诱发陕西秦巴山区地质灾害的强降水形成机制及预报预警研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陕南秦巴山区自然地理和地质条件复杂,受一定的地质地貌、地层岩性、降水、人类活动等多因素相互影响,成为我国地质灾害多发地区之一,而绝大部分地质灾害主要是由强降雨引发的。本文通过对陕南突发性暴雨和连续强降水引发的地质灾害与强降水关系的分析,结合秦巴山区地质灾害风险区划,采用日综合雨量与地质灾害风险耦合的预报预警模型,对2010年7月中旬和2011年7月上旬发生在陕南秦巴山区强降水诱发地质灾害个例进行了检验,该预报模型对这两次地质灾害的落区均做出了准确预报,并给出了4级以上的预警级别,预报效果良好。主要研究结果如下:
     1、本文从降雨和地质灾害统计特征分析入手,探讨了当日降雨强度、前期降雨强度、前期降雨日数、持续时间、未来降水预报等因素与地质灾害的关系;在地质灾害风险区划的基础上,建立了日综合雨量与地质灾害风险耦合的预报预警模型、地质灾害气象预报预警判据,同时还给出了不同区域降雨对地质灾害的影响系数。
     2、2010年7月中旬和2011年7月上旬的两次暴雨分别代表了连续强雨型和短临强雨型两种诱发地质灾害的暴雨。在这两次地质灾害的预报预警中,耦合的地质灾害预报预警模型分别提前12h和3h以上对灾害发生区域的地质灾害级别做了预报和预警。
     3、强降水极易诱发地质灾害。因此,对降雨型地质灾害的准确预报预警首先取决于对暴雨天气形势和雨量的准确预判和预报,必须从诱发地质灾害的暴雨天气的成因和机理进行分析。本文在对2010年7月中旬和2011年7月上旬的两次暴雨进行分析的基础上,得出如下结论:
     (1)2010年7月中旬连续暴雨发生的关键因子是近海台风活动和登陆的远距离影响及7月中旬相对稳定维持的东西向带状副高。大暴雨的水汽是由登陆后的台风低压环流东侧的偏南急流来输送,该输送带经向性十分明显,几乎为一致的南风急流,且700hPa表现最为显著。南亚高压的脊线北侧所形成的辐散场与高空急流入口区右侧的辐散场叠置,两个独立的次级环流的上升支重合在一起,有利于深对流天气及中小尺度的发生和发展;暴雨落区位于200hPa高空急流右侧转为西南风的辐散区。700hPa流场表明从南海到陕西建立起由东南风转成西南风的弯曲的水汽通道,把大量的水汽从南海输送到陕西,在偏南风(急流)的前部产生辐合上升,在水汽通量的高值区产生辐合,由此造成暴雨。湿焓分析表明700hPa从台风中心附近至陕西建立了温湿能通量的能量输送通道,把台风中心附近的温湿能向陕西输送,暴雨位于850hPa温湿能等值线密集处。
     (2)2011年7月上旬连续暴雨天气形成的大气环流形势具有陕西夏季典型的突发性暴雨的环流特征。主要影响系统是贝加尔湖到新疆北部冷涡底部分裂的冷空气和高原浅槽携带的冷空气东移南下与副高西北部的西南暖湿气流在陕西南部焓交汇所致。暴雨区与低涡切变的位置对应较好,低涡切变是暴雨的直接影响系统。高低空系统的配置有利于汉中地区产生强降水。干线与地面辐合线触发产生对流,是十分重要的触发系统。强降水出现在MCC的强盛期,发生在MCC的TBB北边界的等值线密集区。西北路冷空气南扩明显,对这次暴雨起到触发作用。
The natural geographical and geological conditions are complicated in Qinling and Bashan mountains of Southern Shaanxi. Due to mutural interaction and restraint of certain geological, stratigraphic-lithologic physiognomy, precipitation and human activities, it is one of the most vulnerable areas of China prone to geological disasters, in which a majority is intrigued by strong precipitation and flooding. Using a coupled predicting model of daily comprehensive rainfall and geological disastrous risk, combined with geological disastrous risk regionalization of Qingling-Bashan mountainous region, we analyzed the relationship of strong precipitation and geological disasters induced by consecutive strong precipitation in southern Shaanxi. Two consecutive precipitation events of the target area were selected to verify the predictability of this model, occurred in the second ten days of July, in2010, and the first ten days of July, in2011respectively. The model gave a good result that in both case, the potential spots of geological disasters were predicted and rated level4+.
     1. In this study, the precipitation and geological disaster features are analyzed. For precipitation, factors as intraday precipitation intensity, pre-precipitation intensity, pre-rainy days, rain duration and future precipitation prediction are considered. A pattern of torrential rain causing geological disaster is worked out. Based on geological risk regionalization, we developed a predicting and warning model of daily precipitation coupled with geological disaster risk, and created a meteorological predicting criterion of geological disasters which could come out with influence index of precipitation in different areas.
     2. In case study of two rain events of the target area occurred in the second ten days of July, in2010, and the first ten days of July, in2011,which represent consecutive heavy rain and short-term heavy rain in respective, the coupled model gave out forecast result of geological disaster rate for the target area12hours and3hours in advance respectively.
     3. Geological disasters are induced by heavy rainstorm. Hence, an important predicting proof of such geological disaster is a precise judgment and forecast of the torrential rain conditions. It is important to study the causation and mechanism of this type of torrential rain. Based on the above two case studies, the following conclusions are drew out.
     (1) In the second ten days of July, in2010, the key factor of the torrential rain occurrence is inshore typhoon activity and a long-distance influence of its landing, and a relative stable maintenance of east-west stretched subtropical anticyclone in mid-July. Water vapor of the strong torrential rain was transferred by the partial southerly stream on the east side of the landing typhoon, which was different from influencing on Taiwan Island. It showed an apparent longitudinal transferring path with an almost accordant southerly jet stream, prominent on700hPa level. Divergent field on the north side of the ridge line of South Asia High was overlapped with the divergent field on the right entrance of high-level jet stream, and upward streams from two independent secondary circulations were in superposition, which was favorable for development of Meso-small scale system and deep convective weather. The torrential rain occurred in the divergent area on the right side of northwesterly jet stream on200hPa level. Water vapor on700hPa showed a curved transferring path formed by southeasterly and southwesterly wind from South Sea to Shaanxi, which brought a large amount of water vapor to Shaanxi from South Sea, ascended upward in the front of the partial southerly jet stream, converged in the high value area of water vapor flux and in consequence, caused torrential rain. Moist function analysis showed an energy transferring path of warm moist energy flux from the adjacent area of typhoon core to Shaanxi. The torrential rain occurred where isograms of warm moist energy value concentrated on850hPa level.
     (2) In the first ten days of July, in2011, circulation patterns of consecutive torrential rain were recognized as a typical abrupt torrential rain weather patterns in summer of Shaanxi. The pivotal affecting mechanism is the enthalpy intersection in southern Shaanxi of the cold air split from the bottom of the cold vortex located between Lake Baikal and north of Xinjiang with cold air carried by shallow trough moving southeastwards from the Tibet plateau, and warm moist air from the northwest part of the subtropical High. The torrential rain area was well corresponded to the position of the low vortex, which is the direct affecting system. The copulation of systems on upper and lower levels is favorable for torrential rain occurrence in Hanzhong. The dry line and convergent line on ground surface contributed to convection which can be the important triggering system. The strong rain occurred on mature stage of MCC, in the north side of the MCC where isograms of TBB value were concentrated. Cold air from northwest moved obviously towards the south, which intrigued the torrential rain.
引文
[1]杜继稳等.降雨型地质灾害预报预警—以黄土高原和秦巴山区为例.北京:科学出版社,2010.
    [2]陈颞,史培军.自然灾害.北京:北京师范大学出版社,2008.
    [3]Arnould M. Geological hazards-insurance and legal and technical aspects. Bulletin of the International Association of Engineering Geology.1976, (14):263-274.
    [4]王静爱,史培军,王平,等.中国自然灾害时空格局.北京:科学出版社,2006.
    [5]张书余.地质灾害气象预报基础.北京:气象出版社,2005.
    [6]殷坤龙,张桂荣.地质灾害风险区划与综合防治对策.安全与环境工程,2003,10(1):32-35.
    [7]孙果梅,况明生,曲华.陕西秦巴山区地质灾害研究.水土保持研究,2005,12(5):240-243.
    [8]王雁林.陕西地质灾害预报实例分析及模式探讨.灾害学,2006,21(4):71-74.
    [9]王雁林.陕南地区滑坡灾害气象预报预警及其防范对策探析.地质灾害与环境保护,2005,16(4):345-349.
    [10]陈百炼.降水诱发地质灾害的气象预警方法研究.贵州气象,2002,26(4):4-7.
    [11]程晓露,张华莉.陕西省地质灾害气象预报预警系统的应用与现状.陕西地质,2005,(12):84-89.
    [12]刘传正,温铭生,唐灿.中国地质灾害气象预警初步研究.地质通报,2004,23(4):303-309.
    [13]彭贵芬,段旭,张杰,等.云南滑坡泥石流灾害精细化气象预警系统.气象科技,2008,36(5):627-630.
    [14]魏永明,谢又予.降雨型泥石流(水石流)预报模型研究.自然灾害学报,1997,6(4):48-54.
    [15]江凯,许模,毛邦燕,等.重庆市汛期地质灾害气象预报平台开发与应用.水土保持研究,2007,14(1):79-81.
    [16]刘勇,王川,侯明全.降雨对陕西山洪灾害的触发作用.陕西气象,2005,(1),1-4.
    [17]钟荫乾.滑坡与降雨关系及其预报.中国地质灾害与防治学报,1998,9(4):81-86.
    [18]林孝松,郭跃.滑坡与降雨的耦合关系研究.灾害学,2001,16(2):87-92.
    [19]马力,曾祥平,向波.重庆市山体滑坡发生的降水条件分析.山地学报,2002,20(2):246-249.
    [20]张玉成,杨光华,张玉兴.滑坡的发生与降雨关系的研究.灾害学,2007,22(1):82-85.
    [21]陈正洪,孟斌.湖北降雨型滑坡泥石流及其降雨因子的时空分布相关性浅析.岩土力学,1995,16(3):62-69.
    [22]蔡晓禾,黄志刚.福建省降雨与地质灾害关系的初步研究.科技资讯,2008,(10):120,121.
    [23]柳源.滑坡临界暴雨强度.水文地质工程地质,1998,(3):43-45.
    [24]李晓.重庆地区的强降雨过程与地质灾害的相关分析.中国地质灾害与防治学报,1995,6(3):39-42.
    [25]谢剑明,刘礼领,殷坤龙,等.浙江省滑坡灾害预警预报的降雨阀值研究.地质科技情报,2003,22(4):101-105.
    [26]高华喜,殷坤龙.降雨与滑坡灾害相关性分析及预警预报阀值之探讨.岩土力学,2007,28(5):1055-1066.
    [27]李军,周成虎.香港滑坡体积与前期降水关系分析.自然灾害学报,2002,11(2):37-45.
    [28]陕西省减灾协会.秦巴山区山地自然灾害.西安:世界图书出版公司,1999.
    [29]陕西省国土资源厅.陕西省地震灾区地质灾害排查报告.2008.
    [30]王文科,王雁林,段磊,等.关中盆地地下水环境演化与可再生维持途径.郑州:黄河水利出版社,2006:1-48.
    [31]陕西省国土资源厅.秦巴山地泥石流灾害防治对策研究.2009.
    [32]李昭淑.陕西省泥石流灾害与防治.西安:西安地图出版社,2002:9-30.
    [33]陕西省国土资源厅,中国地质调查局西安地质调查中心.陕北能源化工基地地下水勘查报告.2009.
    [34]陕西省统计局.陕西统计年鉴2009.北京:中国统计出版社,2009.
    [35]王雁林.陕西省地质灾害成功预报实例分析及其模式探讨.灾害学,2006,21(4):71-75.
    [36]王雁林.陕西省地质灾害实例分析及致灾模式探讨.灾害学,2008,23(3):57-61.
    [37]陕西省国土资源厅.陕西省地质灾害防治规划(2005-2015年).2005.
    [38]周新民,王雁林.陕西省地质灾害防治现状问题与对策探讨.中国地质灾害与防治学报,2005,16(4):84-89.
    [39]王雁林.陕南地区滑坡灾害气象预报预警及其防范对策探析.地质灾害与环境保护,2005,16(4):345-350.
    [40]腾五晓,加藤孝明,小出治.日本灾害对策体制.北京:中国建筑工业出版社,2003:143-152.
    [41]黄润秋,许向宁,唐川,等.地质环境评价与地质灾害管理.北京:科学出版社,2008:143-152.
    [42]殷跃平,潘桂棠,刘宇平,等.汶川地震地质与滑坡灾害概论.北京:地质出版社,2009:129-133.
    [43]张茂省,唐亚明.地质灾害风险调查的方法与实践.地质通报,2008,27(8):1205-1212.
    [44]杜继稳.陕西省短期天气预报技术手册.北京:气象出版社,2007:119-121,136-183,241-251.
    [45]杜继稳.青藏高原东北侧突发性暴雨分析研究与应用.北京:气象出版社,2005.
    [46]杜继稳,李社宏.渭河流域致洪暴雨分析研究与应用.北京:气象出版社,2007.
    [47]高庆华,马宗晋,张业成,等.自然灾害评估.北京:气象出版社,2007:184-187,216-220.
    [48]彭贵芬,段旭,舒康宁,等.应用KDD技术分析气象地质灾害与降水的关系.气象科 技,2007,35(2):252-257.
    [49]丁一汇.暴雨和中尺度气象学问题,气象学报,1994,52(3):275-283.
    [50]朱乾根,林锦瑞,寿绍文,等.天气学原理与方法.北京:气象出版社,2007.
    [51]俞小鼎,姚秀萍,熊廷南,等.多普勒天气雷达原理与业务应用.北京:气象出版社,2007.
    [52]井喜,高青云,杨静,等.两个不同降水量级的MCC对比分析.高原气象,2011,30(2):328-338.
    [53]王登炎.MCS的形态特征和外推预报.气象,2000,26(8):22-24.
    [54]薛建军,徐军昌,张芳华,等.区域性地质灾害气象预报预警方法研究.气象,2005,31(10):24-27.
    [55]肖伟,黄丹,黎华,等.地质灾害气象预报预警方法研究.气候与资源,2005,14(4):274-278.
    [56]刘传正.中国地质灾害气象预警方法与应用.岩土工程界,2004,7(7):17,18.
    [57]刘传正,温铭生,唐灿.中国地质灾害气象预警初步研究.地质通报,2004,23(4):304-309.
    [58]刘传正.区域滑坡泥石流灾害预警理论与方法研究.水文地质工程地质,2004,(3):1-6.
    [59]刘传正.突破性地质灾害的监测预警问题.水文地质工程地质,2001,(2):1-4.
    [60]徐玉琳,孙国曦,陆美兰,等.江苏省突发性地质灾害气象预警研究.中国地质灾害与防治学报,2006,17(1):46-50.
    [61]丛威青,潘懋,任群智,等.泥石流灾害多元信息耦合预警系统建设及其应用.北京大学学报(自然科学版),2006,42(4):446-450.
    [62]张京江,韦方强,刘波珍,等.暴雨型泥石流多层预报系统的研究.气象科学,2006,26(5):548-552.
    [63]郁淑华,何光碧,徐会明,等.泥石流滑坡发生的降水预报方法与雨量标准.山地学报,2005,23(2):158-164.
    [64]董蕙青,谭凌志,郑凤琴,等.广西汛期地质灾害气象预报预警技术.广西气象,2004,25(4):21-24.
    [65]李志华,顾洪国,李璐.地质气象灾害的定点预报.四川气象,2007,27(2):22-23.
    [66]岳建伟,王斌,刘国华,等.地质灾害预警预报及信息管理系统应用研究.自然灾害学报,2008,17(6):60-63.
    [67]江兴旺,张骏.暴雨型泥石流未来活动特点预测的新方法.勘察科学技术,2000,(2):35-40.
    [68]魏永明,谢又予.降雨型泥石流(水石流)预报模型研究.自然灾害学报,1997,6(4):48-54.
    [69]张贤坤,黄晓东,吴国强.江门市地质灾害气象预报预警业务系统.广东气象,2007,29(4):21-23.
    [70]《陕西救灾年鉴》编委会.陕西救灾年鉴2000-2002.西安:陕西科学技术出版社,2005:184-185.
    [71]张弘,陈卫东,李明娟,等.青藏高原东北侧突发性暴雨分析研究与应用.两次台风远距离暴雨的对比分析.北京:气象出版社,2005:99-106.
    [72]张弘,陈卫东,孙伟.一次台风与河套低涡共同影响的陕北暴雨分析.高原气象,2006,25(1):233-239
    [73]陶诗言.中国之暴雨.北京:科学出版社,1980:121-177.
    [74]程麟生,冯伍虎.“987”突发大暴雨及中尺度低涡结构的分析和数值模拟.大气科学,2001,25(4):465-478.
    [75]Shi Li,Ni Yongqi,Weng Yonghui. A modeling case study of the'0185'heavy Rainfall. International Conference On Mesoscale Convective Systems And Heavy Rainfall/Snowfall In East Asia,2002:333-337.
    [76]马鹤年.次天气尺度Ω系统和暴雨落区.暴雨文集,吉林:吉林人民出版社,1980:171-176.
    [77]陈联寿,孟智勇.我国热带气旋研究十年进展大气科学,2001,25(3):420-432.
    [78]杜继稳.陕西暴雨分析和研究.陕西省气象台,1988:44-67.
    [79]商洛地区防汛抗旱指挥部办公室.陕西省商洛地区一九九八年特大暴雨洪水灾害分析.1998,4-52
    [80]陕西师范大学地理系《安康地区地理志》编写组.安康地区地理志.西安:陕西人民出版社,38-44
    [81]赵世发,周军元,王俊,等.一次世界内陆罕见的特大暴雨物理量特征分析.南京气象学院学报,2002,25(2):271-275
    [82]许新田,郭大梅,陶建玲,等.2002年6月8日陕西暴雨高低空急流特征及地面中尺度系统分析.陕西气象,2006,(2):14-19.
    [83]刘勇,张科翔.2002年6月8日佛坪突发性特大暴雨天气过程分析.应用气象报,2005,16(1):60-69.
    [84]毕宝贵,刘月巍,李泽椿.2002年6月8-9日陕南大暴雨系统的中尺度分析.大气科学,2004,28(5):747-761.
    [85]刘勇,杜川利.黄土高原一次突发性大暴雨过程的诊断分析.高原气象,2006,25(2):302-307.
    [86]井喜,李栋梁,李明娟,等.青藏高原东北侧一次突发性大暴雨环境场综合分析.高原气象,2008,27(1):46-57.
    [87]屠妮妮,陈静,何光碧.高原东侧一次大暴雨过程动力热力特征分析.高原气象,2008,27(4):796-806.
    [88]马红,郑翔飚,胡勇等.一次西南涡引发MCC暴雨的卫星云图和多普勒雷达特征分析.大气科学学报,2010,33(6):688-696.
    [89]刘新伟,段海霞,赵庆云.甘肃一次区域性大暴雨分析.干旱区研究,2010,27(1):128-133.
    [90]侯建忠,张弘,李明娟等.台风活动对陕西重大洪灾事件影响的综合分析.2010,36(9):94-99.