求解Volterra积分微分方程的高阶方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文讨论带光滑核的第二类Volterra积分微分方程以及奇异摄动Volterra积分微分方程的高阶数值格式。方程中积分项的出现,表明该问题具有记忆性质。如何快速高效地求解这类方程是计算数学领域关心的重要问题之一。近年来,由于意识到谱收敛的优越性,人们逐渐开始用谱方法来求解这类方程。本文采用谱Jacobi-Petrov Galerkin方法和伪谱Jacobi-Petrov-Galerkin方法求解第二类Volterra积分微分方程。而后者的主要思想是采用离散带权内积近似逼近前者中的带权内积。本文从理论上证明了这些方法在Lω2和L∞意义下具有指数收敛性质。数值结果表明这些方法不仅具有运算速度快的特点,而且的确能达到谱收敛精度。受此启发,本文证明了当核函数和源函数满足一定的条件时,方程的解满足所谓的M条件。在此基础上,进一步证明了两类重要的谱方法,即谱和伪谱Legendre-Petrov-Galerkin方法以及谱和伪谱Chebyshev-Petrov-Galerkin方法的超几何收敛性。
     对于奇异摄动Volterra积分微分方程,本文首先证明了解的正则性。对于这类问题,当小参数ε趋于零时,解在边界层变化非常快。本文通过选取局部加密网格策略和高阶数值格式相结合的方法来求解此类问题。首先,采用间断有限元方法求解,并证明了该方法的稳定性。当核函数正定时,本文进一步证明了在Shishkin网格下DG方法具有一致收敛性质。在边界层区域,DG解在L2意义下具有(?)(lnN/N)p阶收敛;节点处DG解的数值通量具有(lnN/N)2p+1阶的超收敛性。数值算例不仅验证了该方法稳定,而且DG解在L2范数下能达到p+1阶最佳收敛;节点处DG解的数值通量具有2p+1阶的超收敛性。随后,本文采用耦合方法求解该方程,即在边界层区域,运用连续有限元求解;在外部区域,运用间断有限元求解。对于正定核情形,本文给出了解的存在唯一性证明。数值算例表明,在Shishkin网格下,该方法不仅稳定,而且解在L2范数下能达到p+1阶最佳收敛性;在节点处的数值解具有2p阶的超收敛性。耦合方法在Shishkin网格下同样具有一致收敛性质。
The high-order numerical schemes for Volterra integro-differential equa-tions of the second kind and singularly perturbed Volterra integro-differential equations with the smooth kernel are discussed in this paper. The integral item in these equations leads to the memory property for the problem. How to solve these equations more efficiently and rapidly is one of the most important issues in the field of computational mathematics. In recent years, for realizing the advantage of spectral convergence, people begin to solve these equations by the spectral method. In this paper, spectral Jacobi-Petrov-Galerkin method and pseudo-spectral Jacobi-Petrov-Galerkin method are used to solve Volterra integro-differential equations of the second kind. The key idea of the latter is that the weighted inner product of the former can be approximated by the weighted discrete inner product. This paper has proved the exponential convergence property of these methods in the sense of Lw2and L∞norms theo-retically. Numerical results show that these methods not only are rapid in the computation, but also achieve the spectral convergence indeed. Inspired by the numerical experiment, that the analytic solution of the equation satisfies the so-called M condition is proved in the paper when the kernel function and the source function satisfy certain conditions. Furthermore, the supergeomet-ric convergence property for two special spectral methods. i.e., spectral and pseudo-spectral Legendre-Petrov-Galerkin methods and spectral and pseudo-spectral Chebyshev-Petrov-Galerkin methods, is proved rigorously
     For singularly perturbed Volterra integro-differential equations, this pa-per firstly has proved the regularity property of the solution. For this kind problem, when the parameter∈limits to zero, the solution undergoes a rapid transition in the layer region. In the paper, we choose the strategy of the local grid refinement and seek the high-order numerical scheme to solve the problem. First, this paper uses the discontinuous Galerkin(DG) method to solve such problem and proves the stability property of the method. If the kernel function is positive definite, this paper has further proved that the DG method has the uniform superconvergence property under the Shishkin mesh. In the layer region, the DG solution has the convergence rate (?)(ln N/N)p in L2norm, and the DG solution for the one-side flux at nodes achieves the super-convergence rate (ln N/N)2p+1. Numerical experiment validates that not only is the DG method stable, but also the DG solution has the optimal convergence rate p+1in L2norm and the DG solution for the one-side flux at nodes has the superconvergence rate2p+1. In the following part, we use the coupled method to solve the equation, i.e., the finite element method is used in the layer region and the DG method is applied out of the layer region. For the case of positive definite kernel, the existence and uniqueness of the solution by the coupled method is proved in the paper. Numerical experiment shows that not only is this method stable, but also the solution achieves the optimal convergence rate p+1in L2norm, and the numerical solution at nodes has the convergence rate2p. The coupled method has the uniform convergence property under the Shishkin mesh.
引文
[1]Adolfsson, K., M. Enelun & S. Larsson. Adaptive discretization of an integro-differential equation with a weakly sigular convolution kernel[J]. Comput. Meth-ods Appl. Mech. Engrg,2003,192:5285-5304.
    [2]Alotto, P., A. Bertoni, I. Perugia & D. Schotzau. A local discontinuous Galerkin method for the simulation of rotating electrical machines[J]. COMPEL,2001, 20:448-462.
    [3]Amiraliyev, G. M.& A. Sevgin. Uniform difference method for singularly per-turbed Volterra integro-differential equations[J]. Appl. Math. Comput.,2006, 179:731-741.
    [4]Angell, J. S.& W. E. Olmstead. Singularly perturbed Volterra integral equa-tions [J]. SI AM J. Numer. Math.,1987,47(1):1-14.
    [5]Angell, J. S.& W. E. Olmstead. Singularly perturbed Volterra integral equa-tions Ⅱ[J]. SIAM J. Numer. Math.,1987; 47(6):1150-1162.
    [6]Bassi, F.& S. Rebay. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations[J]. J. Comput. Phys.,1997,131:267-279.
    [7]Bernardi C.& Y. Maday. Spectral methods. In Handbook of Numerical Analysis. Vol. V, P. G. Ciarlet and J. L. Lions eds.[M]. North-Holland,1997:209-485.
    [8]Bijura, A. M. Rigorous results on the asymptotic solutions of singularly per-turbed nonlinear Volterra integral equations[J]. J. Integ. Equat. Appl.,2002, 14(2):119-149.
    [9]Bijura, A. M. Asymptotics of integrodifferential models with integrable ker-nels[J]. Int. J. Math. Sci.,2003,25:1577-1598.
    [10]Brunner, H. A survey of recent advances in the numerical treatment of Volterra integral and integral-differential equations[J].J. Comput. Appl. Math.,1982,8: 76-102.
    [11]Brunner, H., A. Pedas & G. Vainikko. Piecewise polynomial collocation meth-ods for linear integro-differential equations with weakly singular kernels[J]. SIAM J. Numer. Anal.,2001,39:957-982.
    [12]Brunner, H., Q.-Y. Hu & Q. Lin. Geometric meshes in collocation methods for Volterra integral equations with proportional delays[J]. IMA J. Numer. Anal., 2001,21:783-798.
    [13]Brunner, H. Collocation methods for Volterra integral and related functional equations methods[M]. Cambridge University Press,2004.
    [14]Brunner, H. D. Schotzau. hp-Discontinuous Galerkin time-stepping for Volterra integro-differential equations[J]. SIAM J. Numer. Anal,2006,44(1): 224-245.
    [15]Brunner, H. The numerical solution of weakly singular Volterra functional integro-differential equations with variable delays[J]. Comrn. Pure Appl. Anal., 2006,5:261-276.
    [16]Brunner, H.& Q.-Y. Hu. Optimal superconvergence results for delay integro-differential equations of pantograph type[J]. SIAM J. Numer. Anal.,2007,45: 986-1004.
    [17]Budak, B.& A. Pavlov. A difference method of solving boundary value problems for a quasilinear integro-differential equations of parabolic type[J]. Soviet Math. Dokl.,1974,14:565-569.
    [18]Cannon J. R.Y. P. Liu. Nonclassical H1 projection and Galerkin methods for nonlinear parabolic integro-differential equations[J]. Calcolo,1988,25:187-201.
    119] Canuto, C., M. Y. Hussaini, A. Quarteroni & T. A. Zang. Spectral methods fundamentals in single domains[M]. Springer-Verlag,2006.
    [20]Celiker, F.& B. Cockburn. Superconvergence of the numerical traces of dis-continuous Galerkin and hybridized methods for convection-diffusion problems in one space dimension [J]. Math. Cornput.,2007,76,67-96.
    [21]Cen Z. D.& L. F. Xi. A parameter robust numerical method for a singularly perturbed Volterra equation in security technologies [R], Processings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, 2006.
    [22]Chen, C. M., V. Thomee & L. B. Wahlbin. Finite element approximation of a parabolic integro-differential equation with a weakly singular kernel [J]. Math. Cornput,1992,58:587-602.
    [23]Chen, C. M.& T. Shih. Finite element methods for integrodifferential equa-tions[M]. World Scientific,1998.
    [24]陈传淼,黄云清.有限元高精度理论[M].长沙:湖南科学技术出版社,1995.
    [25]陈传淼.有限元超收敛构造理论[M].长沙:湖南科学技术出版社,2001.
    [26]Chen, Y. P.& T. Tang. Spectral methods for weakly singular Volterra integral equations with smooth solutions[J]. J. Comput. Appl. Math..2009,233:938-950.
    [27]Chen, Y. P.& T. Tang. Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel [J]. Math. Comput.,2010,79:147-167.
    [28]Cockburn, B.& C. W. Shu. The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J]. SIAM J. Nurner. Anal.,1998,35: 2440-2463.
    [29]Douglas Jr. J.& Jr. B. Jones. Numerical method for integal-differential equa-tions of parabolic and hyperbolic type[J]. Numer. Math.,1962,4:92-102.
    [30]Elnagar, G. N.& M. Kazemi. Chebyshev spectral solution of nonlinear Volterra-Hammerstein integral equations [J]. J. Comput. Appl. Math.,1996,76:147-158.
    [31]Fujiwara, H. High-accurate numerical method for integral equations of the first kind under multiple-precision arithmetic[M]. Preprint, RIMS, Kyoto University, 2006.
    [32]Gottlieb D.& T. A. Orszag. Numerical analysis of spectral methods:Theory and Applications[M]. SIAM, Philadelphia, PA,1977.
    [33]Guo, B. Y. Spectral methods and their applications[M]. World Scietific, Singa-pore,1998.
    [34]Guo. B. Y.& L. L. Wang. Jacobi interpolation approximations and their ap-plications to singular differential equations[J]. Adv. Comput. Math.,2001.14: 227-276.
    [35]Guo, B. Y.& Z. Q. Wang. Legendre-Gauss collocation methods for ordinary differential equations[J]. Adu. Comput. Math.,2009.30:249-280.
    [36]Hesthven, J. S., S. Gottlieb & D. Gottlieb. Spectral methods for time-dependent problems[M]. Cambridge University Press,2007.
    [37]Horvat, V.& M. Rogina. Tension spline collocation methods for singularly perturbed for Volterra integro-differential and Volterra integral equations[J]. Comput. Appl. Math.,2002,140:381-402.
    [38]黄明游.发展方程数值计算方法[M].科学出版社,2004.
    [39]Hu, Q.-Y.& L. Peng. Multilevel correction for collocation solution of Volterra delay integro-differential equations(in Chinese)[J]. Systems Sci. Math.,1999, 19:134-141.
    [40]Hu, Q.-Y. Geometric meshes and their application to Volterra integro-differential equations with singularities [J]. IMA J. Numer. Anal.,1998,18: 151-164.
    [41]Huang, Y. Q. Time discretization scheme for an integro-differential equation of parabolic type[J]. J. Comput. Math.,1994,12(3):259-264.
    [42]Jordan, G. S. A nonlinear singularly perturbed Volterra integrodifferential equation of nonconvolution type[J]. Proc. Roy. Soc. Edinburgh Sect. A 80,1978: 235-247.
    [43]Jordan, G. S. Some nonlinear singularly perturbed Volterra integro-differential equations, in:Volterra Equations(Proc. Helsinki Syrnpos. Integral Equations, Otaniemi,1978,). Lecture Notes in Mathematics, Vol.737. Springer, Berlin, 1979:107-119.
    [44]Karniadakis G. E.& S. J. Sherwin. Spectral/hp Element methods for CFD[M]. Oxford University Press, New York,1999.
    [45]Kauthen, J. P. Implicit Runge-Kutta methods for some integrodifferential-algebraic equations[J]. Appl. Numer. Math.,1993,13:125-134.
    [461 Kauthen, J. P. A survey of singularly perturbed Volterra equations [J]. Appl. Numer. Math.,1997,24:95-114.
    [47]Larsson, S., V. Thomee & L. B. Wahlbin. Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin method [J]. Math. Comput.,1998,67:45-71.
    [48]李庆杨,关治,白峰杉.数值计算原理[M].清华大学出版社,2000.
    [49]Lin, Y. P., V. Thomee & L. B. Wahlbin. Ritz-Volterra projection onto finite element spaces and application to integro-differential and relate equations[J]. SIAM J. Numer. Anal,1991,28(4):1047-1070.
    [50]Lin T., Y. P. Lin, M. Rao & S. H. Zhang. Petrov-Galerkin methods for linear Volterra integro-differential equations[J]. SIAM. J. Numer. Anal.,2000,38(3): 937-963.
    [51]Lin, Y. M.& C. J. Xu. Finite difference/spectral approximations for the time-fractional diffusion equation [J]. J. Comput. Phys.,2007, (225):1533-1552.
    [52]刘儒勋&舒其望.计算流体力学的若干新方法[M].科学出版社,2003.
    [53]Lodge, A. S.. J. B. Mcleod & J. E. Nohel. A nonlinear singularly perturbed Volterra integrodifferential equation occuring in polymer rheology[J]. Proc. Roy. Soc. Edinburgh Sect. A 80, 1978: 99-137.
    [54]Lorch, L. The Lebesgue constants for Jacobi series. Part Ⅰ[M]. Proc. the Amer-ican Math. Soc., 1959, 10(5): 756-761.
    [55]Mclean. W. & V. Thomee. Numerical solution of an evolution equation with a positive type memory term[J]. J. Austral. Math. Soc. Ser., 1993, B35: 23-70.
    [56]Miller. J. J., E. O'Riodan & G. I. Shislikin. Fitted numerical methods for sin-gularly perturbed problems[M]. World Scientific, Singapore. 1996.
    [57]Morton, K. W. Numerical solution of convection-diffusion problems[M]. Chap-man and Hall, London, 1996.
    [58]Mustapha, K. & W. Mclean. Discontinuous Galerkin method for an evolution equation with a memory term of positive type[J]. Math. Comput., 2009, 78(268): 1975-1995.
    [59]Phillips G. M. Interpolation and approximation by polynornials[M]. Springer, New York, 2003.
    [60]Perugia, I. & D. Schotzau. On the coupling of local discontinuous Galekin and conforming finite element methods[J]. J. Sci. comput.. 2001, 16(4): 411-433.
    [61]Ramos, J. I. Exponential techniques and implicit Runge-Kutta methods for singularly-perturbed Volterra integro-differential equations [J]. Neural, Parallel, and Scientific Computations, 2008, 16: 387-404.
    [62]Reed. W. H. & T. R. Hill. Triangular mesh methods for the neutron transport equation[R]. Technical Report LA-UR-73-479, Los Alamos Scientific Labora-tory, Los Alamos, 1973.
    [63]Roos, H. G. & H. Zarin. A supercloseness result for the discontinuous Galerkin stabilization of convection-diffusion problems on Shishkin meshes [J]. Nurner Methods Partial Differ. Equat., 2007, 23(6): 1560-1576.
    [64]Roos, H. G., M. Stynes & L. Tobiska. Numerical methods for singularly per-turbed differential equations[M]. Springer, Berlin, 1996.
    [65]Roos, H. G., M. Stynes & L. Tobiska. Robust numerical methods for singularly perturbed, differential equations[M]. Springer, 2008.
    [66]Sanz-Serna, J. M. A numerical method for a partial integro-differential equa-tion[J]. SIAM J. Nurner. Anal, 1988. 25: 319-327.
    [67]Shen, J.& T. Tang. Spectral and high-order methods with applica,tions[M]. Bei-jing. Science Press,2006.
    [68]Shen, J., T. Tang & L. L. Wang. Spectral methods:Algorithms, Analysis and Applications[M]. Springer,2011.
    [69]Shen J. A new dual-Petrov-Galerkin method for third and higher odd-order differntial equations:Application to the KDV equation[J]. SIAM J. Numer. Anal.,2003,41(5):1595-1619.
    [70]石东洋,张步英.非线性抛物积分微分方程的各向异性有限元高精度分析[J].应用数学,2008,21(3):436-442.
    [71]Sloan, I. H.& V. Thomee. Time discretization of an integro-differential equation of parabolic type[J]. SIAM J. Numer. Anal.,1996,23:1052-1061.
    [72]Tang, T. Superconvergence of numerical solutions to weakly singular Volterra integro-differential equations [J]. J. Numer. Math.,1992,61:373-382.
    [73]Tang, T. A Finite difference scheme for a partial integro-differential equations with a weakly singular kernel [J]. Appl. Numer. Math,1993, (2):309-319.
    [74]Tang, T., X. Xu & J. Chen. On spectral methods for Volterra type integral equations and the convergence analysis[J]. J. Comput. Math,2008,26(6):825-837.
    [75]Tao X., X. J. Li & Z. Q. Xie. Spectral Petrov-Galerkin methods for the second kind Volterra type integro-differential equations [J]. Numer. Math. Theor. Meth. Appl.,2011,4(2):216-236.
    [76]Thomee, V.& N. Y. Zhang. Error estimates for semidiscrete finite element methods for parabolic integro-differential equations[J]. Math. Comput.,1989, 53:121-139.
    [77]Tian, H.-C. Spectral method for Volterra integral equation[D]. MSc Thesis, Simon Fraser University,1995.
    [78]Trefethen L. N. Spectral methods in Matlab[M]. SIAM,2000.
    [79]Xie, Z. Q.& Z. M. Zhang. Superconvergence of DG method for one-dimensional singularly perturbed problems[J]. J. Comput. Math.,2007,25(2):185-200.
    [80]Xie, Z. Q.& Z. M. Zhang. Uniform superconvergence analysis of the discon-tinuous Galerkin method for a singularly perturbed problem in 1-D[J]. Math. Comput.,2010,79(269):35-45.
    [81]Xie, Z. Q., X. J. Li & T. Tang. Convergence analysis of spectral Galerkin methods for Volterra type integral equations [J]. To appear in J. Sci. Comput., 2012.
    [82]Xie, Z. Q.,X. J. Li & T. Tang. Supergeometric convergence of spectral Galerkin methods for Volterra type integral equations[J]. submitted to J. Sci. Comput..
    [83]Xu, D. Finite element methods for the nonlinear integro-differential equa-tions[J]. Appl. Math. Comput.,1993,58:241-273.
    [84]Xu, D. On the discretization in time for a parabolic integro-differential equation with a weakly singular kernel Ⅰ:smooth initial data[J]. Appl. Math. Comput.. 1993,58:1-27.
    [85]Xu, D. On the discretization in time for a parabolic integro-differential equa-tion with a weakly singular kernel Ⅱ:nonsmooth initial data[J]. Appl. Math. Comput.,1993,58:29-60.
    [86]Xu, D. The global behaviour of time discretization for an abstract Volterra equation in Hilbert space [J]. CACOLO,1997, (34):71-104.
    [87]Yanik, E. G.& G. Fairweather. Finite element methods for parabolic and hyper-bolic partial integro-differential equations[J]. Nonlinear Anal.,1988,12:785-809.
    [88]Zarin, H. Continuous-discontinuous finite element method for convection-diffusion problems with characteristic layers[J]. J. Comput. Appl. Math.,2009, 231:626-636.
    [89]张铁.抛物型积分-微分方程有限元近似的超收敛性质[J].高等学校计算数学学报,2001,23(3):193-201.
    [90]张铁.发展型积分-微分方程的有限元方法[M].沈阳:东北大学出版社,2001.
    [91]张铁.偏微分-积分方程的有限元方法[M].北京:科学出版社,2009.
    [92]Zhang Z. M. Superconvergence of spectral collocation and p-version methods in one dimensional problems[J]. Math. Comput.,2005,74(252):1621-1636.
    [93]Zhang Z. M. Superconvergence of a Chebyshev spectral collocation method [J]. J. Sci. Comput.,2008,34:237-246.
    [94]Zhang, Z. Z., Z. Q. Xie & X. Tao. A Robust Discontinuous Galerkin method for solving convection-diffusion problems [J]. Acta Math. Appli. Sinica, English series,2008,24(3):483-496.
    [95]Zhang, Z. Z., Z. Q. Xie& Z. M. Zhang. A numerical study of uniform super-convergence of LDG method for solving singularly perturbed problems[J]. J. Comput. Math.,2009,27(2-3):280-298.
    [96]Zhang, Z. Z., Z. Q. Xie & Z. M. Zhang. Superconvergence of discontinuous Galerkin methods for convective-diffusion problems[J]. J. Sci. Comput.,2009, 41:70-93.
    [97]Zhu, P.,Z. Q. Xie & S. Z. Zhou. A uniformly convergent continuous-discontinuous Galerkin method for singularly perturbed problems of convection-diffusion type [J]. Appl. Math. Comput.,2011,217:4781-4790.
    [98]Zhu, P., Z. Q. Xie & S. Z. Zhou. Uniformly convergence of a coupled method for convection-diffusion problems in 2-D Shishkin mesh[J]. submitted.