非规则高墩桥梁抗震设计理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着西部大开发战略的实施,我国西部地区规划并建成了大量的公路和铁路线路,而跨越深谷、沟壑、江河的高墩桥梁往往是这些线路中的控制性工程。西部山区高墩桥梁结构通常属于典型的非规则桥梁,超出了现有国内外抗震设计规范的应用范围,无现成规范可循。基于此背景,本文结合我国西部山区高墩桥梁的结构特点,对非规则高墩桥梁抗震设计理论及设计方法进行了系统的研究,试图揭示非规则高墩桥梁在地震作用下结构需求和能力的复杂性。综合起来,本文主要做了以下几部分工作:
     (1)在查阅大量国内外文献的基础上,对桥梁抗震设计理论、抗震设计性能指标体系、位移延性能力计算方法、高墩桥梁抗震分析方法等方面的发展研究现状进行了系统的回顾与总结。
     (2)采用弹塑性梁柱单元和弹塑性纤维梁柱单元分别建立墩柱的两种计算模型,深入讨论了墩柱在地震作用下,塑性铰形成、塑性区扩展以及塑性转角、墩顶位移等结构地震需求,针对弹塑性梁柱单元模型中不同单元划分数量对墩柱地震需求的影响进行了比较分析。在此基础上,探讨了两种计算模型在墩柱地震需求计算时的适用性。
     (3)将增量动力分析应用于墩柱位移延性能力的计算,采用静力推倒分析方法和增量动力分析方法研究了不同墩高墩柱的破坏过程和位移延性系数,分析了地震荷载频谱特性、高阶振型、墩身质量效应、材料非线性水平等因素对单墩位移延性能力的影响,证明了增量动力分析作为一种求解墩柱位移延性能力方法的可行性和可靠性,最后对高墩位移延性能力计算方法、合理的性能指标和力学意义进行了讨论。
     (4)采用三种不同墩高、不同结构形式的桥梁结构计算模型,以结构振型质量参与系数为参考量,分别采用静力推倒分析方法和增量动力分析方法沿其横桥向或纵桥向计算结构屈服位移和极限位移。通过两种方法计算结果的比较,讨论了不同结构形式桥梁的损伤破坏过程,以及墩身质量和高阶振型参与对非规则高墩桥墩身节点位移、截面曲率及临界状态侧向荷载或惯性力分布模式等方面的影响。基于上述分析,提出采用截面曲率代替结构位移作为性能指标以确定非规则高墩桥梁结构相应的损伤状态。
     (5)根据抗震设计性能指标体系的研究和上述研究成果,考虑到墩身质量和高阶振型参与的影响,提出采用基于控制截面曲率的抗震设计方法作为非规则高墩桥梁的抗震设计方法。
With the implementation of Western Development Program in recent years, a lotof highways and railways are planned and built in West China. The bridges with highpiers that span rivers, channels and valleys, belonging to typical irregular girderbridge, are key projects in main lines of communication. Because of given servicerange, seismic design criteria home and abroad are unavailable for these bridges. Theseismic design theory of irregular girder bridges with high piers is systematicallystudied to discover its complexity of structural ductility demand and ductility capacitysubjected to earthquake excitation in this dissertation. The main contents are asfollows:
     ●Such aspects of research are reviewed as bridge seismic design philosophy,structural performance index system of seismic design, calculated method ofdisplacement ductility capacity and seismic analysis of bridges with high piers, basedon the comprehensive reading and understanding of related literature home andabroad.
     ●Two analytical models of bridge pier are developed based on elastic-plasticbeam-column element and elastic-plastic fiber beam-column element. Structuralseismic demands such as formation of plastic hinge, expansion of plastic zone, plasticrotation and top displacement, are discussed in detail, and the influence ofelastic-plastic beam-column element divisions on seismic demand is analyzed andcompared. Finally, the applicability of two analytical models is discussed in seismicdemand analysis of tall bridge pier.
     ●Increment Dynamic Analysis (IDA) is introduced into computing displacementductility capacity of piers, and IDA and pushover analysis are applied ondisplacement ductility index of different pier models. The influence of earthquakespectral character, higher vibration modes, self-mass of piers, material nonlinearitylevel on displacement ductility capacity of frame member is analyzed, and IDA isidentified as a feasible and reliable solution of displacement ductility index. After that,the computing means and mechanical explanation of displacement ductility capacityof high piers, proper performance index is investigated.
     ●Take account of modal mass participation coefficients as reference variable, threebridge models with different height and structural style are created and analyzed to get yield displacement and ultimate displacement with IDA and pushover analysis alonglongitudinal direction or transverse direction of bridge. According to comparativeresults, the influence of higher vibration modes and self-weight on damage and failure,nodal displacement, cross-section curvature and lateral load or inertial forcedistribution at critical state is discussed. Instead of top displacement, cross-sectioncurvature is served as performance index to confirm its corresponding structuraldamage state of irregular girder bridges with high piers.
     ●Based on performance index system of seismic design and research productionabove, Key Cross-section Curvature-Based Seismic Design philosophy is put forwardfor irregular girder bridges with high piers.
引文
[1] 中华人民共和国交通部.公路工程抗震设计规范(JTJ004—89)[M].北京:人民交通出版社,1989
    [2] California Department of Transportation. CALTRANS Seismic Design Criteria, V 1.2[M]. USA, 2001
    [3] American Association of State Highway and Transportation Official. AASHTO LRFD bridge design specifications[M]. Washington D. C. USA, 1998
    [4] 袁艺,王理.中国的地震灾情及其区域分异[J].自然灾害学报,2001,10(1),59~64
    [5] 聂高众,高建国.中国未来10~15年地震灾害的风险评估[J].自然灾害学报,2002,11(1),68~73
    [6] Nassar, A.A., Krawinkler, H.. Seismic demands for SDOF and MDOF system[R]. Report No.95, The John A. Blume Earthquake Engineering Center, Stanford University, Stanford, California, 1991
    [7] 郭磊.桥梁结构基于位移的抗震设计方法研究[D].上海:同济大学,2005_
    [8] 沈聚敏,周锡元,高小旺,刘晶波.抗震工程学[M].北京:中国建筑工业出版社,2000
    [9] Priestley, M.J.N. Myths and fallacies in earthquake engineering-conflicts between design and reality[J]. Bulletin of the New Zealand National Society for Earthquake Engineering, 26(3), 1993, 329~341
    [10] Priestley, M.J.N.. Performance based seismic design[C]. 12th World Conference on Earthquake Engineering, 2000, Paper 2831
    [11] Moehle, J.P. Displacement-based design of RC structures subjected to earthquake[J]. Earthquake Spectra, 8(3), 1992, 403~428
    [12] Kowalsky, M.J., Priestley, M.J.N. and Macrae, G.A.. Displacement-based design of RC bridge column in seismic regions[J]. Earthquake Engineering and Structural Dynamics, Vol.24, 1995, 1623~1643
    [13] Mervyn, J Kowalsky. Direct displacement-based design: a seismic design methodology and its application to concrete bridge[D].University of California, San Diego, 1997
    [14] Kowalsky, M.J.. A displacement-based approach for the seismic design of continuous concrete bridges[J]. Earthquake Engineering and Structural Dynamics, 2002(31), 719~747
    [15] Chopra, A.K., Goel, R.K.. Direct displacement-based design: use of inelastic vs. elastic design spectra[J]. Earthquake Spectra, 2001, 17(1), 47~64
    [16] 弓俊青,朱唏.以位移为基础的钢筋混凝土桥梁墩柱抗震设计方法[J].中国公路学报,2001,14(4),42~46
    [17] Ahmed Ghobarah. Performance-based design in earthquake engineering: state of development [J]. Engineering Structures, 2001(23):878~884
    [18] Peter Fajfar, Helmut Krawinkter. Seismic Design Methodologies for the Next Generation of Codes[M]. A. A. Balkema, USA, 1997
    [19] Park. Y. J, Ang. A. H-S, Seismic Damage Analysis of Reinforced Concrete Building [J]. Journal of Structural Engineering, Vol. 111, No.4, 1985:740~756
    [20] P. Fajfar, Equivalent Ductility Factors Taking into Account Low-cycle Fatigue [J]. Earthquake Engineering and Structural Dynamics, Vol.23, 1994:507~521
    [21] California Office of Emergency Services. Vision 2000: Performance Based Seismic Engineering of Buildings, Prepared by Structural Engineers Association of California, Sacramento, CA [M]. USA, 1995
    [22] Applied Technology Council. ATC-40, Seismic evaluation and retrofit of concrete buildings[M]. Red Wood City, California, USA, 1996
    [23] Federal Emergency Management Agency. FEMA273-Guidelines for the Seismic Rehabilitation of Buildings[M]. USA, 1997
    [24] Smith, K.G.. Innovation in earthquake resistant concrete structure design philosophies: a century of progress since Hennebique's patent[J]. Engineering Structures, Vol.23, 2001, 72~ 81
    [25] Mervyn, J Kowalsky. Deformation limit states for circular reinforced concrete bridge columns[J]. Journal of structural Engineering, ASCE, 2000, 126(8):869~878
    [26] T.Paulay,M.J.N.Priestley著,戴瑞同等译,钢筋混凝土和砌体结构的抗震设计[M].中国建筑工业出版社,1998:16-17,24~28
    [27] 李睿,董明.考虑P-Δ效应的高墩抗震计算[J].云南工业大学学报,1999(1),61~70
    [28] 刘坤,陈兴冲,夏修身.铁路空心高墩的地震反应分析[J].兰州交通大学学报,2005,24(4),20~23
    [29] 郭国会,易伟建,尹娟.南村黄河大桥空心薄壁高墩抗震分析[J].华东公路,2000(3),22~25
    [30] 周国良.高墩及大跨桥梁的地震反应特性研究[D].北京:中国地震局地球物理研究所,2004
    [31] 阎志刚.高桥墩延性抗震性能研究[D].北京:北方交通大学,2002
    [32] 刘育成.强震时抗弯构架杆件元素韧性因子需求分布之研究[D].台北:国立成功大学,2003
    [33] John L. Wilson. Earthquake Response of Tall Reinforced Concrete Chimneys [J]. Engineering Structures, 2003 (25):11~24
    [34] 黄庆伟.高墩大跨曲线连续刚构桥非线性地震反应分析[D].成都:西南交通大学,2004
    [35] Sungjin Bae and Oguzhan Bayrak. Lateral Deformation Capacity of Concrete Bridge Piers[C]. Fifth National Seismic Conference on Bridges & Highways, San Francisco, USA, September, 2006:18~20
    [36] 李建中,宋晓东,范立础.桥梁高墩位移延性能力的探讨[J].地震工程与工程振动,2005,25(1),43~48
    [37] 宋晓东.桥梁高墩延性抗震性能的理论与试验研究[D].上海:同济大学,2004
    [38] 梁智垚.桥梁高墩位移延性能力计算方法研究.工程抗震与加固改造.2005(5):57~ 62
    [39] F. Daneshjoo and M. Geramil. Higher Mode Effects on Seismic Behavior of MDOF Steel Moment Resisting Frames[J]. Journal of Seismology and Earthquake Engineering, Vol. 5, No. 3, 2003:41~54
    [40] Gupta, A. Seismic Demands for Steel Moment Resisting Frame Structures[D]. Stanford University. 1998
    [41] G. M. Calvi and G. R. Kingsley.. Displacement Based Seismic. Design of MDOF Bridge Structures[J]. Earthquake Engineering and Structural Dynamics, 1999, 24(4), 1247~1266
    [42] 翟东武.高墩大跨桥梁结构非线性地震行为及基于位移的抗震设计方法[D].北京:北方交通大学,2001
    [43] Yi Zheng, Tsutomu Usami and Hanbin Ge. Seismic response predictions of multi-span steel bridges through pushover analysis[J]. Earthquake Engineering And Structural Dynamics, 2003 (32): 1259~1274
    [44] Zhihao Lu, Hanbin Ge, Tsutomu Usami. Application of pushover analysis-based seismic performance evaluation procedure for steel arch bridges[J]. Engineering Structures 2004;26(12):1957~1977
    [45] William F. Cofer. Documentation of Strengths and Weaknesses of Current Computer Analysis Methods for Seismic Performance of reinforced concrete members[R]. Pacific Earthquake Engineering Research Center, University of California, Berkeley, 1999
    [46] Michael Berry and Marc Eberhard. Performance models for flexural damage in reinforced concrete columns[R]. Pacific Earthquake Engineering Research Center, University of California, Berkeley, 2003
    [1] Clough R. W., Benuska K. L., Wilson E. L.. Inelastic earthquake response of tall buildings [A]. Proc. 3rd World Conf. On Earthquake Engineering. New Zealand. 1965
    [2] Ambrisi A D., Filippou F C.. Modeling of cyclic shear behavior in RC members [J]. Journal of Structural Engineering. ASCE. 1999, 125(10): 1143~1150
    [3] Filippou F C., Ambrisi. A.D., Issa A.. Effects of reinforcement slip on hysteretic behavior of reinforced concrete frame members [J]. ACI Structural Journal, 1999.96(3): 327~335
    [4] V. Prakash, G. H. Powell. DRAIN-2DX User Guide[M]. Department of Civil Engineering, University of California, Berkeley, 1992
    [5] 范立础.桥梁抗震[M].上海:同济大学出版社,1997:23~74
    [6] 范立础,叶爱君.大跨度桥梁抗震设计[M].上海:人民交通出版社,2001
    [7] Hellesland J., Scordelis A.. Analysis of RC bridge columns under imposed deformations[A]. IABSE Colloquiym, Delft, Netherlands, 545~559
    [8] Mari A., Scordelis A. Nonlinear Geometric material and time dependent analysis of three dimensional reinforced and prestressed concrete frames[R]. SESM Report 82-12,Department of Civil Engineering, University of California, Berkeley
    [9] Miramontes D., Merabet O. Reynonard I. M.. Beam global model for the seismic analysis of RC Frames[J]. Earthquake Engineering and Structural Dynamics, 25(7),1996,671~688
    [10] Zeris C. A., Mahin S. A. Analysis of reinforced concrete beam-columns under biaxial excitation[J]. Journal of Structural Engineering. ASCE, 1988, 114(4): 804~820
    [11] Zeris C A. Mahin S A. Behavior of reinforced concrete structures subjected to biaxial excitation [J]. Journal of Structural Engineering. ASCE. 1991, 117(9): 2657~2673
    [12] Taucer, F.F. and Enrico, S.. Fiber beam-column model for seismic response analysis of reinforced concrete structures[R]. EERC 91-17, 1991
    [13] Mohd Hisham. Nonliear analysis of prestressed concrete structures under monotonic and cyclic ioads[D].University of California, Berkeley, 1994
    [14] Mander, J. B.. M. J. N. Priestley and R. Park. Theoretical stress-strain model for confined concrete[J]. Journal of The Structural Division, ASCE, 1988, 114(8): 1804~1826
    [15] Kent D. C. and Park R.. Flexural members with confined concrete[J]. Journal of The Structural Division, ASCE, 1971, 97(7): 1969~1990
    [16] Filippou. A simple model for reinforcing bar anchorages under cyclic excitations[J]. Journal of The Structural Division, ASCE, 1986,112(7): 1639~1659
    [17] Ramberg W, Osgood W R.. Description of steel Strain Curve by Three Parameters[R]. Tech. Note 902, National Advisory Committee for Aeronantics, 1943.
    [18] Richard R. M.. Versatile elastic-plastic stress-strain formula[J]. ASCE J Engineering Mechanics Division, 1975,101(EM4): 511-515
    [19] Menegotto M., Pinto, P.E.. Method of Analysis for Cyclically Loaded Reinforced Concrete Plane Frames Including Changes in Geometry and Non-Elastic Behavior of Elements under Combined Normal Force and Bending[C]. Proceedings, IABSE Symposium on Resistance and Ultimate Deformability of Structures, Lisbon, 1973. 15—22
    [20] Tai-kuang Lee, Austin D. E., Pan Micheal, J. L., Ma. Ductile design of reinforce concrete beams retrofitted with fiber reinforced polymer plates[J]. Journal of composites for construction, 2004,8(6): 489—500
    [21] Saenz L.P.. Discussion of Equation for the stress-strain curve of concrete[J]. American Concrete Institute, 1964, 9: 1229—1235.
    
    [22] CEB-FIP. Model Code for Concrete Structures[R]. Paris: CEB-FIP, 1990.
    
    [23] Hoshikuma, J., Kawashima, K. and Nagaya, K.. Stress-Strain Model for Confined Concrete in Bridge Piers[J]. Journal of Structural Engineering, ASCE, 1997, 123(5): 624—633
    [24] Scott, B.D., Park, R., Priestley, M.J.N.. Stress-Strain Behavior of Concrete Confined by Overlapping Hoops at Low and High Strain Rates[J]. ACI Journal, 1982, 79(1) 13—27
    [25] Silvia Mazzoni, Frank McKenna, Michael H.. Open System for Earthquake Engineering Simulation User Manual[M]. Pacific Earthquake Engineering Research Center, University of California, Berkeley, 2005
    [1] Jacobsen, L. S.. Damping in composite structures[C]. Proceedings of the 2nd World Conference on Earthquake Engineering, Vol.2, 1960, 1029~1044
    [2] Kowalsky, M. J.. Displacement-based design-a methodology for seismic design applied to RC bridge columns[D]. Master's Thesis, University of California at San Diego, 1994
    [3] Iwan, W. D.. Estimating inelastic response spectra from elastic spectra[J]. Earthquake Engineering and Structural Dynamics, 1980, 8(2):375~388
    [4] Nemark, N. M, Hall, W. J.. Earthquake spectra and design[M]. Earthquake Engineering Research Institute, Berkeley, CA, 1982
    [5] Miranda, E.. Inelastic displacement ratio for structures on firm sites[J]. Journal of Structural Engineering ASCE, 2000, 126(10):1150~1159
    [6] Freeman S. A., Nicoletti J. P. and Tyrell J. V.. Evaluations of existing buildings for seismic risk-A case study of Puget Sound Naval Shipyard[C]. Proceedings of 1st U.S. National Conference on Earthquake Engineering, 1975:113~122
    [7] Peter Fajfar. Capacity spectrum method based on inelastic demand spectra[J]. Earthquake Engineering and Structural Dynamics, 1999, 28(4): 979~993
    [8] Shibata, A., Sozen, M. A.. Substitute-structure method for seismic design in R/C[J]. Journal of the Structural Division ASCE, 1976,, 102(1) 1~18
    [9] Silvia Mazzoni, Frank McKenna, Michael H.. Open System for Earthquake Engineering Simulation User Manual[M]. Pacific Earthquake Engineering Research Center, University of California, Berkeley, 2005
    [10] 聂利英,李建中,范立础.弹塑性纤维单元及其单元参数分析[J].工程力学,2004,21(3):15~20
    [11] California Department of Transportation. CALTRANS Seismic Design Criteria, V 1.2 [M]. USA, 2001
    [12] CEN. Eurocode 8 Design Provisions for Earthquake Resistance of Structures, Part Ⅴ Bridges[M]. Brussels: Comite European de Normalization (CEN), 1994
    [13] NZS. Code of Practice for the Design of Concrete Structures, NZS 3101: 1982[M]. Wellington: Standards Association of New Zealand (NZS), 1982
    [14] M. J. N. Priestley, F SeiNe, G. M. Calvi. Seismic design and retrofit of bridges[M]. USA: John Wiley & Sons, Inc., 1996
    [1] Michael Berry and Marc Eberhard. Performance models for flexural damage in reinforced concrete columns[R]. Pacific Earthquake Engineering Research Center, University of California, Berkeley, 2003
    [2] T.Paulay,M.J.N.Priestley著,戴瑞同等译,钢筋混凝土和砌体结构的抗震设计[M].中国建筑工业出版社,1998:16-17,24~28
    [3] Kowalsky, M. J. and Priestley, M. J. N.. Displacement-based design of RC bridge column in seismic regions[J]. Earthquake Engineering and Structural Dynamics, 1995(24), 1623~1643
    [4] Mervyn, J Kowalsky. Deformation limit states for circular reinforced concrete bridge columns[J]. Journal of structural Engineering, ASCE, 2000, 126(8):869~878
    [5] 李建中,宋晓东,范立础.桥梁高墩位移延性能力的探讨[J].地震工程与工程振动,2005,25(1),43~48
    [6] 宋晓东.桥梁高墩延性抗震性能的理论与试验研究[D].上海:同济大学,2004
    [7] Park. Y. J, Ang. A. H-S, Seismic Damage Analysis of Reinforced Concrete Building [J]. Journal of Structural Engineering, Vol.111, No.4, 1985:740~756
    [8] R Fajfar, Equivalent Ductility Factors Taking into Account Low-cycle Fatigue [J]. Earthquake Engineering and Structural Dynamics, Vol.23, 1994:507~521
    [9] 范立础,卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社,1999.
    [10] 中华人民共和国交通部.公路工程抗震设计规范(JTJ004—89)[M].北京:人民交通出版社,1989
    [11] 王补林,熊世树,周正华.基于能量法的耗能结构动力分析[J].华中科技大学学报,2003,20(3):73~76
    [12] Housner, G. W.. Limit design of structures to resist earthquakes[C]. Proc. 1st World Conf. on Earthquake Engineering, Earthquake Engineering Research Institute, Oakland, Calif., 1956. 1~13
    [13] Park, Y. J. and Ang, A. H.-S.. Mechanistic seismic damage model for reinforced concrete[J]. Journal of Structural Engineering ASCE, Vol. 111, No.4, 1985, 722~739
    [14] Mario E. Rodriguez, et al. Evaluation of a Seismic Damage Parameter[J]. Earthquake Engineering and Structural Dynamics, Vol.28, 1999:463~477
    [15] NZS. Code of Practice for the Design of Concrete Structures, NZS 3101:1982 [M]. Wellington: Standards Association of New Zealand (NZS), 1982
    [16] CEN. Eurocode 8 Design Provisions for Earthquake Resistance of Structures, Part Ⅴ Bridges[M]. Brussels: Comite European de Normalization (CEN), 1994
    [17] California Department of Transportation. CALTRANS Seismic Design Criteria, V 1.2 [M]. USA, 2001
    [18] American Association of State Highway and Transportation Official. AASHTO LRFD bridge design specifications[M]. Washington D. C. USA, 1998
    [19] 沈聚敏,翁义军.钢筋混凝土构件的刚度和延性[M].北京:清华大学出版社,1981:54~71
    [20] Freeman S. A., Nicoletti J. P. and Tyrell J. V.. Evaluations of existing buildings for seismic risk-A case study of Puget Sound Naval Shipyard[C]. Proceedings of 1st U.S. National Conference on Earthquake Engineering, 1975:113~122
    [21] Applied Technology Council. ATC-40, Seismic evaluation and retrofit of concrete buildings[M]. Red Wood City, California,USA, 1996
    [22] Federal Emergency Management Agency. FEMA273-Guidelines for the Seismic Rehabilitation of Buildings[M]. USA, 1997
    [23] 吴培浩.pushover分析法的研究和工程应用[D].广州:华南农业大学,2002
    [24] Peter Fajfar. Capacity spectrum method based on inelastic demand spectra[J]. Earthquake Engineering and Structural Dynamics, 1999,28(4)
    [25] Helmut Krawinkler and G. D. P. K. Senevirations. Pros and cons of a pushover analysis of seismic performance evaluation[J]. Engineering Structures, 1998 (20):452~464
    [26] 梁智垚.桥梁高墩位移延性能力计算方法研究.工程抗震与加固改造.2005(5):57~62
    [27] Yamagishi M., Kawashima K. and Shoji G.. Limitation of nonlinear static seismic design method for a bridge with tall columns[J]. Journal of Structural Engineering, JSCE, 2002, 48: 595~605
    [28] Chopra, A.K. and Goel, R.K.. A modal pushover analysis procedure to estimate seismic demands for buildings: theory and preliminary evaluation[R]. Pacific Earthquake Engineering Research Center, University of California, Berkeley, 2001
    [29] Chopra, A.K. and Goel, R.K.. A modal pushover analysis procedure to estimate seismic demands for unsymmetric-plan buildings[J]. Earthquake Engineering and Structural Dynamics, 2004, 33(4)
    [30] Bertero, V. V.. Strength and deformation capacities of buildings extreme environments [M]. Structural Engineering and Structural Mechanics, 1977
    [31] Dimitrios Vamvatsikos and Cornell, C. A.. Incremental dynamic analysis[J]. Earthquake Engineering and Structural Dynamics, 2002, 31(3)
    [32] M. C. Griffith, A. Kawano and R. F. Warmer. Short communication towards a direct collapse-load method of design for concrete frames subjected to severe ground motions[J]. Earthquake Engineering and Structural Dynamics, 2002,31(11)
    [33] Federal Emergency Management Agency. FEMA350-Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings[M]. USA, 2000
    [34] 徐艳.钢管混凝土拱桥的动力稳定性能研究[D].上海:同济大学,2004
    [35] Kevin Mackie and Bozidar Stojadinovic. Seismic demands for performance-based design of bridges[R]. Pacific Earthquake Engineering Research Center, University of California, Berkeley, 2003
    [36] Mwafi AM, Elnashai AS. Static pushover versus dynamic collapse analysis of RC buildings[J]. Engineering Structures 2001;23(5):407~431
    [1] Tatjana Isakavic, Matej FischingerM. Rodriguez, Higher Modes in simplified in elastic seismic analysis of single column bent viaducts[J]. Earthquake Engineering and Structural Dynamics, 35(1), 2006, 95~114
    [2] 同济大学土木工程防灾国家重点实验室.雅泸路桥梁抗震性能研究报告—栗子树大桥右线[R].同济大学,2006
    [3] Yi Zheng, Tsutomu Usami and Hanbin Ge. Seismic response predictions of multi-span steel bridges through pushover analysis[J]. Earthquake Engineering And Structural Dynamics, 2003 (32): 1259~1274
    [4] Hamed Salem AlAyed. Seismic analysis of bridges using nonlinear static procedure[D]. University of Maryland, 2002
    [5] Stone, W. C., Taylor, A. W.. Seismic performance of circular bridge columns designed in accordance with AASHTO/CALTRANS standards[R]. Rep.BSS-170, National Institute of Standards and Technology, Gaithersburg, Md. 1993
    [6] Park. Y. J., Ang, A. H.-S.. Mechanistic seismic damage model for reinforced concrete[J]. Journal of Structural Engineering ASCE, 1985, 111 (4), 722~739
    [7] Ang, A. H.-S., Kim, W. J. and Kim, S. B.. Damage estimation of existing bridge structures[C]. Structural Engineering in Natural Hazards Mitigation: Proceedings of ASCE Structures Congress, 1993, Irvine CA, Vol.2, 1137~1142
    [1] 李建中,范立础.高架桥梁抗震设计[M].上海:人民交通出版社,200l
    [2] Abrams, D. P.. Influence of axial force variation on flexural behavior of reinforced concrete columns[J]. ACI Structural Journal, 1987, May-June, 246~254
    [3] Kreger, M. E., Linbeek, L.. Behavior of reinforced concrete columns subjected to lateral and axial load reversal[C]. Proc. Third U.S. National Conf. on Earthquake Engineering, Charleston, SC, 1986
    [4] Saadeghvaziri, M. A., Foutch, D. A.. Inelastic behavior of R/C highway bridges under horizontal and vertical earthquake motions[R]. Civil Engineering Studies, SRS-540, University of Illinois at Urbana-Champaign, Urbana, IL June 1988
    [5] 潘龙.基于推倒分析方法的桥梁结构地震损伤分析与性能设计[D].上海:同济大学,2001
    [6] Freeman S. A., Nicoletti J. P. and Tyrell J. V.. Evaluations of existing buildings for seismic risk-A case study of Puget Sound Naval Shipyard[C]. Proceedings of 1st U.S. National Conference on Earthquake Engineering, 1975:113~122