PET/DOT混合成像关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正电子断层发射成像(Positron Emission Tomography, PET)和弥散光学层析成像(Diffuse Optical Tomography, DOT)都是能够对生物组织进行定量功能成像的医学成像方式。前者借助放射性核素标记的分子探针对活体生物体内的生化过程进行显像;后者则利用人体对近红外光的透射窗,通过内在生色团获取组织光学参数的分布进而得到血氧代谢情况。
     混合成像是当前医学成像领域发展的热点,不同成像方式的组合为科研和临床应用带来诸多益处。PET和DOT硬件系统能够较为方便的结合,图像可互相验证,互相补充,PET高分辨图像还可作为DOT先验信息。本文在对这两种成像方法分别研究的基础上,结合混合成像前沿研究方向,分别在硬件构建和图像重建算法方面的一些关键问题做了研究工作,主要内容和贡献如下。
     硬件构建方面:
     1.构建了适用于PET/DOT混合成像的小型平板PET系统,利用锗酸铋晶体配合新型位置灵敏型光电倍增管作为探测单元,给出了点源、线源等性能测试结果,还对小鼠进行了静态和动态成像实验。
     2.开发适用于混合成像的高速数据采集系统:利用现场可编程门阵列(Field Programmable Gate Array,FPGA)技术处理位置分析电路输出的数字信号,进行各种控制和判断;利用光纤和标准并化、串化模块实现FPGA模块之间的高速通信;充分利用FPGA和光纤通信技术带来的性能提高,研究了适合特定系统的环状符合判断系统架构;研究了适用于特定系统的时钟同步方式。
     3.对于DOT,根据混合成像需要,实现了时域信号转换到频域并进行校正的过程,制作固体体模进行实验。提供了一种新的实验方案,为方便的进行多频率成像提供了工作基础。
     图像重建算法方面:
     4.传统PET图像重建方法中都没有考虑系统矩阵的不确定性,不符合实际应用情况,影响了重建图像的质量。本文开创性的在PET图像重建过程中针对系统矩阵和采集过程中的不确定性,建立不确定性惩罚加权最小二乘估计框架,使用最小最大误差方法求解状态空间体系中的目标函数,得到系统扰动下的稳定解。在优化PET重建图像质量的同时,也能为DOT提供更加精确的先验信息。
     5.在DOT图像重建中,为模拟光子在任意形状组织内的传输,传统上使用有限元方法将成像区域离散表达为节点和单元的组合来计算。本文引入无网格方法中的无网格伽辽金法,仅仅用节点来表达成像区域,避免了有限元方法繁杂的网格划分和调整过程,且方便根据需要随时调整节点分布。计算结果也表明该方法能够得到更精确的正问题解。
     6.在利用无网格方法精确求解正问题的基础上,使用第二重自适应稀疏节点阵列作为重建基,求解DOT逆问题。给出了状态空间体系下优化表达式和重建策略。同时引入自适应算法,根据迭代过程中图像更新变化量自动调整稀疏节点阵列分布,在保证重建图像质量的同时,尽量减少了计算量,以适应当前计算机的计算能力。给出了无网格方法应用于DOT图像重建的表达式和参数的选择方式和具体结果,以仿真模型和实物体模实验为例,定量比较了无网格方法和有限元方法的计算时间和内存消耗与图像质量的关系。为进一步应用中采用数值方法的策略给出了参考。
Positron emission tomography (PET) and diffuse optical tomography (DOT) are quantitative functional medical imaging modalities. The former employs radio isotope labeled tracers and track their distribution and concentration in living tissues to get information about physiological metabolisms; the later utilizes the transmitting band of tissue to near infrared light to get optical parameter's distribution image and oxygen saturation.
     Hybrid imaging is thoroughly researched all over the world recently. Different imaging modalities are combined to supply more information for research and clinical applications. Among them, the system of PET and DOT can be easily corporated, PET image with high resolution can be adopted as a priory information for DOT image reconstruction; moreover, the images of the two modalities are complementary in some cases, and can also validate each other in certain applications. This paper workes on the two modalities and tries to combine them. The main content and contributions of this paper are as followed.
     System construction and experiments:
     1. Construct planar PET system which is proper for hybrid imaging. BGO crystal is employed with flat panel position sensitive photo multiplier tube to construct the gamma ray detection unit. Initial tests are held, including point source test, line source test and mouse experiments.
     2. Develop high speed coincidence detection and data acquisition unit basing on FPGA and fiber communication modules. The system is designed with circle shaped protocol, which can be easily corporate with new units.
     3. For the purpose of hybrid imaging, use Hamamatsu TRS system to get time domain signals measured from self made solid phantoms, transform the data into frequency domain for reconstruction.
     Reconstruction algorithms:
     4. The consumption that the system probability matrix is exactly known in most statistical PET image reconstruction algorithms are not true and may influence the quality of reconstructed images. We propose an algorithm for PET image reconstruction for the real world case where the PET system model is subject to uncertainties. The method counts PET reconstruction as a regularization problem and the image estimation is achieved by means of an uncertainty weighted least squares framework. The performance of our work is evaluated with the Shepp-Logan simulated and real phantom data, which demonstrates significant improvements in image quality over the least squares reconstruction efforts. Finely reconstructed images can be used as a priory information for DOT image reconstruction.
     5. Employ element free Galerkin method (EFG, one of mesh free methods) to simulate photon transport process in tissues, discretize imaging domain with a set of nodes, avoid the burdensome mesh generation and adjusting work in finite element method (FEM) and the node set can be easily adjusted. The forward calculation results are validated with Green's function.
     6. Basing on mesh free representation of imaging domain, employ self-adopted sparse node set as reconstruction basis for DOT image reconstruction. The state space reconstruction formulas are given. Self-adopted algorithm promises the reconstruction quality and calculation consumption proper for contemporary computer servers. Compare FEM and EFG method in calculation consumption and image quality aspects, give advices on the choice of numerical methods in future applications.
引文
[1].Kubeta, Kazuo, From tumor biology to clinical PET:A review of positron emission tomography (PET) in oncology[J]. ANNALS OF NUCLEAR MEDICINE, 2001.15(6):p.471-486.
    [2].Knaapen. P.. S. de Haan and O. S. Hoekstra, et al.,Cardiac PET-CT:advanced hybrid imaging for the detection of coronary artery disease[J]. NETHERLANDS HEART JOURNAL,2010.18(2):p.90-98.
    [3].Schillaci, Orazio, Hybrid SPECT/CT:a new era for SPECT imaging?[J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING,2005.32(5):p.521-524.
    [4].Pichler, Bernd J., Martin S and Judenhofer, et al., PET/MRI hybrid imaging: devices and initial results[J]. NUCLEAR MEDICINE,2008.18(6):p.1077-1086.
    [5].Oldham, Mark, Jeffrey H. Siewerdsen and Anil Shetty, et al., High resolution gel-dosimetry by optical-CT and MR scanning[J]. Medical Physics,2001.28(7).
    [6].Gong, Xing, A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging [J]. Medical Physics,2006.33(10).
    [7]Guven M, Yazici B, Intes X, et al. Diffuse optical tomography with a priori anatomical information [J]. Physics in Medicine and Biology.2005,50(12).
    [8]Hsu A R, Hou L C, Veeravagu A, et al. In Vivo Near-Infrared Fluorescence Imaging of Integrin av(33 in an Orthotopic Glioblastoma Model[J]. MOLECULAR IMAGING AND BIOLOGY.2006,8(6).
    [9]Schubiger P. Molecular Imaging with PET—Open Questions?[J]. PET CHEMISTRY.2007.64:1-13.
    [10]Culver J, Akers W, Achilefu S. Multimodality Molecular Imaging with Combined Optical and SPECT/PET Modalities[J]. J Nucl Med.2008,49(2):169-172.
    [11]Van Leeuwen F E, Rookus M A. Breast cancer and hormone-replacement therapy:the Million Women Study [J]. The Lancet.2003,362(9332):1330.
    [12]Jansson T, Westlin J E, Ahlstrom H, et al. Positron emission tomography studies in patients with locally advanced and/or metastatic breast cancer:a method for early therapy evaluation?[J].JCO.1995,13(6):1470-1477.
    [13]Loo C, Lowery A, Halas N, et al. Immunotargeted Nanoshells for Integrated Cancer Imaging and Therapy[J]. NANO Letters.2005,5(4):709-711.
    [14]陆雪官,冯炎,胡超苏.恶性肿瘤内乏氧细胞研究现状[J].中华放射肿瘤学杂志.1999(1).
    [15]陈刚,王荣福.核医学肿瘤乏氧显像的进展[J].北京大学学报:医学版.2006(3):335-336.
    [16]Raman V, Artemov D, Pathak A P, et al. Characterizing Vascular Parameters in Hypoxic Regions:A Combined Magnetic Resonance and Optical Imaging Study of a Human Prostate Cancer Model[J]. Cancer Research.2006,66:9929.
    [17]Rh H, Kc P, Je S, et al. A meta-analysis of the literature for whole-body FDG PET detection of recurrent colorectal cancer.[J]. Journal of Nuclear Medicine.2000. 41(7):1177-1189.
    [18]刘华锋.新型正电子发射层析成像探测理论与技术研究[D].浙江大学:2001.
    [19]T H, K I, N K, et al. Sensitive detection of mediastinal lymph node metastasis of lung cancer with 11C-choline PET.[J]. UKPMC.2000,41(9):1507-1513.
    [20]Handler W B, Gilbert K M, Peng H, et al. Simulation of scattering and attenuation of 511 keV photons in a combined PET/field-cycled MRI system[J]. Physics in Medicine and Biology.2006,51(10):2479.
    [21]Mankoff D A, Muehllehner G, Miles G E. A local coincidence triggering system for PET tomographs composed of large-area position-sensitive detectors[J]. IEEE Transactions on Nuclear Science.1990,31(2):730-736.
    [22]高飞.基于随机优化理论的3D ECT数据校正及图像重建[D].浙江大学,2009.
    [23]Panin V Y, Kehren F, Michel C, et al. Fully 3-D PET reconstruction with system matrix derived from point source measurements [J]. IEEE Transactions on Medical Imaging.2006,25(7).
    [24]Panin V Y, Kehren F,Rothfuss H, et al. PET reconstruction with system matrix derived from point source measurements[J]. IEEE Transactions on Nuclear Science.2006,53(1):152-159.
    [25]Sibomana M. Bol A, Doumont T, et al. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms[J]. Radiotherapy & Oncology.2003,69(3): 247-250.
    [26]Reader A J, Ally S, Bakatselos F. et al. One-pass list-mode EM algorithm for high-resolution 3-D PET image reconstruction into large arrays[J]. IEEE Transactions on Nuclear Science.2002,49(3):693-699.
    [27]Qi J, Leahy R M. Resolution and noise properties of MAP reconstruction for fully 3-D PET[J]. IEEE Transactions on Medical Imaging.2000,19(5):493-506.
    [28]Comtat C. Kinahan P E, Defrise M, et al. Fast reconstruction of 3D PET data with accurate statistical modeling[J]. IEEE Transactions on Nuclear Science.1998. 45(3):1083-1089.
    [29]KK,VD,TC, et al. Dopamine transporter imaging with fluorine-18-FPCIT and PET.[J]. UKPMC.1998,39(9):1521-1530.
    [30]Mumcuoglu E U, Leahy R, Cherry S R, et al. Fast gradient-based methods for Bayesian reconstruction of transmission and emission PET images[J]. IEEE Transactions on Medical Imaging.1994,13(4):687-701.
    [31]Lashkari S, Sarkar S, Ay M R, et al. The Influence of Crystal Material on Intercrystal Scattering and the Parallax Effect in PET Block Detectors:A Monte Carlo Study[C].2008.
    [32]Hoffman E J. Guerrero T M. Germano G, et al. PET system calibrations and corrections for quantitative and spatially accurate images[J]. IEEE Transactions on Nuclear Science.1989,36(1):1108-1112.
    [33]Levin C S. Design of a high-resolution and high-sensitivity scintillation crystal array for PET with nearly complete light collection[J]. IEEE Transactions on Nuclear Science.2002,49(5):2236-2243.
    [34]Watanabe M, Okada H, Shimizu K, et al. A high resolution animal PET scanner using compact PS-PMT detectors[J]. IEEE Transactions on Nuclear Science. 1997,44(3):1277-1282.
    [35]Fahey F H. Data Acquisition in PET Imaging[J]. J. Nucl. Med. Technol.2002, 30(2):39-49.
    [36]Inadama N, Murayama H, Watanabe M, et al. Performance of a PET detector with a 256ch flat panel PS-PMT[C].2002.
    [37]Bradley J, Thorstad W L, Mutic S, et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer[J]. International Journal of Radiation Oncology Biology Physics.2005,59(1):78-86.
    [38]Gimenez E N, Benlloch J M, Gimenez M, et al. Detector optimization of a small animal PET camera based on continuous LSO crystals and flat panel PS-PMTs[C].2004.
    [39]Gibson A, Dehghani H. Diffuse optical imaging[J]. Phil. Trans. R. Soc. A. 2009,367(1900):3055-3072.
    [40]Frangioni J V. In vivo near-infrared fluorescence imaging[J]. Current Opinion in Chemical Biology.2003,7(5):626-634.
    [41]Jenkins D E, Oei Y, Hornig Y S, et al. Bioluminescent imaging (BLI) to improve and refine traditional murine models of tumor growth and metastasis[J]. CLINICAL AND EXPERIMENTAL METASTASIS.2003,20(8):733-744.
    [42]Boas D A, Brooks D H, Miller E L, et al. Imaging the body with diffuse optical tomography [J]. IEEE Signal Processing Magazine.2001,18(6):57-75.
    [43]Pogue B, Testorf M, Mcbride T, et al. Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection[J]. Optics Express.1997,1(13):391-403.
    [44]Gustafsson M G L. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution[J]. PNAS. 2005,102(37):13081-13086.
    [45]Ntziachristos V, Bremer C, Weissleder R. Fluorescence imaging with near-infrared light:new technological advances that enable in vivo molecular imaging[J]. EUROPEAN RADIOLOGY.2003,13(1):195-208.
    [46]Rasnik I, Mckinney S A, Ha T. Nonblinking and long-lasting single-molecule fluorescence imaging[J]. Nature Methods.2006,3:891-893.
    [47]Gao F, Zhao H, Tanikawa Y, et al. Time-Resolved Diffuse Optical Tomography Using a Modified Generalized Pulse Spectrum Technique[J]. IEICE TRANSACTIONS on Information and Systems.2002, E85-D(1):133-142.
    [48]Culver J P, Choe R, Holboke M J, et al. Three-dimensional diffuse optical tomography in the parallel plane transmission geometry:Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging[J]. Medical Physics.2003,30(235).
    [49]Choe R, Alper Corlu K L, Durduran T, et al. Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy:A case study with comparison to MRI[J]. Medical Physics.2005,32(4):1128.
    [50]Tualle J, Prat J, Tinet E, et al. Real-space Green's function calculation for the solution of the diffusion equation in stratified turbid media[J]. JOSA A.2000,17(11): 2046-2055.
    [51]Kilmer M E, Miller E L, Barbaro A. et al. Three-Dimensional Shape-Based Imaging of Absorption Perturbation for Diffuse Optical Tomography [J]. Applied Optics.2003,42(16):3129-3144.
    [52]Kepshire D S, Davis S C, Dehghani H, et al. Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth[J]. Applied Optics.2007,46(10):1669-1678.
    [53]Cheong W F. A review of the optical properties of biological tissues[J]. IEEE Journal of Quantum Electronics.1990,26(12):2166-2185.
    [54]Arridge S R, Hebden J C. Optical imaging in medicine:Ⅱ. Modelling and reconstruction[J].42.1997.5(841).
    [55]Polydorides N, Lionheart W R B. A Matlab toolkit for three-dimensional electrical impedance tomography:a contribution to the Electrical Impedance and Diffuse Optical Reconstruction Software project[J]. Measurement Science and Technology.2002,13(12):1871.
    [56]Arridge S, Schweiger M. A gradient-based optimisation scheme foroptical tomography[J]. Optics Express.1998,2(6):213-226.
    [57]Suzen M, Giannoula A, Durduran T. Compressed sensing in diffuse optical tomography[J], Optics Express.2010,18(23):23676.
    [58]Intes X, Maloux C, Guven M, et al. Diffuse optical tomography with physiological and spatial a priori constraints [J]. Physics in Medicine and Biology.2004, 49(12):N155.
    [59]Siegel A, Marota J J, Boas D. Design and evaluation of a continuous-wave diffuse optical tomography system[J]. Optics Express.1999,4(8):287-298.
    [60]Gao F, Zhao H, Yamada Y. Improvement of Image Quality in Diffuse Optical Tomography by use of Full Time-Resolved Data[J]. Applied Optics.2002,41(4): 778-791.
    [61]Pogue B W, Patterson M S, Jiang H, et al. Initial assessment of a simple system for frequency domain diffuse optical tomography [J]. Physics in Medicine and Biology.1995.40(10):1709.
    [62]Jiang S, Pogue B W, Carpenter C M, et al. Evaluation of Breast Tumor Response to Neoadjuvant Chemotherapy with Tomographic Diffuse Optical Spectroscopy:Case Studies of Tumor Region-of-Interest Changes[J]. Radiology.2009. 252:551-560.
    [63]Pinaud F, Michalet X, Bentolila L A, et al. Advances in fluorescenceimaging with quantum dot bio-probes [J]. Biomaterials.2006,27(9):1679-1687.
    [64]Chatterjeea D K, Rufaihaha A J, Zhang Y. Upconversion fluorescenceimaging of cells and small animals using lanthanide doped nanocrystals[J]. Biomaterials.2008,29(7):937-943.
    [65]Rehemtulla A, Stegman L D, Cardozo S J, et al. Rapid and Quantitative Assessment of Cancer Treatment Response Using In Vivo Bioluminescence Imaging[J]. Neoplasia.2000,2(6):491-495.
    [66]Chance V N. Breast imaging technology:Probing physiology and molecular function using optical imaging-applications to breast cancer [J]. Breast Cancer Res. 2000,3(1):41-46.
    [67]Ke S, Wen X, Gurfinkel M, et al. Near-Infrared Optical Imaging of Epidermal Growth Factor Receptor in Breast Cancer Xenografts[J]. Cancer research. 2003,63:7870.
    [68]Li C, Mitchell G S, Dutta J, et al. A three-dimensional multispectral fluorescence optical tomography imaging system for small animals based on a conical mirror design[J]. Opt Express.2009,17(9):7571-7585.
    [70]Zheng Q, Feia X, Liua X, et al. Synthesis and preliminary biological evaluation of MMP inhibitor radiotracers [11C]methyl-halo-CGS 27023A analogs, new potential PETbreast cancer imaging agents [J]. Nuclear Medicine and Biology. 2002,29(7):761-770.
    [71]Ruggiero A, Holland J P, Lewis J S, et al. Cerenkov Luminescence Imaging of Medical Isotopes[J].J Nucl Med.2010,51(7):1123-1130.
    [72]Li C, Mitchell G S, Cherry S R. Cerenkov Luminescence Tomography for Small Animal Imaging[C].2010.
    [73]赵强.功能分子影像研究:从平面成像到PET[D].浙江大学.2007.
    [74]Hiroshi Toyamaa M I J L, Senecaa N M,Modella K J, et al. Evaluation of anesthesia effects on [18F]FDG uptake in mouse brain and heart using small animal PET[J]. Nuclear Medicine and Biology.2004,31(2):251-256.
    [75]Streun M, Elektron Z F, Brandenburg G,et al. The data acquisition system of ClearPET neuro - a small animal PET scanner[J]. IEEE Transactions on Nuclear Science.2006,53(3):700-703.
    [76]Li H, Xing T, Liu Y, et al. A HOTLink/networked PC data acquisition and image reconstruction system for a high-resolution whole-body PET with respiratory or ECG-gated performance [J]. IEEE Transactions on Nuclear Science.2003,50(393-397).
    [77]Motoki O, Yutaka Y,Etsuko O,et al. Nearinfrared Time-Resolved Spectroscopy for Tissue Oxygenation Measurement.[J]. Ther Res.2000,21(6): 1524-1527.
    [78]Gorry P. General least-squares smoothing and differentiation by the convolution (Savitzky-Golay) method[J]. Analytical Chemistry.1990.
    [79]田毅.基于状态空间理论的ECT图像重建[D].浙江大学,2006.
    [80]Wan E A, Van Der Merwe R. The unscented Kalman filter for nonlinear estimation[C].2000.
    [81]Selivanov V V, Lecomte R. Fast PET image reconstruction based on SVD decomposition of the system matrix[J]. IEEE Transactions on Nuclear Science.2001, 48(3):761-767.
    [82]Schweiger M, Arridge S R, Nissila I. Gauss-Newton method for image reconstruction in diffuse optical tomography[J]. Physics in Medicine and Biology. 2005,50(10):2365.
    [83]Ntziachristos V, Weissleder R. Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation[J]. Optics Letters.2001,26(12):893-895.
    [84]Brian W. Pogue, Shireen Geimer, Troy O. Mcbride, et al. Three-Dimensional Simulation of Near-Infrared Diffusion in Tissue:Boundary Condition and Geometry Analysis for Finite-Element Image Reconstruction[J]. Applied Optics.2001,40(4): 588-600.
    [85]Gingold R A, Monaghan J J. Smoothed particle hydrodynamics-Theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society.1977,181:375-389.
    [86]Yagawa G, Yamada T. Free mesh method:A new meshless finite element method[J]. COMPUTATIONAL MECHANICS.1996,18(5):383-386.
    [87]T. Belytschko, Y. Y. Lu L G. Element-free Galerkin methods[J]. Numerical Methods & Algorithms.1994,37(2).
    [88]Wing Kam Liu, Sukky.Jun, Zhang Y F. Reproducing kernel particle methods [J]. Numerical Methods & Algorithms.1995,20(8-9).
    [89]Wang S, Ueda Y, Liu H. Meshfree strategy for diffuse optical tomography image reconstruction[Z]. Guangzhou:2010.
    [90]Lancaster P, Salkauskas K. Surfaces Generated by Moving Least Squares Methods[J]. MATH. COMPUT.1981,37(155):141-158.
    [91]Sipe J E. New Green-function formalism for surface optics[J]. JOSA B.1987, 4(4):481-489.
    [92]Arridge S R, Schweiger M. Inverse methods for Optical Tomography[J]. INFORMATION PROCESSING IN MEDICAL IMAGING.1993,687:259-277.
    [93]Mj Holboke. Bj Tromberg. X Li. et al. Three-dimensional diffuse optical mammography with ultrasound localization in a human subject[J]. J. Biomed. Opt. 2000,5(2):237.
    [94]Huang M, Zhu Q. Dual-Mesh Optical Tomography Reconstruction Method with a Depth Correction that Uses A Priori Ultrasound Information[J]. Applied Optics. 2004,43(8):1654-1662.
    [95]Diamonda S G, Theodore J. Hupperta, Ville Kolehmainenb, et al. Dynamic physiological modeling for functional diffuseopticaltomography[J]. NeuroImage.2006. 30(1):88-101.
    [96]Meltzer Cc, Kinahan Pe, Greer Pj, et al. Comparative evaluation of MR-based partial-volume correction schemes for PET.[J]. Journal of Nuclear Medicine. 1999,40(12):2053-2065.
    [97]Holdsworth C H. Levin C S, Janecek M, et al. Performance analysis of an improved 3-D PET Monte Carlo simulation and scatter correction[J]. IEEE Transactions on Nuclear Science.2002,49(1):83-89.
    [98]Alexandrakis G, Rannou F R, Chatziioannou A F. Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system:a computer simulation feasibility study [J]. Physics in Medicine and Biology.2005. 50(17):4225.
    [99]Dawood M, Buther F, Jiang X, et al. Respiratory Motion Correction in 3-D PET Data With Advanced Optical Flow Algorithms [J]. IEEE Transactions on Medical Imaging.2008,27(8):1164-1175.
    [100]Herraiz J L, Espaa S. Garcia S. et al. GPU acceleration of a fully 3D Iterative Reconstruction Software for PET using CUDA[C].2009.
    [101]Mcgraw T, Nadar M. Stochastic DT-MRI Connectivity Mapping on the GPU[J]. IEEE Transactions on Visualization and Computer Graphics.2007.13(6): 1504-1511.
    [102]Gac N, Mancini S, Desvignes M. High speed 3D tomography on CPU, GPU,and FPGA