and Vibration,1974,35(4):541-547.
    [57]Pandit M K, Haldar S, Mukhopadhyay M. Free vibration analysis of laminated composite rectangular plate using finite element method[J]. Journal of Reinforced Plastics and Composites,2007,26(1):69-80.
    [58]Liu S. Vibration analysis of composite laminated plates[J]. Finite Elements in Analysis and Design,1991,9(4):295-307.
    [59]Desai Y M, Ramtekkar G S, Shah A H. Dynamic analysis of laminated composite plates using a layer-wise mixed finite element model[J]. Composite Structures,2003,59(2): 237-249.
    [60]Shahin R M. Nonlinear vibrations of multilayer orthotropic sandwich plates[J]. Journal of Sound and Vibration,1974,36(3):361-374.
    [61]Rajagopal S V, Singh G, Rao Y V K S. Large-deflection and nonlinear vibration of multilayered sandwich plates[J]. AIAA Journal,1987,25(1):130-133.
    [62]Azrar L, Belouettar S, Wauer J. Nonlinear vibration analysis of actively loaded sandwich piezoelectric beams with geometric imperfections [J]. Computers & Structures, 2008,86(23-24):2182-2191.
    [63]Lu Y P, Killian J W, Everstine G C. Vibrations of three laered damped sandwich plate composites[J]. Journal of Sound and Vibration,1979,64(1):63-71.
    [64]Alam N, Asnani N T. Vibration and damping analysis of multilayered rectangular plates with constrained viscoelastic layers [J]. Journal of Sound and Vibration,1984,97(4): 597-614.
    [65]Vaswani J, Asnani N T, Nakra B C. Vibration and damping analysis of doubly curved sandwich panels with viscoelastic core[J]. Aeronautical Journal,1984,88:395-403.
    [66]Li Z, Crocker M J. A Review on Vibration Damping in Sandwich Composite Structures. International Journal of Acoustics and Vibration,2005,10(4):159-169.
    [67]Culkowski P M, Reismann H. The spherical sandwich shell under axisymmetric static and dynamic loading[J]. Journal of Sound and Vibration,1971,14(2):229-240.
    [68]Mukhopadhyay A K, Kingsbury H B. On the dynamic response of a rectangular sandwich plate with viscoelastic core and generally orthotropic facings[J]. Journal of Sound and Vibration,1976,47(3):347-358.
    [69]Kant T, Arora C P. Finite element transient analysis of composite and sandwich plates based on a refined theory and a mode superposition method[J]. Composite Structures, 1992,22(2):109-120.
    [70]Chen C H, Chen J P. Compressive strength of composite sandwich panel after impact damage-An experimental study[J]. MRL Bulletin of Research and Development,1991, 5(1):41-47.
    [71]Yu J L, Wang X, Wei Z G, et al. Deformation and failure mechanism of dynamically loaded sandwich beams with aluminum-foam core[J]. International Journal of Impact Engineering,2003,28(3):331-347.
    [72]Yu J L, Wang E, Li J, et al. Static and low-velocity impact behavior of sandwich beams with closed-cell aluminum-foam core in three-point bending[J]. International Journal of Impact Engineering,2008,35(8):885-894.
    [73]Wei Z, Dharmasena K P, Wadley H N G, et al. Analysis and interpretation of a test for characterizing the renponse of sandwich panels to water blase[J]. International Journal of Impact Engineering,2007,34(10):1602-1618.
    [74]Akil H M, Cantwell W J. The low velocity impact response of foam-based sandwich structures[J]. Composites Part B:Engineering,2002,33(3):193-204.
    [75]Reyes V G, Cantwell W J. The high velocity impact response of composite and FML-reinforced sandwich structures [J]. Composites Science and Technology,2004,64(1): 35-54.
    [76]Plantema F J. Sandwich construction:the bending and buckling of sandwich beams, plates, and shells[M]. New York:Wiley,1966.
    [77]Leotoing L, Drapier S, Vautrin A. First applications of a novel unified model for global and local buckling of sandwich columns[J]. European Journal of Mechanics A-Solids,2002,21(4):683-701.
    [78]Frostig Y. High-order buckling analysis of sandwich beams with transversely flexible core[J]. Journal of Engineering Mechanics,1993,119(3):476-495.
    [79]Bazant Z P, Beghini A. Sandwich buckling formulas and applicability of standard computational algorithm for finite strain[J]. Composites Part B-Engineering,2004, 35B(6-8):573-581.
    [80]Beghini A, Bazant Z P, Waas A M, et al. Postcritical imperfection sensitivity of sandwich or homogenized orthotropic columns soft in shear and in transverse deformation[J]. International Journal of Solids and Structures,2006,43(18-19): 5501-5524.
    [81]Ivanov V A, Paimushin V N. Stability of multilayered shallow shells with soft transverse filler[J]. Mechanics of Composite Materials, 1994, 30(3): 372-390.
    [82]Fleck N A, Sridhar I. End compression of sandwich columns[J]. Composites Part A-Applied Science and Manufacturing, 2002, 33(3): 353-359.
    [83]Fagerberg L. Wrinkling and compression failure transition in sandwich panels[J]. Journal of Sandwich Structures and Materials, 2004, 6(2): 129-144.
    [84]Akkas N, Bauld J N. Buckling and initial post-buckling behavior of clamped shallow spherical sandwich shells[J]. International Journal of Solids and Structures, 1971, 7(9): 1237-1259.
    [85]Dorr D J. Local postbuckling strength of flat truss core sandwich panels[C]. Proceedings of Aerospace Structure Design Conference. Seattle WA: Seattle Proffessor Engineering Employees Association, 1969.
    [86]Jeusette J P, Laschet G. Pre- and postbuckling finite element analysis of corved composite and sandwich panels[J]. AIAA Journal, 1990, 28(7): 1233-1239.
    [87]Chang J S. Overall buckling and postbuckling behavior of beam-like sandwich plates [J]. Composites Science and Technology, 1992, 45(1): 55-63.
    [88]Kamiya N, Sawaki Y, Nakamura Y. Nonlinear bending analyses of heated sandwich plates and shells by the boundary element method[J]. Res Mechanica, 1983, 8(1): 29-38.
    [89]Huang H Y, Kardomateas G A. Buckling and initial postbuckling behavior of sandwich beams including transverse shear[J]. AIAA Journal, 2002, 40(11): 2331-2335.
    [90]Zhang Y X, Yang C H. Recent developments in finite element analysis for laminated composite plates[J]. Composite Structures, 2009, 88(1): 147-157.
    [91]Chang F K, Lessard L B. Damage tolerance of laminated composites containing an open hole and subjected to compressive loadings[J]. Journal of Composite Materials, 1991, 250): 2-43.
    [92]Shahid I, Chang F K. An accumulative damage model for tensile and shear failures of laminated composites plates[J]. Journal of Composite Materials, 1995, 29(7) : 926-981.
    [93]Singh S B, Kumar A. Postbuckling response and strength of laminates under combined in-plane loads[J]. Composites Science and Technology, 1999, 59(5): 727-736.
    [94]Reddy Y S N, Reddy J N. Linear and non-linear failure analysis of composite laminates with transverse shear[J]. Composites Science and Technology, 1992, 44(3): 227-255.
    [95]Tolson S, Zabaras N. Finite element analysis of progressive failure in laminated composite plates[J]. Composite Structures, 1991, 38(3): 361-376.
    [96]Reddy Y S N, Reddy J N. An accurate prediction of failures in composite laminates using a layerwise model[C]. Proceedings of ICCM-9. Madrid: ICCM, 1993: 3, 15-22.
    [97]Oliveira B F, Creus G J. Viscoelastic failure analysis of composite plates and shells[J]. Composite Structures,2000,49(4):369-384.
    [98]Zenkert D, Vikstrom M. Shear cracks in foam core sandwich panels:nondestructive testing and damage assessment [J]. Journal of Composites Technology & Research,1992, 14(2):95-103.
    [99]Gdoutos E E, Daniel I M, Wang K A. Failure of cellular foams under multiaxial loading[J]. Composites Part A-Applied Science and Manufacturing,2002,33(2):163-176.
    [100]Triantafillou T C, Gibson L J. Failure mode maps for foam core sandwich beams[J]. Materials Science and Engineering,1987,95(1):37-53.
    [101]Tay T E. Characterization and analysis of delamination fracture in composites:An overview of developments from 1990 to 2001 [J]. Applied Mechanics Reviews,2001,56(1): 1-32.
    [102]Roudolff F, Ousset Y. Comparison between two approaches for the simulation of delamination growth in a D. C. B. specimen[J]. Aerospace Science and Technology,2002, 6(2):123-130.
    [103]Icardi U. C0 plate element for global/local analysis of multilayered composites based on a 3d Zig-Zag model and strain energy updating[J]. International Journal of Mechanical Sciences,2005,47(10):1561-1594.
    [104]Gruttmann F, Wagner W. Delamination analysis of thin composite structures using a multidirector formulation[J]. Advances in Analysis and Design of Composites,1996: 51-59.
    [105]Choi H Y, Chang F K. A model for predicting damage in graphite/epoxy laminated composites resulting from low velocity point impact [J]. Journal of Composite Materials, 1992,26(14):2134-2169.
    [106]Allix 0, Ladeveze P, Corigliano A. Damage analysis of interlaminar fracture specimens[J]. Composite Structures,1995,31(1):61-74.
    [107]Naik G N, Murty A V. A failure mechanism-based approach for design of composite laminates[J]. Composite Structures,1999,45(1):71-80.
    [108]Corigliano A, Mariani S, Pandolfi A. Numerical modeling of rate-dependent debonding processes in composites[J]. Composite Structures,2003,61(1-2):39-50.
    [109]周储伟,杨卫,方岱宁.内聚力界面单元与复合材料的界面损伤分析[J].力学学报,1999,31(3):372—377.
    [110]Balzani C, Wagner W. An interface element for the simulation of delamination in unidirectional fiber-reinforced composite laminates[J]. Engineering Fracture Mechanics,2008,75(9):2597-2615.
    [111]Suresh S, Needleman A. Interfacial phenomena in composites[M]. New York:Elsevier Applied Science,1989.
    [112]许金泉.界面力学[M].北京:科学出版社,2006.
    [113]Dundurs J. Boundary condition at interface[M]. Verlag:Springer,1990.
    [114]Xu J Q, Mutoh Y. Stress singularities at the frictional contact interface edge with small slipping[J]. Journal of the Society of Materials Science,2002,51:1253-1258.
    [115]Xu J Q, Mutoh Y, Kondoh K. Boundary element analysis of gretting fatigue tests and stress singular behaviors at the contact edge[R]. Sydney:2001.
    [116]Dundurs J. Effect of elastic constants on stress in a composite under plane def ormat ion [J]. Journal of Composite Materials,1967,1(3):310-322.
    [117]Dundurs J. Discussion of edge boned dissimiliar orthogonal elastic wedges under normal and shear loading[J]. Journal of Applied Mechanics,1969,36(3):650-652.
    [118]Yuuki R, Cho S B. Efficient boundary element analysis of stress intensity factors for interface cracks in dissimilar materials [J]. Engineering Fracture Mechanics,1989, 34(1):179-188.
    [119]Rice J R. Elastic fracture mechanics concepts for interfacial cracks[J]. Journal of Applied Mechanics,1988,55(1):98-103.
    [120]Xu J Q, Mutoh Y. A new definition of stress intensity factors for an interface crack with physical meanings [J]. Journal of the Society of Materials Science,1998,47(8): 804-807.
    [121]He M Y, Hutchinson J W. Kinking of a crack out of an interface [J]. Journal of Applied Mechanics,1989,56:270-278.
    [122]Suo Z, Hutchinson J W. Sandwich test specimens for measuring interface crack toughness [J]. Materials Science and Engineering,1989,107:135-143.
    [123]Sun C T, Jih C J. On strain energy release rates for interfacial cracks in bi-material media[J]. Engineering Fracture Mechanics,1987,28(1):13-20.
    [124]Johnson M J, Sridharan S. Delamination of compressively loaded composite laminates in the context of design[R]. St. Louis:AIAA,1999
    [125]Krueger R. Virtual crack closure technique:History, approach, and applications[J]. Applied Mechanics Reviews,2004,57(2):109-143.
    [126]Rybicki E F, Kanninen M F. A finite element calculation of stress intensity factors by a modified crack closure integral[J]. Engineering Fracture Mechanics,1977,9(4): 931-938.
    [127]Xie D, Waas A M, Shahwan K W, et al. Fracture criterion for kinking cracks in a tri-material adhesively bonded joint under mixed mode loading[J]. Engineering Fracture Mechanics,2005,72(16):2487-2504.
    [128]Chen H R, Bai R X. Postbuckling behavior of face/core debonded composite sandwich plate considering matrix crack and contact effect[J]. Composite Structures,2002, 57(1-4):305-313.
    [129]Rice J R. A path independent integral and the approximate analysis of strain concentrations by notches and cracks[J]. Journal of Applied Mechanics,1968,35(2): 379-386.
    [130]Hutchinson J W. Singular behavior at the end of a tensile crack in hardening materials[J]. J Mech Phys Solids,1968,16(1):13-31.
    [131]Rice J R, Rosengren G F. Plane strain deformation near crack tip in a power law hardening materials[J]. J Mech Phys Solids,1968,16(1):1-12.
    [132]Chen H R, Wang L M, Karihaloo B L, et al. Fracture analysis for multi-material system with an interface crack[J]. Computational Materials Science,1998,12(1):1-8.
    [133]Kishimoto K, Aoki S, Sakata M. Dynamic stress intensity factors using and finite element method[J]. Engineering Fracture Mechanics,1980,13(2):387-394.
    [134]Nishioka T, Atluri S N. Path-independent integrals, energy release rates, and general solutions of near-tip fields in mixed-mode dynamic fracture mechanics [J]. Engineering Fracture Mechanics,1983,18(1):1-22.
    [135]李述清,关正西.动态J积分及RiceJ积分一致性比较与分析[J].应用力学学报,2007,24(2):258—262.
    [136]Evans A G, Ruhle M, Dalgleish B J, et al. The fracture energy of bimaterial interfaces [J]. Materials Science & Engineering,1990,126(1):53-64.
    [137]Yuuki R, Liu J Q, Xu J Q, et al. Mixed mode fracture critetia for an interface crack [J]. Engineering Fracture Mechanics,1994,47(3):367-377.
    [138]Bradley W L. Understanding the translation of neat resin toughness into delamination toughness in composites[J]. Key Engineering Materials,1989,37:161-198.
    [139]Liechti KM, Hanson E C. Nonlinear effects in mixed-mode interfacial delaminations[J]. International Journal of Fracture,1988,36:199-217.
    [140]Garg A C. Delamination a damage in composite structures[J]. Engineering Fracture Mechanics,1988,29(5):557-584.
    [141]Hutchinson J W, Suo Z. Mixed mode cracking in layered materials[R].1992
    [142]Yuuki R, Liu J Q, Xu J Q. Study on mixed mode fracture criteria of interface cracks [J]. Journal of Society Materials Science,1994,43(493):1206-1210.
    [143]Yuuki R, Liu J Q, Xu J Q. Fracture tests and evaluation of interface crack under mixed mode conditionsLJ]. Trans JSME,1993, A59(557):74-80.
    [144]Prasad S, Carlsson L A. Debonding and crack kinking in foam core sandwich beam-Ⅰ, analysis of fracture specimens[J]. Engineering Fracture Mechanics,1994,47(6): 813-824.
    [145]Prasad S, Carlsson L A. Debonding and crack kinking in foam core sandwich beam-Ⅱ, experimental investigation[J]. Engineering Fracture Mechanics,1994,47(6):825-841.
    [146]Li X, Carlsson L A. The tilted sandwich debond (TSD) specimen for face/core interface fracture characterization[J]. Journal of Sandwich Structure and Materials,1999,1(1): 60-75.
    [147]Li X, Carlsson L A. Fracture mechanics analysis of tilted sandwich debond (TSD) specimen[J]. Journal of Composite Materials,2001,35(23):2145-2168.
    [148]E1-Sayed S, Sridharan S. Cohesive layer models for predicting delamination growth and crack kinking in sandwich structures[J]. International Journal of Fracture,2002, 117(1):63-84.
    [149]Sridharan S, Yupeng L. Static and dynamic delamination of foam core sandwich members[J]. AIAA Journal,2006,44(12):2937-2948.
    [150]Berggreen C, Simonsen B C. Experimental and numerical study of interface crack propagation in foam-cored sandwich beams[J]. Journal of Composite Materials,2007, 41 (4):493-520.
    [151]Wang X Z, Wu L Z, Wang S X. Study of debond fracture toughness of sandwich composites with metal foam core[J]. Journal of Materials Science & Technology,2009,25(5): 713-716.
    [152]Shi G C. Mechanics of fracture[M]. New York:Noodhoof International Publication Leydon, 1972.
    [153]Shi G C. Strain energy density factor applied to mixed mode crack problems[J]. International Journal of Fracture,1974,10(3):305-321.
    [154]Nuismer R J. An energy release rate criterion for mixed mode fracture[J]. International Journal of Fracture,1975,11(2):245-250.
    [155]Yuuki R, Xu J Q. Stress based criterion for an interface crack kinking out of the interface in dissimilar matreials[J]. Engineering Fracture Mechanics,1992,41(5): 635-644.
    [156]He M Y, Hutchinson J W. Crack deflection at an interface between dissimilar elstic materials [J]. International Journal of Solids and Structures,1989,25(9):1053-1067.
    [157]Becker T L, Cannon R M, Ritchie R 0. Finite crack kinking and T-stresses in functionally graded materials[J]. International Journal of Solids and Structures,2001,38: 5545-5563.
    [158]Carlsson L A, Matteson R C, Aviles F, et al. Crack path in foam cored DCB sandwich fracture specimens[J]. Composites Science and Technology,2005,65:2612-2621.
    [159]Lackman L M, Pagano N J. On the prevention of delamination of composite laminates [J]. AIAA Journal,1974:355-366.
    [160]Marasco A I, Denis D R, Partridge I K, et al. Mechanical properties balance in novel Z-pinned sandwich panels:Out-of-plane properties [J]. Composites Part A,2006,37(2): 295-302.
    [161]Du L, Jiao G Q. Indentation study of Z-pin reinforced polymer foam core sandwich structures[J]. Composites Part A,2009,40(6-7):822-829.
    [162]郝继军,张佐光,张蕾,等Z-pin植入参数对X-Cor夹层复合材料力学性能的影响[J].航空学报,2008,(3):763—768.
    [163]Dantuluri V, Maiti S, Geubelle P H, et al. Cohesive modeling of delamination in Z-pin reinforced composite laminates [J]. Composites Science and Technology,2007,67(3-4): 616-631.
    [164]Yan W, Liu H, Mai Y. Numerical study on the mode I delamination toughness of z-pinned laminates[J]. Composites Science and Technology,2003,63(10):1481-1493.
    [165]孙先念,郑长良.层合复合材料z-pinning增强技术的力学进展[J].航空学报,2006,(6):1194-1202.
    [166]Potluri P, Kusak E, Reddy T Y. Novel stitch-bonded sandwich composite structures[J]. Composite Structures,2003,59(2):251-259.
    [167]Lascoup B, Aboura Z, Khellie K, et al. On the mechanical effect of stitch addition in sandwich panel[J]. Composites Science and Technology,2006,66(10):1385-1398.
    [168]Mouritz A P, Leong K H, Herszberg I. A review of the effect of stitching on the In-plane mechanical Properties of fibre-reinforced polymer composites [J]. Composites Part A, 1999,28(12):979-991.
    [169]Steeves C A, Fleck N A. In-plane properties of composite laminates with through-thickness pin reinforcement [J]. International Journal of Solids and Structures,2006,43(10):3197-3212.
    [170]Ramin S, Sudhir G, Bob M, et al. Manufacturing carbon nanofibers toughened polyester/glass fiber composites using vacuum assisted resin transfer molding for enhancing the mode-I delamination resistance[J]. Composites Part A,2006,37(10): 1787-1795.
    [171]Sohn M S, Hu X Z. Mode II delamination toughness of carbonf ibre/epoxy composites with chopped Kevlar fibre reinforcement [J]. Composites Science and Technology,1994,52: 439-448.
    [172]Sohn M S, Hu X Z. Comparative study of dynamic and static delamination behaviour of carbon fibre/epoxy composite laminates [J]. Composites Part A,1995,26:849-858.
    [173]Huang B Z, Hu X Z, Liu J. Modelling of inter-laminar toughening from chopped Kevlar fibers[J]. Composites Science and Technology,2008,64(13-14):2165-2175.
    [174]Rao B N, Rahan S. A coupled meshless-finite element method for fracture analysis of cracks[J]. International Journal of Pressure Vessels and Piping,2001,78:647-657.
    [175]Fries T P, Matthies H G. Classification and overview of mesh-free methods[M]. Braunschweig Brunswick:Institute of Scientific Computing Technical University,2003.-133-
    [176]张雄,刘岩.无网格法[M].北京:清华大学出版社,2004.
    [177]刘更,刘天祥,谢琴.无网格法及其应用[M].西安:西北工业大学出版社,2005.
    [178]Liu G. R., Gu Y. T无网格理论及程序设计[M].济南:山东大学出版社,2007.
    [179]Atluri S N, Shen S P. The meshless local Petrov-Galerkin (MLPG) method[M]. Encino USA:Tech Science Press,2002.
    [180]Lucy L B. A numerical approach to the testing of the fission hypothesis[M]. The Astronomical Journal,1977,8(12):1013-1024.
    [181]Gingold R A, Monaghan J J. Smoothed particle hydrodynamics:theory and applications to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society,1977, 181:375-389.
    [182]Johnson G R, Beissel S R. Normalized smoothing functions for SPH impact computations[J]. International Journal for Numerical Methods in Engineering,1996, 39:2725-2741.
    [183]Swegle J W, Hicks D L, Attaway S W. Smoothed particle hydrodynamics stability analysis[J]. Journal of Computational Physics,1995,116:123-134.
    [184]Nayroles B, Touzot G, Villon P. Generalizing the finite element method:diffuse approximation and diffuse elements[J]. Computational Mechanics,1992,10:307-318.
    [185]Belytschko T, Liu Y Y, Gu L. Element free Galerkin methods[J]. International Journal for Numerical methods in Engineering,1994,37:229-256.
    [186]Chung H J, Belytschko T. An error estimate in the EFG method [J]. Computational Mechanics,1998,21:91-100.
    [187]Dolbow J, Belytschko T. Numerical integration of the Galerkin weak form in mesh-free methods [J]. Computational Mechanics,1999,23:219-230.
    [188]Belytschko T, Organ D, Krongauz Y. A coupled finite element-element free Galerkin method[J]. Computational Mechanics,1995,17:186-195.
    [189]Hegen D. Element-free Galerkin methods in combination with finite element approaches[J]. Computer Methods in Applied Mechanics and Engineering,1996,135: 143-166.
    [190]杨海天,刘岩.一种FEM-EFGM耦合技术及其应用[J].计算力学学报,2003,20(5):511-517.
    [191]Belytschko T, Liu Y Y, Gu L. Crack propagation by element-free Galerkin methods[J]. Engineering Fracture Mechanics,1995,51:295-315.
    [192]庞作会,葛修润,王水林.无网格伽辽金法(EFGM)在边坡开挖问题中的应用[J].岩土力学,1999,20(1):61-64.
    [193]Belytschko T, Kyrsl P, Krongauz Y. A three-dimensional explicit element-free Galerkin method [J]. International Journal for Numerical Mechnics Fluids,1997,24:1253-1270.
    [194]Atluri S N, Zhu T. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics[J]. Computational Mechanics, 1998, 22: 117-127.
    [195]Liu G R, Gu Y T. Meshless local Petrov-Galerkin (MLPG) method in combanation with finite element and boundary element approaches[J]. Computational Mechanics, 2000, 26: 536-546.
    [196]Han Z D, Liu H T, Rajendran A M. The applications of meshless local Petrov-Galerkin (MLPG) approaches in high-speed impact, penetration and perforation problems [J]. CMES, 2006, 14(2): 119-128.
    [197]Liu W K, Jun S, Zhang Y F. Reproducing kernel particle methods[J]. International Journal of Numerical Meth Fluids, 1995, 20: 1081-1106.
    [198]Liu W K, Chen Y, Aziz U R, et al. Generalized multiple scale reproducing kernel particle methods [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 91-157.
    [199]Chen J S, Wu C T, Yoon S, et al. A stabilized conforming nodal integration for Galerkin mesh-free methods[J]. International Journal for Numerical Methods in Engineering, 2001,
    [200]Liu W K, Jun S, Li S F, et al. Reproducing kernel particle methods for structural dynamics[J]. International Journal for Numerical Methods in Engineering, 1995, 38: 1655-1679.
    [201]Wanger G J, Liu W K. Turbulence simulation and multiple scale subgrid models[J]. Computational Mechanics, 2000, 25: 117-136.
    [202]Jun S, Im S. Multiple-scale meshfree adaptivity for the simulation of adiabatic shear band formation[J]. Computational Mechanics, 2000, 25: 257-266.
    [203]Chen J S, Roque C M 0 L, Pan C, et al. Analysis of metal forming process based on meshless method[J]. Journal of Materials Processing Technology, 1998, 80-81: 642-646.
    [204]Uras R A, Chang C T, Chen Y, et al. Mutiresolution reproducing kernel particle methods in acoustics[J]. Journal of Computational Acoustics, 1997, 5(1): 71-94.
    [205]Liu G R, Gu Y T. A point interpolation method for two-dimentional solids[J]. International Journal for Numerical Methods in Engineering, 2001, 50: 937-951.
    [206]张雄,胡炜,潘小飞,等.加权最小二乘无网格法[J].力学学报,2003,35(4):425—431.
    [207]潘小飞,张雄,陆明万Meshless Galerkin least square method[R]北京:中国计算力学大会,2003
    [208]Harlow F H. The particle-in-cell computing method in fluid dynamics[J]. Methods of Computational Physics, 1964, 3: 319-343.
    [209]Sulsky D, Chen Z, Schreyer H L. A particle method for history-dependent materials[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 118: 179-196.
    [210]Bardenhagen S G. Energy conservation error in the material point method for solid methcanics[J]. Journal of Computational Physics, 2002, 180: 383-403.
    [211]Steffen M, Kirby M R, Berzins M. Analysis and reduction of quadrature errors in the material point method (MPM)[J]. International Journal for Numerical Methods in Engineering,2008,76:922-948.
    [212]Cummins S J, Brackbill J U. An implicit particle-in-cell method for granular materials[J]. Journal of Computational Physics,2002,180:506-548.
    [213]Sulsky D, Kaul A. Implicit dynamics in the material point method [J]. Computer Methods in Applied Mechanics and Engineering,2004,193:1137-1170.
    [214]Steffen M, Wallstedt P C, Al E. Examination and analysis of implementation choices within the material point method [J]. CMES,2008,31(2):107-128.
    [215]Shen L, Chen Z. A silent boundary scheme with the material point method for dynamic analysis[J]. CMES,2005,7(3):305-320.
    [216]Wallstedt P C, Guilkey J E. An evaluation of explicit time integration schemes for use with the generalized interpolation material method[J]. Journal of Computational Physics,2008,227(22):9628-9642.
    [217]Buzzi O, Pedroso D M, Giacomlnl A. Caveats on the implementation of the generalized material point method[J]. CMES,2008,31(2):85-106.
    [218]Wieckowski Z, Youn S, Yeon J A. A particle-in-cell solution to the silo discharging problem[J]. International Journal for Numerical Methods in Engineering,1999,45: 1203-1225.
    [219]Tan H, Nairn J A. Hierarchical, adaptive, material point method for dynamic energy release rate calculations [J]. Computer Methods in Applied Mechanics and Engineering, 2002,191:2095-2109.
    [220]Zhang X, Sze K Y, Ma S. An explicit material point finite element method for hyper-velocity impact [J]. International Journal for Numerical Methods in Engineering, 2006,66:689-706.
    [221]Gilmanov A, Acharya S. A hubrid immersed boundary and material point method for simulating 3D fluid-structure interaction problems[J]. International Journal for Numerical methods in Fluids,2007,56(12):2151-2177.
    [222]Ma J, Lu H, Al E. Multiscale simulation using generalized interpolation material point (GIMP) method and molecular dynamics (MD)[J]. CMES,2006,14(2):101-117.
    [223]Sulsky D, Schreyer H L. Axisymmetric form of the material point method with applications to upsetting and Taylor impact problems [J]. Computer Methods in Applied Mechanics and Engineering,1996,139(409-429)
    [224]Ma S, Zhang X, Qiu X M. Comparison study of MPM and SPH in modeling hypervelocity impact problems[J]. International Journal of Impact Engineering,2009,36:272-282.
    [225]Schreyer H L, Sulsky D. Modeling delamination as a strong discontinuity with the material point method[J]. Computer Methods in Applied Mechanics and Engineering,2002, 191:2483-2507.
    [226]Chen Z, Shen L, Mai Y W. A bifurcation-based decohesion model for simulating the transition from localization to decohesion with the MPM[J]. ZAMP,2005,56(5): 908-930.
    [227]王宇新,顾元宪,孙明.无网格MPM法在冲击载荷问题中的应用[J].工程力学,2006,23(5):46—51.
    [228]王鲲鹏.基于物质点方法饱和多孔介质动力学模拟[D].大连:大连理工大学,2009.
    [229]Nairn J A. Material point method calculations with explicit cracks [J]. CMES,2003, 4:649-664.
    [230]Guo Y J, Nairn J A. Calculation of J integral and stress intensity factors using the material point method [J]. CMES,2004,6:295-308.
    [231]Daphalapurkar N P, Lu H B, Al E. Simulation of dynamic crack growth using the genaralized interpolation material point (GIMP) method [J]. International Journal of Fracture,2007,143:79-102.
    [232]ASTM D5528-01. Standard test method for mode I interlamilar fracture toughness of unidirectional fiber-reinforced polymer matrix composites[S].2007
    [233]Cotterell B, Rice J R. Slightly curved or kinked cracks[J]. International Journal of Fracture,1980,16:155-169.
    [234]Fleck N A, Hutchinson J W, Suo Z. Crack path selection in brittle adhesive layer[J]. International Journal of Solids and Structures,1991,27:1683-1703.
    [235]孙士勇,王灿,陈浩然.具有短纤维增韧界而的复合材料夹芯梁断裂机制的实验和数值研究[J].复合材料学报,2011,28(1):172-177.
    [236]Beaudoin J J. Handbook of Fiber-Reinforced Concrete(Principles, properties, developments and applications)[M]. New Jersey:Noyes Publications,1990.
    [237]蔡艳红,陈浩然,王灿.粘弹性胶层中I型裂纹的动态扩展[J].固体力学学报,2006,27(4):346—354.
    [238]Sun S Y, Chen H R. Quasi-static and dynamic fracture behavior of composite sandwich beams with a viscoelastic interface crack [J]. Composites Science and Technology,2010, 70(6):1011-1016.
    [239]Yamaguchi I. Speckle displacement and deformation in the diffraction and image fields for small object deformation[J]. Optical Acta,1981,28(10):1359-1376.
    [240]Peters W H, Ran son W F. Digital image techniques in experimental mechanics [J]. Optical Engineering,1982,21(3):427-431.
    [241]Peters W H, Ranson W F, Sutton M A. Application of digital correlation methods to rigid body mechanics[J]. Optical Engineering,1983,22(6):738-742.
    [242]Chu T C, Ranson W F, Sutton M A. Applications of digital image correlation techniques to experimental mechanics[J]. Experimental Mechanics,1985,25(3):232-244.
    [243]Rand J L, Grant D A. Optical measurement of biaxial strain in thin film polymers[J]. ASTM Special Technical Publication,1997,1318(8):123-137.
    [244]Zink A G, Davidson R W, Hanna R B. Effects of composite structure on strain and failure of laminar and wafer composites[J]. Mechanics of Composite Materials and Structure, 1997,4(4):345-359.
    [245]Lyons J S, Liu J, Sutton M A. High-temperature deformation measurements using digital image correlation[J]. Experimental Mechanics,1996,36(1):64-70.
    [246]Han G, Sutton M A, Chao Y J. A study of stable crack growth in thin SEC specimens of 304 stainless steel[J]. Engineering Fracture Mechanics,1995,52(3):525-555.
    [247]Sutton M A, Yan J, Deng X. Three-dimentional digital image correlation to quantify deformation and crack-opening displacement in ductile aluminum under mixed-mode Ⅰ/Ⅲ loading[J]. Optical Engineering,2007,46(5):1003-1019.
    [248]高建新,周辛庚.变形测量中的数字散斑相关搜索方法[J].实验力学,1991,4:333-339.
    [249]汪敏,胡小方,伍小平.物体内部三维位移场分析的数字图像相关方法[J].物理学报,2006,55(10):5136-5140.
    [250]杨勇,王琰蕾,李明,等.高精度数字图像相关测量系统及其技术研究[J].光学学报,2006,26(2):197-201.