自适应雷达系统中波形分集技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波形分集是一种重要的分集方式,已成为现代雷达系统发展的重要方向之一。在这种新分集方式下,雷达根据环境实时地改变自身发射波形,可自适应地优化检测、跟踪和抗干扰等方面的性能,且使敌方的电子侦察及干扰更为困难。在自适应雷达系统中波形分集技术的研究对于探求自适应雷达的新理论、新方法,提高雷达在未来战场上的性能和抗干扰能力具有重要的理论意义和实用价值。
     本文系统地研究了自适应雷达系统中波形分集技术的理论和方法,展开的主要工作包括:
     [1]针对交替搜索与检测的自适应工作方式,系统分析了最优匹配照射—接收机的基本原理,基于相位编码雷达信号着重展开了目标多散射中心的提取和最优匹配照射—接收机的设计方法研究;考虑到递归得到的目标多散射中心距离像信息可作为下一次计算的先验信息,提出了基于递归最大信噪比准则的自适应距离旁瓣抑制方法,可稳健地实现目标各个散射中心位置的提取和复幅度的高精度估计,为目标多散射中心距离像的精准模型建立奠定了基础;提出了基于相位域共轭梯度算法的匹配照射相位编码信号设计方法,具有收敛速度快、运算量小的特点,设计得到的相位编码信号的性能接近最优匹配照射信号;研究结果表明,匹配照射不但提高了匹配滤波器的输出信噪比,而且降低了在不同目标姿态角下输出信噪比的起伏,因此具有匹配照射功能的自适应雷达可获得更为良好和平稳的检测性能。该结论对未来雷达系统的设计具有一定的借鉴意义。
     [2]针对有源干扰,尤其是频域窄带干扰和欺骗式干扰,基于波形分集技术进行了自适应雷达的干扰对抗研究。在已知其它多种电子系统的干扰频谱先验信息的前提下,提出了一种用于叶簇穿透超宽带雷达在干扰频带形成自适应陷波的相位编码信号设计及频域处理方法,设计所得信号具有近似理想功率谱的同时通过频域失配处理获得良好的距离分辨力和主旁瓣比;针对距离波门拖引的欺骗式干扰下的目标检测,充分利用干扰机的复制能力进行反欺骗,提出了具有频域正交性的发射波形构造和相应的处理方法,在消除干扰的同时利用波形分集能量的累积提高了距离欺骗式干扰下当前目标的跟踪和多目标的检测能力;在脉冲多普勒雷达在速度欺骗式干扰下,设计了一种新的对抗思路,通过脉问自适应调相使干扰假目标信号在被拖引目标多普勒范围形成保护凹口,从而不影响当前目标的检测,给出了脉间自适应调相的设计方法,提出了基于多通道相关处理的干扰机模式及参数提取方法,同时设计了欺骗式干扰下自适应对抗的工作流程,实现了大功率速度欺骗式干扰下的雷达自主对抗。
     [3]针对自适应多输入多输出(MIMO)雷达,采用模糊函数对收发共置和双基地两种形式的MIMO雷达的波形优化进行了研究。给出了收发共置MIMO雷达距离和角度分辨力,分析指出其匹配滤波器的峰值受到目标真实空域频率与假设空域频率之差的影响,输出旁瓣受到目标真实空域频率和假设空域频率共同影响,根据收发共置MIMO雷达的空域分辨力对其探测空域进行划分,提出了基于空域频率变化的收发共置自适应MIMO雷达正交波形设计方法,降低了匹配滤波器输出的峰值旁瓣电平;在研究双基地MIMO雷达距离速度模糊函数的基础上,推导了双基地MIMO雷达的距离和速度分辨力,提出了基于目标空间位置的双基地自适应MIMO雷达正交波形设计方法,通过频率编码信号码元宽度、码元个数与频率编码的联合优化设计,双基地MIMO频率编码雷达信号在保持所需距离速度分辨力的同时使相关输出的积分旁瓣电平最小化,克服了双基地MIMO雷达距离速度模糊函数随双基地角增大而分辨力下降的问题,该方法同样适用于多基地和组网雷达系统的性能优化。
     [4]针对MIMO波束形成技术,采用现代优化理论对MIMO雷达发射波束形成和匹配滤波波束形成技术进行了研究。将MIMO雷达的自适应发射方向图设计问题转化为半正定二次锥规划问题,提出了基于现代凸优化理论的发射互相关矩阵优化方法,使设计得到的方向图具有期望的主瓣形状和指定角度区域的最小化副瓣电平;针对MIMO雷达接收端通过匹配滤波波束形成进行数字多波束设计的问题,提出了一种新的匹配滤波波束形成模型,指出该模型中对MIMO雷达的发射端和接收端进行协同设计,即发射信号和波束形成滤波器的联合优化,可大大扩展MIMO雷达系统的自由度,给出了在MIMO雷达接收端进行数字多波束形成时发射信号和波束形成滤波器优化设计的目标函数和相应的优化方法,获得了比已有匹配滤波波束形成模型更好的方向图性能。
As an important diversity, waveform diversity (WD) technique has been an important development direction of the modern radar system. With this new diversity technique, the performance of detection, tracking and anti-jamming of radar can be optimized by altering its transmitted waveform, and at the same time it's difficult for enemy to perform electronic reconnaissance and jamming. The theory investigation of WD in adaptive radar system is of much theoretical and applicable significance in the exploitation of adaptive radar system and the improvement of the performance and anti-interference ability in future battlefield.
     In this thesis the theory and method of WD in adaptive radar system are investigated and main works are accomplished as follows:
     Firstly, basic principle of optimum matched illumination and reception is analyzed for the adaptive operation mode of alternative search and detection for radar. Extraction of multiple scattering points of the target and design method of optimum matched illumination transmitted waveform and the correspondence receiver are investigated based on phase-coded radar signal. It is considered that the apriori information obtained by recursive function can be used to adaptively suppress range sidelobes. An adaptive range sidelobe suppression algorithm based on recursive maximum signal-to-noise ratio (SNR) criteria is presented. Every scattering point of the target can be extracted reliably and complex amplitude of the scattering point can be accurately estimated. The accuate target model with multiple scattering points can be constructed. The matched illumination phase-coded signal design method based on conjugate gradient algorithm in phase domain is also investigated. The phase-coded radar signal derived by this algorithm approaches the optimum matched illumination signal and this algorithm enjoys fast convergence and small computation amount. The results show that matched illumination not only increases the SNR of the matched filter output, but also decreases the variation of the output SNR at different attitude of the target. Better and more stable detection performance can be obtained by adaptive radar system and this conclusion can be used for adaptive radar system design in future.
     Secondly, anti-jamming technique based on WD for countering active jamming, especially the narrow-band interference (NBI) and deception jamming, is studied. With the apioror information of the NBIs from other electronic systems, a new kind of phase-coded signal design method which minimizes the power spectrum in bands of the interference and the correspondence frequency domain processing method are proposed for foliage penetration ultra wide band radar (FOPEN UWBR). The synthesized signal has the approximatly ideal power spectrum and good range resolution and high peak sidelobe ratio (PSLR) after frequency domain mismatch processing. For target detection under deception jamming of range gate pull off (RGPO), a set of specified transmitted signals orthogonal in frequency and the correspondence processing method are presented to eliminate the jammer signal which is a copy of the transmitted radar signal. This method improves the target tracking and multiple target detection performance by WD. For target detection under synchronous range and velocity jamming, a novel anti-jamming method of removing deceiving decoys based on transmitted signals with adaptive random initial phases is studied. Adaptive random initial phases which can form a notch covering the Doppler frequency of the target make detection unaffected. The multi-channel auto correlation processing method is given to extract the manner the jammer operates and the parameters of the false targets. Work flow of a pulse Doppler radar is also designed. The simulation results show the anti-jaming capability of radar by itself for countering high power jamming.
     Thirdly, to optimize adaptive multiple-input multiple output (MIMO) radar performance, colocated and bistatic MIMO radar are studied based on ambiguity function. Range and spatial resolution of the collocated MIMO radar is given. It is shown that the peak value of the matched filter is affected by the difference of the real target and assumed spatial frequency and the sidelobe is determined by the real target and assumed spatial frequency. According to this property, an algorithm for adaptively designing orthogonal frequency-hopping waveforms according to the target spatial frequency is proposed. The search spatial region is divided into multiple sections by spatial resolution and waveforms are optimized to improve the peak sidelobe level (PSL) of the matched filter output for for the collocated MIMO radar. Characteristic of range-velocity ambiguity functioin of the bistatic MIMO radar is also analyzed, and range and velocity resolution of bistatic MIMO radar are deduced. An algorithm for adaptively designing orthogonal waveforms according to the target position is proposed. This algorithm jointly optimize the code width, the number of the code and code set of the frequency code waveforms and improves the range and velocity resolution and the integrated sidelobe level (ISL) of the matched filter output at the correspondence position. This method sloves the problem that the range and velocity resolution decreases with the increased bistatic angle, and can also be applied in performance optimization for multistatic and netted radar systems.
     Finally, transmit beamforming and matched filter beamforming are studied for MIMO radar based on modern optimization theory. The adaptive transmit beampattern design for MIMO radar is converted to a semi definite second order cone programming model. The cross-correlation matrix optimization method based on modern convex optimization theory is proposed. Simulation results show the synthesized beampattern can keep the main beam shape and minimize the sidelobe in specified angle section. Digitial multi-beam forming in MIMO radar receiver is also studied. A new matched filter beamforming model is proposed. In this model, the transmitter and receiver can be designed simultaneously by jointly optimizing the cross-correlation matrix of the transmitted signals and the beamformer, therefore greatly increasing the freedom degrees of MIMO radar system. The penalty fuction for multi-beam forming optimization design is built and the correspondence optimization method is given. Simulation results show that this method can obtain better beampattern than that derived by the original matched filter beamforming model.
引文
[1]张明友.雷达系统.第2版.北京:电子工业出版社,2006
    [2]费元春,苏广川,米红.宽带雷达信号产生技术.北京:国防工业出版社,2002
    [3]Drozd A. Waveform diversity and design. IEEE International Waveform Diversity and Design Workshop,2006
    [4]Wicks M C.A brief history of waveform diversity. IEEE International Radar Conference, 2009:328-333
    [5]Capraro G T, Bradaric I, Wicks M C. Waveform diversity and electronic compatibility. IEEE International Symposium on Electromagenetic Compatibility,2007:173-179
    [6]Garnham J W, Roman J R. Why and what is waveform diversity, and how does it affect electromagnetics. IEEE International Symposium on Electromagenetic Compatibility,2007: 180-183
    [7]Garnhan J W, Roman J R. How will waveform diversity affect electromagnetic compatibility. IEEE International Waveform Diversity and Design Conference,2007:98-101
    [8]Capraro G T, Wicks M C, Liuzzi R A. Artificial intelligence and waveform diversity. IEEE International Conference on Integration of Knowledge Intensive Multi-Agent Systems, 2003:270-274
    [9]吴顺君,梅晓春.雷达信号处理和数据处理技术(雷达技术丛书).北京:电子工业出版社,2008
    [10]Widrow B. Adaptive antenna system. IEEE International Radar Conference,1967: 2143-2158
    [11]黄振兴,张明友.自适应阵列处理进展.成都:四川科学技术出版社,1991
    [12]Brenna L E, Mallett J D, Reed I S. Theory of adaptive radar. IEEE Transactions on Aerospace and Electronic Systems,1973,9(2):237-251
    [13]Reed I S, Mallett J D, Brennan L E. Rapid convergence rate in adaptive arrays. IEEE Transactions on Aerospace and Electronic Systems,1974,10(6):853-863
    [14]保铮.机载雷达空时二维信号处理.现代雷达,1994,16(1):38-48
    [15]周文辉.相控阵雷达及组网跟踪系统资源管理技术研究[博士论文].长沙:国防科技大学,2004
    [16]Simon Haykin. Radar vision. IEEE International Radar Conference,1994:585-588
    [17]Simon Haykin. Adaptive radar:evolution to cognitive radar. IEEE International Symposium on Phased Array Systems and Technology,2003:613-616
    [18]Simon Haykin. Cognitive radar. IEEE Signal Processing Magazine,2006,23(1):30-40
    [19]汪学刚,张明友.现代信号理论.第2版.北京:电子工业出版社,2005
    [20]Kainam T W. Adaptive pulse-diverse radar/sonar waveform design. IEEE Transactions on Aerospace and Electronic Systems,1998,34(3):105-110
    [21]Chang C F, Bell M R. Frequency-coded waveforms for enhanced delay-Doppler resolution. IEEE Transactions on Information Theory,2003,49(11):2960-2971
    [22]Philip G G, Joseph R G. Optimum matched illumination-reception radar. U.S. Patent No.5175552,1992
    [23]Joseph R, Guerci J R, Robert W. Constrained optimum matched illumination-reception radar. U.S. Patent No.5146229,1992
    [24]Pillai S U, Oh H S, Guerci J R. Multichannel matched transmit-receiver design in presence of signal-dependent interference and noise. IEEE International Radar Conference, 2000:385-389
    [25]Joseph R, Guerci S. Theory and application of optimum transmit-receive radar. IEEE International Radar Conference,2000:705-710
    [26]Garren D A, Osborn M K, et cl. Enhanced target detection and identification via optimized radar transmission pulse shape. IEE proceedings of Radar, Sonar, Navigation,2001, 148(3):130-138
    [27]李建雷.频率编码脉冲信号研究[硕士论文].成都:电子科技大学,2007
    [28]Brandsetter R W, Schwarz J, Seidon A. Adaptive spread spectrum radar. U.S. Patent No. 4679048,1987
    [29]Soumekh M, Buffalo S. SAR-ECCM using phase-perturbed LFM chirp signals and DRFM repeat jammer penalization. IEEE Transactions on Aerospace and Electronic Systems, 2006,42(1):191-205
    [30]Lin K. Anti-jamming MTI radar using variable pulse-codes[硕士论文]. Massachusetts Institute of Technology,2002
    [31]董臻,李伟,梁甸农.基于发射信号随机初相结合调频率极性捷变的SAR抗干扰方法.信号处理,2008,24(3):487-490
    [32]李伟,梁甸农,董臻.一种捷变调频斜率极性和限幅相结合的SAR抗干扰方法.遥感学报,2007,11(2):171-176
    [33]Fishler E, Haimovich A, Blum R S. Spatial diversity in radar-models and detection performance. IEEE Transactions on Signal Processing,2006,54(3):823-838
    [34]保铮,张庆文.一种新型的米波雷达——综合脉冲与孔径雷达.现代雷达,1995,17(1):1-13
    [35]Tabrikian J. Bounds for target localization by MIMO radars. Fourth IEEE workshop on Sensor Array and Mulitchannel Processing,2006,1:278-281
    [36]Rabideau D J, Parker P, Rabideau D. Ubiquitous MIMO digital array radar.37th IEEE Asilomar Conference on Signals, Systems and Computers,2003:1057-1064
    [37]Fletcher A S, Robey F C. Performance bounds for adaptive coherence of sparse array radar. Proceeding of the 1 1th Conference on Adaptive Sensors Array Processing,2003.
    [38]Bekkerman I, Tabrikian J. Target detection and localization using MIMO radars and sonars. IEEE Transactions on Signal Processing,2006,54(10):3873-3883
    [39]Bekkerman I, Tabrikian J. Spatially coded transmission for active arrays. IEEE International Conference on Acustics, Speech, Signal Processing,2004,2:209-212
    [40]Tabrikian J, Bekkerman I. Transmission diversity smoothing for multi-target localization. IEEE International Conference on Acustics, Speech, Signal Processing,2005,4:1041-1044
    [41]Sammartino P F. Target model effects on MIMO radar performance. IEEE International Conference on Acustics, Speech, Signal Processing,2006,5:1127-1129
    [42]Khan H A, Malik W Q, Edwards D J. Ultra wideband multiple-input multiple-output radar. IEEE International Radar Conference,2005,1:900-904
    [43]Fishler E, Haimovich A, Blum R. MIMO radar:an idea whose time has come. IEEE International Radar Conference,2004,1:71-78
    [44]Deng H. Discrete frequency-coding waveform design for netted radar systems. IEEE Signal Processing Letters,2004,11(2):179-182
    [45]Deng H. Poly-phase code design for orthogonal netted radar system. IEEE Transactions on Signal Processing,2004,52(11):3126-3135
    [46]Khan H A, Edwards D J. Doppler problems in orthogonal MIMO radars. IEEE International Radar Conference,2006,1:24-27
    [47]Yang Y, Blum R S. Waveform design for MIMO radar based on mutual information and minimum mean-square error estimation.40th Annual Conference on Information Sciences and Systems,2006,1:111-116
    [48]Yang Y, Blum R S. MIMO radar waveform design based on mutual information and minmum meansquare error estimation. IEEE Transactions on Aerospace and Electronic Systems,2007,43:330-343
    [49]Chen C Y, Vaidyanathan P P. MIMO radar ambiguity properties and optimization using frequency-hopping waveforms. IEEE Transactions on Signal Processing,2008,56(12): 5926-5936
    [50]Chen C Y, Vaidyanathan P P. Joint MIMO radar waveform and receiving fitler optimization. IEEE International Conference on Acoustics, Speech, Signal Processing (ICASSP),2009:2073-2076
    [51]Xu L, Li J, Stoica P. Adaptive techniques for MIMO radar. Fourth IEEE Workshop on Sensor Array and Multi-Channel Processing,2006:258-262
    [52]Li J, Xu L, Stoica P. Range compression and waveform optimization for MIMO radar:a cramer-rao bound based study. IEEE Transactions on Signal Processing,2008,56(1): 218-232
    [53]De Maio. Design Principles for MIMO radar receivers. IEEE Transactions on Aerospace and Electronic Systems,2007,43(3):886-898
    [54]Fuhrmann D R, Antonio G S. Transmit beamforming for MIMO radar systems using sptial signal correlation. IEEE Asilomar Conference on Signals, Systems and Computers, 2004:295-299
    [55]Stoica P, Li J, Xie Y. On probing signal design for MIMO radar. IEEE Transactions on Signal Processing,2006,54(10):4151-4161
    [56]Forsythe K W, Bliss D W. Waveform correlation and optimization issues for MIMO radar.39th International Conference on Signals, Systems and Computers,2006,1:1306-1310
    [57]黄培康,殷红成等.雷达目标特性.北京:电子工业出版社,2005.
    [58]Sciacca U. Detection and identification of range spread targets with adaptive high resolution radar [博士论文]. La Sapienza:University of Rome,1989
    [59]Cantoni M. Optimized processing of radar signals for detection of range-extended and fluctuating targets [博士论文]. La Sapienza:University of Rome,1991
    [60]Garren D A, Odom A C, Osborn M K, Goldstein J S, Pillai S U, Guerci J R.Full-polarization matched illumination for target detection and identification. IEEE Transactions on Aerospace and Electronic Systems,2002,38(3):1-3
    [61]Garren D A, Odom A C, Osborn M K. Optimized target detection and identification using full-polarization radar waveforms, IEEE International Conference on Waveform Diversity and Design,2004:103-106
    [62]Farina A, Studer F A. Detection with high resolution radar:advanced topics and potential applications. Chinese Journal of System Engineering and Electronics,1992,3(1):21-33
    [63]Li J, Guerci J R, and Xu L. Signal waveform's optimal under restriction design for active sensing. IEEE Signal Processing Letters,2006,13(9):565-568
    [64]Pillai S U, Oh H S, Youla D C. Optimal transmit-receiver design in the presence of signal-dependent interference and channel noise. IEEE Transactions on Information Theory, 2000,46(2):577-584
    [65]Kay S. Optimal signal design for detection of Gaussian point targets in stationary Gaussian clutter/reverberation. IEEE Journal of Selected Topics in Signal Processing,2007, 1(1):31-41
    [66]Holtzman J C, Thorp J S. Optimum signals for radar. IEEE Transactions on Aerospace and Electronic Systems,1969,5(6):898-905
    [67]阿方索法里纳,弗拉维奥阿斯图德.高分辨雷达检测——预研课题和潜在应用.系统工程与电子技术,11(1):1-9
    [68]Bell M R. Information theory and radar waveform design. IEEE Transactions on Information Theory,39(5):1578-1597
    [69]Sato R, Shinrhu M. Simple mismatched filter for binary pulse compression code with small PSL and small S/N loss. IEEE Transactions on Aerospace and Electronic Systems,2003, 39(2):711-718
    [70]Zrnic B, Zejak A. Range sidelobe suppression for pulse compression radars utilizing modified RLS algorithm. IEEE 5th International Symposium on Spread Spectrum Techniques and Applications,1998,3:1008-1011
    [71]Hai D. Effective CLEAN algorithms for performance-enhanced detection of binary coding radar signals. IEEE Transactions on Signal Processing,2004,52(1):72-78
    [72]Bose R, Freedman A, Steinberg B D. Sequence CLEAN:A modified deconvolution technique for microwave imaging of contiguous targets. IEEE Transactions on Aerospace and Electronic Systems,2002.38(1):89-97
    [73]Shackelford A K, Graaf D J, Talapatra S, Shannon D B. Adaptive pulse compression: preliminary experimental measurements. IEEE International Radar Conference,2007: 234-237
    [74]Blunt S D, Gerlach K. Adaptive pulse compression via MMSE Estimation. IEEE Transactions on Aerospace and Electronic Systems,2006,42(2):572-584
    [75]Shannon D B, Karl G. A generalized formulation for adaptive pulse compression of multi-static radar. IEEE Sensor Array and Multichannel Signal Processing,2006:349-353
    [76]Shannon D B, Karl G. Multi-static adaptive pulse compression. IEEE Transactions on Aerospace and Electronic Systems,2006,42(3):891-903
    [77]Blunt S D, Gerlach K. Adaptive pulse compression. IEEE Interantional Radar Conference,2004:271-276
    [78]沈福民.自适应信号处理.西安:西安电子科技大学出版社,2001
    [79]徐仲.矩阵论简明教程.北京:科学出版社,2006
    [80]Smith S T. Optimum phase-only adaptive nulling. IEEE Transactions on Signal Processing,1999,47(7):1835-1843
    [81]飞思科技产品研发中心.MATLAB6.5辅助优化计算与设计.北京:电子工业出版社,2003
    [82]皮亦鸣,杨建宇等.合成孔径雷达成像原理.成都:电子科技大学出版社,2007
    [83]Zhou F, Wu R, Xing M. Eigensubspace-based filtering with application in narrow-band interference suppression for SAR. IEEE Geoscience and Remote Sensing Letters,2007,4(1): 75-79
    [84]Jin T, Zhou Z M. UWB SAR RFI suppression based on region of support in 2-D wave-number domain. Journal of Electronics,2007,24(4):503-508
    [85]周峰,李亚超,邢孟道.利用改进的LMS算法抑制时变SAR窄带干扰的研究.电波科学学报,2007,22(5):722-727
    [86]罗振东,高宏,刘元安.抑制多窄带干扰的超宽带脉冲设计方法.北京邮电大学学报,2005,28(1):55-58
    [87]Wang M, Yang S Y, Wu S J. A GA-based UWB pulse waveform design method. Digital Signal Processing,2008,18(1):65-74
    [88]Lindenfeld M J. Sparse frequency transmit and receive waveform design. IEEE Transactions on Aerospace and Electronic Systems,2004,40(3):851-860
    [89]Maio A D, Farina A. Code selection for radar performance optimization. IEEE International Waveform Diversity and Design Conference,2007:216-223
    [90]武剑辉,贺知明,向敬成.频域处理的二相编码信号旁瓣抑制技术研究.电子与信息学报.2002,24(11):1614-1619
    [91]张永顺,童宁宁,赵国庆.雷达电子战原理.北京:国防工业出版社.2006
    [92]陈明辉,王雪松,冯德军等.相控阵雷达距离波门拖引干扰效果仿真研究.电子对抗,2003,6:29-34
    [93]宋军,王国宏.χ2检验方法和DF方法抗距离拖引干扰的性能比较.舰船电子工程,2004,24(4):106-110
    [94]代大海,王雪松,肖顺平等.PolSAR有源假目标干扰的鉴别与对消.电子学报,2007,35(9):1779-1783
    [95]杜江凌,林茂庸.脉间码捷变相位编码脉压雷达波形设计.北京理工大学学报,1987,(1):47-55
    [96]Soumekh M, Buffalo S. SAR-ECCM using Phase-perturbed LFM chirp signals and DRFM repeat jammer penalization. IEEE Transactions on Aerospace and Electronic Systems, 2006,42(1):191-205
    [97]罗涛,乐光辉.多天线无线通信原理与应用.北京:北京邮电大学出版社.2005
    [98]Alamouti S M. A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications,1998,16(8):1451-1458
    [99]Levanoh N, Mozeson E. Radar signals. A John Wiley & Sons, Inc. Publications,2004
    [100]王跃鹏,黄建冲.对PD雷达进行距离和速度波门同步拖引的DRFM实现方法.电子对抗,20(5):15-19
    [101]刘平,鲍庆龙,陈曾平.一种对抗PD雷达的假目标欺骗干扰机设计.现代雷达,2007,29(4):9-16
    [102]Soumekh M, Buffalo S. SAR-ECCM using phase-perturbed LFM chirp signals and DRFM repeat jammer penalization. IEEE Transactions on Aerospace and Electronic Systems, 2006,42(1):191-205
    [103]Akhtar J. An ECCM scheme for orthogonal independent range-focusing of real and false Targets. IEEE International Radar Conference,2007:846-849
    [104]Sun M, Tang B. Using polynomial phase signal modeling against range flase targets. The Eighth International Conference on Electronic Measurement and Instruments,2007: 712-716
    [105]Bliss D W, Forsythe K W. Multiple-input Multiple-output (MIMO) radar and imaging: Degrees of freedom and resolution.37th IEEE Asilomar Conference on Signals, Systems and Computers,2003,1:54-59
    [106]Fishler E, Haimovich A, Blum R S. Performance of MIMO radar systems:Advantages of angular diversity.38th IEEE Asilomar Conference on Signals, Systems and Computers, 2004:305-309
    [107]Robey F C, Coutts S, Weikle D. MIMO radar theory and experimental results.38th IEEE Asilomar Conference on Signals, Systems and Computers,2004:300-304 [108] Li J, Stoica P. MIMO radar with colocated antennas. IEEE Signal Processing Magazine, 2007,24(5):106-114
    [109]Antonion G S, Fuhrmann D R, Robey F C. MIMO radar ambiguity function, IEEE Journal of Selected Topics in Signal Processing,2007,1(1):167-177
    [110]Tsao M, Slamani T, Varshney P. Ambiguity function for a bistatic radar. IEEE Transactions on Aerospace and Electronic System,1997,133(6):1041-1051
    [111]刘波.MIMO雷达正交波形设计及信号处理研究[博士论文].成都:电子科技大学,2009
    [112]Daum F, Huang J. MIMO radar:snake oil or good idea? IEEE Aerospace and Eletronic Systems Magazine,2009,24(5):8-12.
    [113]Fuhrmann D R, Antonio G S. Transmit beamforming for MIMO radar systems using spatial signal correlation.38th IEEE Asilomar Conference on Signals, Systems and Computers,2004:295-299
    [114]Stocia P, Li J, Zhu X M. Waveform synthesis for diversity-based transmit beampattern design. IEEE Transactions on Signal Processing,2008,56(6):2593-2598
    [115]Chen C Y, Vaidyannathan P P. MIMO radar waveform optimization with prior information of the extended target and clutter. IEEE Transactions on Signal Processing,2009, 57(9):3533-3544
    [116]何子述,韩春林,刘波.MIMO雷达概念及其技术特点分析.电子学报,2005,33(12A):2441-2445
    [117]Fishler E, Haimovich A, Blum B. Spatial diversity in radars-models and detection performance. IEEE Transactions on Signal Processing,2006,3(54):823-838
    [118]Antonio G S, Fuhrmann D R. Beampattern synthesis for wideband MIMO radar systems. Proc.1st IEEE Int. Work. CAMSAP, Puerto Vallarta, Mexico,2005:105-108
    [119]Friedlander B. Waveform design for MIMO radars. IEEE Transactions on Aerospace and Electronic Systems,2007,43(3):1227-1238
    [120]Simon Haykin. Literature research on adaptive radar transmit waveforms. Adaptive Systems Laboratory Technical Report,2002
    [121]Leshem. Information theoretic adaptive radar waveformdesign for multiple extended targets. IEEE Journal of Selected Topics in Signal Processing,2007,1(1):42-55
    [122]Sira P. Adaptive waveform design for improved detection of low-RCS targets in heavy sea clutter. IEEE Journal of Selected Topics in Signal Processing,2007.1(1):56-66
    [123]Goodman. Adaptive waveform design and sequential hypothesis testing for target recognition with active sensors. IEEE Journal of Selected Topics in Signal Processing,2007, 1(1):105-113
    [124]Friedlander. A subspace framework for adaptive radar waveform design. IEEE International Radar Conference,2005:1135-1139
    [125]Yang Y. Minimax robust MIMO radar waveform design. IEEE Journal of Selected Topics in Signal Processing,2007,1(1):147-155
    [126]Kirubarajan. Simulation results on adaptive transmit waveform(final report).2003
    [127]Liang Q L. Algorithms for waveform design and diversity with application to ATR with delay-Doppler uncertainty. EURASIP Journal on Wireless Communications and Networking, 2007:1-9
    [128]Antonik P, Wicks M C, Griffiths H D. Multi-mission multi-mode waveform diversity. IEEE International Radar Conference.2006:580-582
    [129]Gumas S, Himed B. Computationally efficient waveform diversity. IEEE International Waveform Diversity and Design Coference,2007:400-406
    [130]Zulch P A, Hancock R H, Moran W, et al. Transmit waveform diversity for space based radar. IEEE Aerospace Conference,2006:2205-2214
    [131]Tseng S M, Tseng D F, Huang G F, et al. A realization of diversity waveform sets for delay-Doppler imaging. IEEE Asia-Pacific Conference on Circuits and Systems,2004: 237-240
    [132]Ertans S, Griffiths H D, Wicks M C. Bistatic radar denial by spatial waveform diversity. IEEE International Radar Conference,2002:17-21
    [133]Bell M R, Monrocq S. Diversity waveform signal processing for delay-Doppler measurement and imaging. Defence Applications of Signal Processing Workshop,2002: 329-346
    [134]Capararo G T, Wicks M C, Szcazepanski W E. Waveform diversity and knowledge based signal processing in distributed radar. IEEE International Radar Conference,2009: 279-284
    [135]Mendelson H, Zulch P. Mitigation of radar range ambiguities via waveform diversity. IEEE International Waveform Diversity and Design Coference,2009:218-223
    [136]Krieger G, Gebert N, Younis M. Advanced synthetic aperture radar based on digital beamforming and waveform diversity. IEEE International Radar Conference,2008: 1036-1041
    [137]Greco M, Gini F, Stinco P. Adaptive waveform diversity for cross-channel interfrenece mitigation. IEEE International Radar Conference,2008:1173-1178
    [138]Lee N, Chun J. Orthogonal pulse compression code design for waveform design in multistatic radar systems. IEEE International Radar Conference,2008:1954-1959
    [139]Yang Y, He Z S, Xia W. Waveform design for MIMO radar using kronecker structured matrix estimation.11th IEEE Signapore International Conference on Communication Systems,2008:19-21
    [140]Picciolo M L, Griesbach J D, Goldstein J S. Adaptive niose waveform design for radar. 13th IEEE Digital Signal Processing Workshop,2009:451-456
    [141]Li Y, Moran W, Sira S P. Adaptive waveform design in rapidly-varying radar scenes. IEEE International Waveform Diversity and Design Coference,2009:263-267
    [142]Naghibi T, Behnia F. Convex optimization and MIMO radar waveform design in the presence of clutter.2nd International Conference on Signals, Circuits and Systems,2008: 18-23
    [143]Patton L K, Rigling B D. Modulus constraints in adaptive radar waveform design. IEEE International Radar Conference,2008:186-191
    [144]Sbuotic N S, Thelen B, Cooper K. Distributed radar waveform design based on compressive sensing considerations. IEEE International Radar Conference,2008:1408-1413
    [145]Friedlander B. On data-adaptive waveform design for MIMO radar.41st Asilomar Conference on Signals, Systems and Computers,2007:187-191
    [146]Friedlander B. Waveform design for MIMO radar with space-time constraints.41st Asilomar Conference on Signals, Systems and Computers,2007:2168-2172
    [147]Jiang S Y, Jin Z X, Hua Z W. The design of waveform-generation applied to wide-band high resolution imaging radar.1st Asian and Pacific Conference on Synthetic Aperture Radar Proceedings,2007:588-591
    [148]Yang Y. Minimax robust waveform design for MIMO radar in the presence of PSD uncertainties.41st Annual Conference on Information Science and Systems,2007:154-159
    [149]Liang J, Liang Q L. Orhthogonal waveform design and performance analysis in radar sensor networks. IEEE Military Communicaitons Conference,2006:23-25
    [150]Friedlander B. Adaptive waveform design for a multi-antenna radar system.40th Asilomar Conference on Signals, Systems and Computers,2006:735-739
    [151]Leshem A, Naparstek O, Nehorai A. Adaptive radar waveform design for multiple targets:Computational aspects.32nd IEEE International Conference on Acoustics, Speech and Signal Processing,2007:909-912
    [152]Rohling H. Some radar topics:waveform design, range CFAR and target recognition. Coference of the NATO Advanced-Study-Institute on Adavances in Sensing with Security Applications,2005:293-322
    [153]Tao H H. Su T, Liao G S. Bi-phase encoded waveform design to deal with the range ambiguities for sparse space-based radar systems.1st International Conference on Natural Compuation,2005:893-902
    [154]Rohling H, Meinecke M M. Waveform design principles for automotive radar systems. CIE International Radar Conference,2001:1-4
    [155]Wang N E, Zhang Y G, Wu S J. Radar waveform design and target detection using wavelets. CIE International Radar Conference,2001:506-509
    [156]Griffiths H D, Vinagre L, Lee W K. Developments in radar waveform design.12th International Conference on Microwave and Radar,1998:A56-A76
    [157]Patton L K, Rigling B D. Autocorrealtion and modulus constraints in radar waveform optimization. IEEE International Waveform Diversity and Design Coference,2009:150-154
    [158]Bliss D W, Forsythe K W, Richmond C D. MIMO radar:Jiont array and waveform optimization.41st Asilomar Conference on Signals, Systems and Computers,2007:207-211
    [159]Xu L Z, Li J, Stoica P. Waveform optimization for MIMO radar:A cramer-rao bound based study.32nd IEEE International Conference on Acoustics, Speech and Signal Processing, 2007:917-920
    [160]Skolnik. Introduction to radar systems. McGraw-Hill,2001.
    [161]Haykin S. Adaptive filter theory. Prentice Hall,2002
    [162]Shannon. Adaptive pulse compression via MMSE Estimation. IEEE Transactions on Aerospace and Electronic Systems,2006,42(2):572-237
    [163]Kershaw. Optimal waveform selection for tracking systems. IEEE Transactions on Information Theory,1994:1536-1550
    [164]Bar-Shalom. Optimization of waveform and detection threshold for range and range-rate tracking in clutter. IEEE Transactions on Aerospace and Electronic Systems,2005,41(1): 17-32
    [165]Fitzgerald. Effects of range-Doppler coupling on chirp radar tracking accuracy. IEEE Transactions on Aerospace and Electronic Systems,1974,10(4):528-532.
    [166]Suvorova S. Multi step ahead beam and waveform scheduling for tracking of maneuvering targets in clutter. IEEE International Conference on Acoustics, Speech and Signal Processing,2005,5:18-23
    [167]Kershaw. Waveform selective probabilistic data association. IEEE Transaction on Aerospace and Electronic Systems,1997,33:1180-1188
    [168]Suvorova S. Waveform libraries for radar tracking application:maneuvering targets. 40th Annual Conference on Information Sciences and Systems,2006:1424-1428
    [169]Alabaster. Medium PRF radar PRF selection using evolutionary algorithms. IEEE Transactions on Aerospace and Electronic Systems,2003,39(3):990-1001
    [170]Wiley.Performance comparison of PRF schedules for medium PRF radar. IEEE Transactions on Aerospace and Electronic Systems,2006,42(2):601-611
    [171]Davies. Medium PRF set selection using evolutionary algorithms. IEEE Transactions on Aerospace and Electronic Systems,2002,38(3):933-939
    [172]Abatzoglou. Range, radial velocity, and acceleration MLE using radar LFM pulse train. IEEE Transactions on Aerospace and Electronic Systems,1998,34(4):1070-1084
    [173]Sira. Adaptive waveform design for improved detection of low-RCS targets in heavy sea clutter. IEEE Journal of Selected Topics in Signal Processing,2007,1(1):56-66