医用钛表面改性及其抗菌性和生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛具有良好的生物相容性,被广泛用作硬组织替换材料。但是,钛是生物惰性材料,植入人体内易被当做异物。对医用钛进行表面改性,赋予医用钛理想的耐腐性能、生物活性和抗菌性,可有效改善其植入效果。本论文利用银/氮二元离子注入对钛进行表面改性,探查了银/氮二元离子注入顺序对钛表面的纳米硬度、耐腐能力和抗菌能力的影响。结合水热法和等离子体浸没离子注入技术,对医用钛进行表面改性,探查了改性钛表面的纳米结构、生物活性、抗菌性能和细胞相容性。此外,初步探讨了溶胶凝胶法制备聚乳酸(PLA)/CaO-Si02复合薄膜的生物活性和生物相容性。取得的主要研究成果如下:
     1.利用等离子体浸没离子注入技术将银/氮二元离子按不同顺序(即先银后氮、先氮后银和银氮共注)注入钛的表面。银/氮二元离子注入钛表面的银以单质形式存在,而氮以氮化钛的形式存在。不同的银/氮二元注入顺序对改性后钛的耐腐性、纳米硬度和抗菌性能均有影响。银/氮二元离子共注钛表面的耐腐性能和硬度均优于先氮后银和先银后氮注入钛表面,这是因为银/氮二元共注导致的热效应使钛表面生成的氮化层最厚。银/氮二元注入样品对大肠杆菌和金黄色葡萄球菌均具有良好的抗菌作用。细胞实验表明,银/氮二元注入样品对细胞没有明显毒性,且有利于细胞的增殖和分化。
     2.采用双氧水水热法在钛表面预先构建元素主要成份为Ti和O的不同纳米结构。利用等离子体浸没离子注入技术将银负载在双氧水水热处理钛表面,注银后样品表面纳米结构仍然保留完好。相对于纯钛片,注银前后钛基材的耐腐能力均获得了明显的改善。模拟体液浸泡实验显示,注银前后钛表面均具有良好的生物活性。注银样品对大肠杆菌和金黄色葡萄球菌繁殖具有明显抑制作用,显示出良好的抗菌性。细胞毒性实验表明,水热处理72小时钛表面注银前后对小鼠成骨细胞的繁殖和分化均具有良好的促进作用。
     3.以氢氧化钠和双氧水作为反应介质,在钛表面构建了四种纳米结构,采用等离子体浸没离子注入技术将银负载在纳米结构表面。模拟体液浸泡实验显示,注银前后钛表面均显示良好的生物活性。注银表面对大肠杆菌和金黄色葡萄球菌均具有良好的抗菌能力。细胞毒性实验表明,除氢氧化钠水热处理并注银样品外,其它三种水热处理并注银钛表面对小鼠成骨细胞的增殖和分化具有较好的促进作用。
     4.制备了不同比例的PLA/CaO-Si02多孔复合薄膜。在模拟体液浸泡7天的薄膜表面形成环状结构的类骨磷灰石层,显示良好生物活性。随着CaO-SiO2含量增加,复合薄膜表面微孔的孔径变小,薄膜表面zeta电位变负,诱导类骨磷灰石沉积的能力增强;MTT实验证实复合薄膜对MG-63细胞没有毒性且有利于细胞的增殖。
Titanium has been widely used as hard tissue implant material because of its good biocompatibility. However, titanium implant in human body is often repulsed as a foreign object due to its bioinertia. Thus, it is necessary to carry out surface modification for titanium to obtain implant with ideal performances on corrosion resistance, bioactivity and antibacterial ability. In this work, titanium surface was modified by sliver (Ag) and nitrogen (N) dual ions implantation, the depending properties of titanium, such as corrosion resistance, hardness and antibacterial ability, on Ag/N dual ion implantation sequence was investigated. To enhance the bioactivity and antibacterial activity, titanium was treated by surface modification combining chemical method (hydrothermal method) and physical method (plasma immersion ion implantation), and then its microstructure, bioactivity, antibacterial ability and cell cytotoxicity were studied. The poly (Lactic Acid)(PLA)/CaO-SiO2composite membranes were synthesized by sol-gel method, and the bioactivity and biocompatibilty of these composite membranes were examined. The results obtained are described as follows:
     1. Silver (Ag) and nitrogen (N) dual ions were sequentially implanted into titanium via plasma immersion ion implantation (PⅢ) technology at different implantation sequence, including PIII-Ag-N (Ag ions prior to N implantation), PIII-N-Ag (N prior to Ag ions implantation) and PIII-Ag+N (Ag/N dual ions co-implantation). Sliver and nitrogen in all modified titanium were existence of metallic sliver and titanium nitride. The Ag/N dual ions implantation sequences play an important role on the corrosion resistance and hardness of the modified samples. The results showed that the properties of samples via Ag/N dual ion co-implantation mentioned above are better than PⅢ-Ag-N and PⅢ-N-Ag, which is ascribed to the thickness of titanium nitrogen layer caused by thermal spikes effect during implantation process. The antibacterial experiments indicated Ag/N dual ions implanted titanium exhibit high antibacterial ability against Escherichia coli and Staphylococcus aureus. The cytotoxicity experiments showed the Ag/N dual ions implanted titanium can promote cell proliferation.
     2. Hydrogen peroxide hydrothermal method was used to modify the surface of titanium plates. The nanostructural layer consisting of Ti and O was formed on the surface of hydrothermal-treated titanium. Then, sliver was introduced into hydrothermal-treated titanium by plasma immersion ion implantation. The surface morphology of titanium as above can be remained at nano-scale level after Ag ion implantation. The corrosion resistance of hydrothermal-treated titanium before and after Ag ion implantation is better than pure titanium, while the SBF test also indicated these samples before and after sliver ion implantation exhibit well bioactivity. The Ag ion implanted samples exhibit well antibacterial ability against Escherichia coli and Staphylococcus aureus. The hydrothermal-treated titanium samples before and after Ag ion implantation are of good cytocompatibility.
     3. Titanium plates were hydrothermal treated in a mixture solution of hydrogen peroxide and sodium. Silver was introduced into the hydrothermal-treated titanium by plasma immersion ion implantation. The SBF test indicated the hydrothermal-treated titanium before and after sliver ion implantation exhibit good bioactivity. The Ag implanted into titanium pretreated by hydrothermal method exhibited well antibacterial ability against Escherichia coli and Staphylococcus aureus, and can promote cell proliferation except the samples pretreated by sodium hydroxide solution.
     4. A novel porous PLA/CaO-SiO2(nSiO2/nCao=1) composite membrane is synthesized by sol-gel method. After soaked in simulated body fluids for7days, the surfaces of the PLA/CaO-SiO2composite membranes are covered by apatite layer with orderly ring structure. With the increase of CaO-SiO2content in the composite membrane, the size of the pores on the surface of composite membrane becomes smaller, the surface zeta potentials decreases and the bioactivity become better. MTT experiments showed the composite membranes are not of cytotoxcity to MG-63cells and support cell proliferation.
引文
[1]Textor M, Sittig C, Frauchiger V, Tosatti S, et al. Titanium in Medicine. Berlin: Springer,2001,171-230
    [2]刘宣勇.生物医用钛材料及其表面改性.第一版.北京:化学工业出版社2009
    [3]金宗哲.无机抗菌材料及应用.第一版.北京:化学工业出版社,2004
    [4]苑春.载银二氧化钛复合微粉的制备及抗菌性能表征:[中南大学硕士学位论文].长沙:中南大学,2005
    [5]Stigter M, Bezemer J, D Groot K, et al. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy. Journal of Control Release,2004,99 (1):127-137
    [6]李宝娥.表面抗菌生物活性涂层的制备和表征:[中国科学院上海硅酸盐研究所博士学位论文].上海:中国科学院上海硅酸盐研究所,2008
    [7]Kozlovsky A, Artzi Z, Moses O, et al. Interaction of chlorhexidine with smooth and rough types of titanium surfaces. Journal of Periodontology Online,2006, 77 (7):1194-1200
    [8]Barbour M E, O'Sullivan D J, Jagger D C. Chlorhexidine adsorption to anatase and rutile titanium dioxide. Colloids and Surface A:Physicochemical and Engineering Aspects,2007,307 (1-3):116-120
    [9]Berger J, Spadaro J A, Chapin S E, et al. Electrically generated silver ions: Quantitative effects on bacterial and mammalian cells. Antimicrobial Agents and Chemotheraphy,1976,9:357-358
    [10]Ince A, Schutze N, Hendrich C, et al. Effect of polyhexanide and gentamycin on human osteoblasts and endothelial cells. Swiss Med Wkly,2007,137:139-145
    [11]Harris L G, Mead L, Muller-Oberlander E, et al. Bacteria and cell cytocompatibility studies on coated medical grade titanium surfaces. Journal of Biomedical Materials Research Part A,2006,78A (1):50-58
    [12]Berger T J, Spadaro J A, Chapin S E, Becker R O. Electrically generated silver ions:Quantitative effects on bacterial and mammalian cells. Antimicrobial Agents and Chemotheraphy,1976,9:357-358
    [13]Melaiye A Y W. Silver and its application as an antimicrobial agent. Expert Opinion on Therapeutic Patents,2005,15 (2):125-130
    [14]Percival S L, Bowler P G, Russell D. Bacterial resistance to silver in wound care. Journal of Hospital Infection,2005,60 (1):1-7
    [15]Bosetti M, Masse A, Tobin E, et al. Silver coated materials for external fixation devices:In vitro biocompatibilityand genotoxicity. Biomaterials,2002,23 (3): 887-892
    [16]Hardes J, Ahrens H, Gebert C, et al. Lack of toxicological side-effects in silvercoated megaprostheses in humans. Biomaterials,2007,28 (18) 2869-2875
    [17]Gosheger G, Hardes J, Ahrens H, et al. Silver-coated megaendoprostheses in a rabbit model-an analysis of the infection rate and toxicological side effects. Biomaterials,2004,25 (24):5547-5556
    [18]Wan Y Z, Raman S, He F, et al, Surface modification of medical metals by ion implantation of sliver and copper. Vacuum,2007,81 (9):1114-1118
    [19]Ewald A, Gluckermann S K, Thull R, et al. Antimicrobial titanium/silver PVD coatings on titanium. Biomedical Engineering Online,2006,5:22-26
    [20]Chen W, Liu Y, Courtney H S, et al. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials,2006,27 (32):5512-5517
    [21]Feng Q L, Wu J, Chen G Q, et al. A mechanistic study of the antibacterial effect of sliver ions on Escherichia coil and Staphyococcus. Journal of Biomedical Materials Research,2000,52:662-668
    [22]Kawashita M, Tsuneyama S, Miyaji F, et al. Antibacterial silver-containing silica glass prepared by sol-gel method. Biomaterials,2000,21 (4):393-398
    [23]Chen S P, Wu G Z, Zeng H Y. Preparation of high antimicrobial activity thiourea chitosan-Ag+ complex. Carbohydrate Polymers,2005,60(1):33-38
    [24]墙薇,倪红卫,幸伟,谢中,魏勇.银的抗菌作用机理.武汉科技大学学报(自然科学版),2007,30(2):220-223
    [25]黄占杰.无机抗菌剂的发展与应用.材料导报,1999,13(2):35-37
    [26]Balamurugan A, Balossier G, Laurent-Maquin D, et al. An in vitro biological and anti-bacterial study on a sol-gel derived silver-incorporated bioglass system. Dental Materials,2008;24 (10):1343-1351
    [27]Sokmen M, Candan F, Sumer Z. Disinfenction of E.coli by the Ag-TiO2/UV system:lipidperoxidation. Journal of Photochemistry and Photobiology A: Chemistry,2011,143:241-242
    [28]Kreibig U, Vollmer M. Optical properties of metal clusters. Berlin, Germany: Springer,1995
    [29]Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir,1996,12:788-800
    [30]Morones J R, Elechiguerra J L, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology,2005,16:2346-2353
    [31]Pal S, Tak Y K, Song J M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environment Microbiology,2007,27 (6):1712-1720
    [32]Wisbey A W, Gregson P J, Peter L M, et al. Effact of surface treatment on the dissolution of titanium based implant materials. Biomaterials,1991,12 (6): 470-473
    [33]Dearnaley G, Adhesive and abrasive wear mechanisms in ion implanted metals. NuclearInstruments & Methods in Physics Research,1985, B7/8:158-165
    [34]Rieu J, Pichat A, Rabbe L-M, et al. Friction and wear on implant materials. Biomaterials,1991,12(2):139-143
    [35]Chen A K, Sridharan, Conrad J R, et al. Surface modification of Ti-6A1-4V surgical alloy by plasma source ion implantation. Surface and Coatings Technology,1991,50 (1):1-4
    [36]张效忠,张剑强,郭兴唐.氮离子注入在钛合金人工全髋关节中的应用.中国生物医学工程报,1988,7(4):192-195
    [37]Krupa D, Jezierska E, Baszkiewicz J, et al. Effect of nitrogen ion implantation on the structure and corrosion resistance of OT-4-0 titanium alloy. Surface and Coatings Technology,1996,79 (1-3):240-245
    [38]Krupa D, Baszkiewicz J, Jezierska E, et al. Effect of nitrogen-ion implantation on the corrosion resistance of OT-4-0 titanium alloy in 0.9% NaCl environment. Surface and Coatings Technology,1999,111(1):86-91
    [39]Silva L L, Ueda M, Silva M M, Codaro E N. Corrosion behavior of Ti-6A1-4V alloy treated by plasma immersion ion implantation process. Surface and Coatings Technology,2007,201 (19-20):8136-8139
    [40]Cheng Y, Zheng Y F. Deposition of TiN coatings on shape memory NiTi alloy by plasma immersion ion implantation and deposition. Thin Solid Films,2006, 515 (4):1358-1363
    [41]Fukumoto S, Tsubakino H, Inoue S, et al. Surface modification of titanium by nitrogen ion implantation. Materials Science and Engineering:A,1999,263 (2): 205-209
    [42]Gavrilov N V, Kuznetsov M V, Gubanov V A, Formation of a TiNx protective layer bynitrogen ion implantation into titanium. Vacuum,1991,42:731-7344
    [43]Gardos M N, Hong H S, Winer W O. The Effect of Anion Vacancies on the Tribological Properties of Rutile (TiO2-x), Part II:Experimental Evidence. Tribology Transactions,1990,33 (2):209-220
    [44]郭亮,梁成浩,隋洪艳.离子注入N对人体用金属材料在人工模拟体液中的阳极极化行为的影响.电化学,2000,6(2):206-211
    [45]Leng Y X, Yang P, Chen J Y, et al. Fabrication of Ti-O/Ti-N duplex coatings on biomedical titanium alloys by metal plasma immersion ion implantation and reactive plasma nitriding/oxidation. Surface and Coatings Technology,2001, 138 (2-3):296-300
    [46]Tan L, Crone W C. Effects of methane plasma ion implantation on the microstructure and wear resistance of NiTi shape memory alloys. Thin Solid Film,2005,472 (1-2):282-290
    [47]Leng Y X, Chen J Y, Yang P, et al. Mechanical properties and platelet adhension behavior of diomand-like carbon films synthesized by pulsed vacuum arc plasma deposition. Surface Science,2003,531 (2):177-184
    [48]Liu X Y, Poon R W Y, Kwok S C H, et al. Structure and properties of Ca-implanted titanium. Surface and Coatings Technology,2005,191:43-48
    [49]Xie Y T, Liu X Y, Huang A P, et al. Improvement of surface bioactivity on titanium by water and hydrogen plasma immersion ion implantation. Biomaterials,2005,26 (31):6129-6135
    [50]Leng Y X, Chen J Y, Zeng Z M, Tian X B, et al. Properties of titanium oxide biomaterials synthesized by titanium plasma immersion ion implantation and reactive ion oxidation. Thin Solid Films,2000,377-378:573-577
    [51]Maitz M, Pham M, Matz W, et al. Promoted calcium-phosphate precipitation from solution on titanium for improved biocompatibility by ion implantation. Surface and Coatings Technology,2002,158-159:151-156
    [52]Hanawa T, kamiura Y, Yamamoto S, et al. Early bone formation around calcium-ion-implanted titanium inserted into rat tibia. Journal of Biomedical Materials Research,1997,36 (1):131-136
    [53]Krupa D, Baszkiewicz J, Kozubowski J, et al. Effect of dual ion implantation of calcium and phosphorus on the properties of titanium. Biomaterials,2005,26 (16):2847-2856
    [54]Cao H L, Liu X Y, Meng F H, et al. Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects. Biomaterials,2011, 32 (3):693-705
    [55]Kim H M, Miyaji F, Kokubo T, et al. Preparation of bioactive Ti and its alloy via simple chemical surface treatment. Journal of Biomedical Materials Research,1996,32 (3):409-417
    [56]Nishiguchi S, Nakamura T, Kobayashi M, et al. The effect of heat treatment on bone-bonding ability of alkali-treated titanium. Biomaterials,1999,20 (5): 491-500
    [57]Fujibayashi S, Nakamura T, Nishiguchi S, et al. Bioactive titanium:Effect of sodium removal on the bone-bonding ability of bioactive titanium prepared by alkali and heat treatment. Journal of Biomedical Materials Research,2001,56 (4):562-570
    [58]Wen H B, Liu Q, Wu J R, et al. Preparation of bioactive microporous titanium surface by a new two-step chemical treatment. Journal of Materials Science: Materials in Medicine,1999,9:121-128
    [59]Wang X X, Hayakawa S, Tsuru K, et al. Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution. Biomaterials,2002, 23 (5):1353-1357
    [60]Kunze J, Mller L, Macak J M, et al. Time-dependent growth of biomimetic apatite on anodic TiO2 nanotubes. Electrochimica Acta,2008,53(23): 6995-7003
    [61]Kar A, Raja K S, Misra M, Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications. Surface and Coatings Technology, 2006,201(6):3723-3731
    [62]Tsuchiya H, Macak J M, M_ller L, et al. Hydroxyapatite growth on anodic TiO2 nanotubes. Journal of Biomedical Materials Research Part A,2006,77:534-541
    [63]Kodama A, Bauer S, Komatsu A, et al. Bioactivation of titanium surfaces using coatings of TiO2 nanotubes rapidly pre-loaded with synthetic hydroxyapatite. Acta Biomaterialia,2009,5 (6):2322-2330
    [64]Cimenoglu H, Gunyuz M, Kose G T, et al. Micro-arc oxidation of Ti6A14V and Ti6A17Nb alloys for biomedical applications. Materials characterization,2011, 62:304-311
    [65]Lia L H, Konga Y M, Kima H W, et al. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials,2004, 25 (14):2867-2875
    [66]Sun J F, Han Y, Cui K, Microstructure and apatite-forming ability of the MAO-treated porous titanium. Surface and Coatings Technology,2008,202 (17):4248-4256
    [67]Chen Q, Zhou W, Du G U, et al. Trititanate Nanotubes Made via a Single Alkali Treatment. Advance Materials,2002,14 (17):1208-1211
    [68]Zhu H Y, Lan Y, Gao X P, et al. Phase Transition between Nanostructures of Titanate and Titanium Dioxides via Simple Wet-Chemical Reactions. Journal of The Amercian Chemical Society.,2005,127(18):6730-6736
    [69]Kubo T, Nakahira A. Local Structure of TiO2-Derived Nanotubes Prepared by the Hydrothermal Process. The Journal of Physical Chemistry C,2008,112 (5): 1658-1662
    [70]Ma R A, Bando Y, Sasaki T. Nanotubes of lepidocrocite titanates. Chemical Physics Letters,2003,380 (4-5):577-582
    [71]Tsai C C, Teng H S. Structural Features of Nanotubes Synthesized from NaOH Treatment on TiO2 with Different Post-Treatments. Chemistry of Materials, 2006,18(3):367-373
    [72]Yuan Z Y, Su B L. Titanium oxide nanotubes, nanofibers and nanowires. Colloids and Surfaces A,2004,241:173-183
    [73]Yuan Z Y, Colomer J Y, Su B L. Titanium oxide nanoribbons. Chemical Physics Letters,2002,363:362-366
    [74]Kim G S, Godbole V P, Seo H K, Kim Y S, et al. Sodium removal from titanate nanotubes in electrodeposition process. Electrochemistry Communications, 2006,8:471-474
    [75]Kasuga T, Hiramatsu M, Hoson. A, et al. Titania Nanotubes Prepared by Chemical Processing. Advance Materials,1999,11 (15):1307-1311
    [76]Peng X, Chen. A. Large-Scale Synthesis and Characterization of TiO2-Based Nanostructures on Ti Substrates. Advance Function Materials,2006,16 (10): 1355-1362
    [77]Wu S L, Liu X M, Hu T, et al. A Biomimetic Hierarchical Scaffold:Natural Growth of Nanotitanates on Three-Dimensional Microporous Ti-Based Metals. Nano Letters,2008,8 (11):3803-3808
    [78]Rani V V D, Manzoor K, Menon D, The design of novel nanostructures on titanium by solution chemistry for an improved osteoblast response. Nanotechnology,2009,20:195101-195111
    [79]Nakagawa M, Zhang L, Udoh K, et al. Effects of hydrothermal treatment with CaCl2 solution on surface property and cell response of titanium implants. Journal of materials science:materials in medicine,2005,16:985-991
    [80]Hamada K, Kon M, Hanawa T, et al. Hydrothermal modification of titanium surface in calcium solutions. Biomaterials,2002,23:2265-2272
    [81]Chen X, Mao S S. Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications. Chemical Reviews,2007,107:2891-2959
    [82]Ichikawa S, Doi R. Hydrogen Production from Water and Conversion of Carbon Dioxide to Useful Chemicals by Room Temperature Photoelectrocatalysis. Catalysis Today,1996,27:271-277
    [83]Park N G, Lagemaat J, Frank A J. Comparison of Dye-Sensitized Rutile-and Anatase-Based TiO2 Solar Cells. The Journal of Physical Chemistry B,2000, 104:8989-8994
    [84]Radecka M, Rekas M. Effect of High-Temperature Treatment on n-p Transition in Titania. Journal of The Amercian Chemical Society,2002,85:346-354
    [85]Yamamoto J, Tan A, Shiratsuchi R, S. et al. A 4% Efficient Dye-Sensitized Solar Cell Fabricated from Cathodically Electrosynthesized Composite Titania Films. Advance Materials,2003,15:1823-1825
    [86]Khan S U M, Al-Shahry, William B M, et al. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2. Science,2002,297(5590):2243-2245
    [87]Wu J M. Low-temperature preparation of titania nanorods through direct oxidation of titanium with hydrogen peroxide. Journal of Crystal Growth,2004, 269:347-355
    [88]Wu J M, Qi B. Low-Temperature Growth of Rutile Nanorod Thin Films and their Photon-Induced Property. Journal of the Amercian Ceramic Society,2008, 91 (12):3961-3970
    [89]Wu J M, Qi B. Low-Temperature Growth of Monolayer Rutile TiO2 Nanorod Films. Journal of the Amercian Ceramic Society,2007,90 (2):657-660
    [90]Wu J M, Liu J F, Hayakawa S, et al. Low-temperature deposition of rutile film on biomaterials substrates and its ability to induce apatite deposition in vitro. Journal of materials science:materials in medicine,2007,18(6):1529-1536
    [91]Wu J M, Hayakawa S, Tsuru K, et al. In vitro bioactivity of anatase film obtained by direct deposition from aqueous titanium tetrafluoride solutions. Thin Solid Films,2002,414(2):283-288
    [92]Wu J M, Hayakawa S, Tsuru K, et al. Porous titania films prepared from interactions of titanium with hydrogen peroxide solutions.Scripta Materialia, 2002,46:101-106
    [93]Poon R W Y, Ho J P Y, Liu X Y, et al. Formation of titanium nitride barrier layer in nickel-titanium shape memory alloys by nitrogen plasma immersion ion implantation for better corrosion resistance. Thin Solid Film,2005,488 (1-2): 20-25
    [94]Krupa D, Jezierska E, Baszkiewicz J, et al. Effect of nitrogen ion implantation on the structure and corrosion resistance of OT-4-0 titanium alloy. Surface and Coatings Technology,1996,79 (1-3):240-245
    [95]Yeung K W K, Poon R W Y, Liu. X M, et al. Nitrogen plasma-implanted nickel titanium alloys for orthopedic use. Surface and Coatings Technology, 2007,201 (9-11):5607-5612
    [96]Piscanec S, Ciacchi L C, Vesselli E, et al. Bioactivity of TiN-coated titanium implants. Acta materialia,2004,52:1237-1245
    [97]李昭成,杨桂花.流动电位法Zeta电位仪的测量原理及使用性能.仪表自控,2002.4:29-30
    [98]AlamarBluen TM Technical Datasheet. Available at www.ab-direct. AbD Serotec Ltd,22 Bankside, Station Approach, Kidlington, Oxford, OXON OX5 1JE, UK
    [99]Nakayama G R, Caton M C, Nova M P, et al. Assement of the AlamarBlue assay for cellular growth and viability in vitro. Journal of Immunological Methods, 1997,204:205-208
    [100]Fuggle J C, Auml E L, Watson L M, et al. Electronic structure of aluminum and aluminum-noble-metal alloys studied by soft-x-ray and x-ray photoelectron spectroscopies. Physical Review B,1977,16(2):750-761
    [101]Bird R J, Swift P. Energy calibration in electron spectroscopy and the re-determination of some reference electron binding energies. Journal of Electron Spectroscopy and Related Phenomena,1980,21(3):227-240
    [102]Sun P X, Dong S J, Wang E K, et al. One-Step Preparation and Characterization of Poly (propyleneimine) Dendrimer-Protected Silver Nanoclusters. Macromolecules,2004,37 (19):7105-7108
    [103]Wang X C, Yu J C, Ho C M. et al. A robust three-dimensional mesoporous Ag/TiO2 hybrid film. Chemical Communications,2005,17:2262-2264
    [104]Thiel J, Pakstis L, Buzby S, et al. Antibacterial Properties of Silver-Doped Titania. Small,2007,3:799-803
    [105]Hamouda T, Baker J R. Antimicrobial mechanism of action of surfactant lipid preparations in enteric Gram-negative bacilli. Journal of Applied Microbiology, 2000,89 (3):397-403
    [106]Morones J R, Elechiguerra J L, Camacho A, et al. The bactericidal effect of sliver nanoparticles. Nanotechnology,2005,16:2346-2353
    [107]Raimondi F, Scherer G G, Kotz R, et al. Nanoparticles in Energy Technology: Examples from Electrochemistry and Catalysis. Angewandte Chemie International Edition,2005,44 (15):2190-2209
    [108]Bar-ilan O, Albrecht R M, Fako V E, et al. Toxicity Assessments of Multisized Gold and Silver Nanoparticles in Zebrafish Embryos. Small,2009,5 (16): 1897-1910
    [109]Kramer J, Bell R, Smith S, et al. Sliver nanoparticle toxicity and biocides need for chemical speciation. Integrated Environmental Assessment Management, 2009,5:720-722
    [110]Vasilev K, Sah V, Anselme K, et al. Tunable Antibacterial Coatings That Support Mammalian Cell Growth. Nano Letters,2010,10:202-207
    [111]Badrinarayanan S, Sinha S, Mandale A B. XPS studies of nitrogen ion implanted zirconium and titanium. Journal of Electron Spectroscopy and Related Phenomena,1989,49 (3):303-309
    [112]Biwer B W, Bernasek S L. Electron spectroscopic study of the iron surface and its interaction with oxygen and nitrogen. Journal of Electron Spectroscopy and Related Phenomena,1986,40 (4):339-352
    [113]Galvanetto E, Galliano F P, Borgioli F, et al. XRD and XPS study on reactive plasma sprayed titanium_titanium nitride coatings. Thin Solid Film,2001,384: 223-229
    [114]Bertoti I, Mohai M, Sullivan J L, et al. Surface characterisation of plasma-nitrided titanium:An XPS study. Applied Surface Science,1995,84 (4): 357-371
    [115]Strydom I, Hofmann S. The contribution of characteristic energy losses in the core-level X-ray photoelectron spectroscopy peaks of TiN and (Ti, Al) N studied by electron energy loss spectroscopy and X-ray photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena,1991, 56(2):85-103
    [116]Kitawaki K, Kaneko K, Inoke K, et al. Fabrication and characterization of TiN-Ag nano-dice. Micron,2009,40 308-312
    [117]Chang C W, Liao J D, Chen H J, et al. Wear resistant and anti-corrosive treatment for TI-6AL-4V using metal vapor vacuum arc source in comparison with plasma immersion ion implantation. Thin Solid Film,2006,515 (1): 122-128
    [118]De Damborenea J, Conde A, Palacio C, Rodriguez R. Modification of corrosion properties of titanium by N-implantation. Surface and Coatings Technology, 1997,91:1-6
    [119]Mello C B, Ueda M, Silva M M, et al. Tribological effects of plasma immersion ion implantation heating treatments on Ti-6A1-4V alloy. Wear,2009,267: 867-873
    [120]Zhao J, Feng H J, Tang H Q, et al.Bactericidal and corrosive properties of silver implanted TiN thin films coated on AISI317 stainless steel. Surface and Coatings Technology,2007,201 (9-11):5676-5679
    [121]Cheng Y, Zheng Y F. Deposition of TiN coatings on shape memory NiTi alloy by plasma immersion ion implantation and deposition. Thin Solid Films,2006, 515 (4):1358-1363.
    [122]Chen X B, Mao S S. Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications. Chemical Reviews,2007,107:2891-2959
    [123]Diebold U. The surface science of titanium dioxide. Surface Science Reports, 2003,48:53-229
    [124]Keshmiri M, Troczynski J. Apatite formation on TiO2 anatase microspheres. Journal of Non-Crystalline Solids,2003,324:289-294
    [125]Webster T J, Ergun C, Doremus R H, et al. Enhanced functions of osteoblasts on nanophase ceramics, Biomaterials,2000,21(17):1803-1810
    [126]Liu X Y, Zhao X B, FuRKY, et al. Plasma-treated nanostructured TiO2 surface supporting biomimetic growth of apatite. Biomaterials,2005,26 (31):6143-6150
    [127]Wu J M, Huang B, et al. Titania Nanoflowers with High Photocatalytic Activity. Journal of the Amercian Ceramic Society,2006,89 (8):2660-2663
    [128]Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances,2009, (27):76-83
    [129]Liu X Y, Fu Ricky K.Y, Poon R W Y, et al. Biomimetic growth of apatite on hydrogen-implanted silicon. Biomaterials,2004,25:5575-5581
    [130]Liu X Y, Chu P K, Ding C X. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering R,2004,47:49-121
    [131]Kenji Arita N, Shinonaga Y, Nishino M. Plasma-based Fluorine Ion Implantation into Dental Materials for Inhibition of Bacterial Adhesion. Dental Materials Journal,2006,25 (4):684-692
    [132]Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity. Biomaterials,2006,27 (15):2907-2915
    [133]Wu J M, Zhang T W. Large-Scale Preparation of Ordered Titania Nanorods with Enhanced Photocatalytic Activity. Langmuir,2005,21 (15):6995-7002
    [134]Wu J M, Qi B. Low-Temperature Growth of a Nitrogen-Doped Titania Nanoflower Film and Its Ability To Assist Photodegradation of Rhodamine B in Water. The Journal of Physical Chemistry C,2007,111 (2):666-673
    [135]Gonbeau D, Guimon C, Pfister-Guillouzo G. XPS study of thin films of titanium oxysulfides. Surface Science,1991,254 (1-3):81-89
    [136]Saied S O, Sullivan J L, Choudhury,et al. A comparison of ion and fast atom beam reduction in TiO2. Vacuum,1988,38 (8-10),917-922
    [137]Bond G C, Flamerz S. Structure and reactivity of transition-metal oxide monolayers. Applied Catalysis,1989,46:89-92
    [138]Netterfield R P, Martin P J, Pacey C G, et al. Ion-assisted deposition of mixed TiO2-SiO2 films. Journal of Applied Physics,1989,66 (4):1805-1809
    [139]Takagi-Kawai M, Soma M, Onishi T, et al. The adsorption and the reaction of NH3 and NOx on supported V2O5 catalysts:effect of supporting materials. Canadian Journal of Chemistry,1980,58 (20):2132-2137
    [140]Slinkard W E, Degroot P B. Vanadium-titanium oxide catalysts for oxidation of butene to acetic acid. Journal of Catalysis,1981,68 (2):423-432
    [141]Wagner C D, Zatko D A, Raymond R H. Use of the oxygen KLL Auger lines in identification of surface chemical states by electron spectroscopy for chemical analysis. Analytical Chemistry,1980,52 (9),1445-1451
    [142]Harding I S, Rashid N, Hing K A. Surface charge and the effect of excess calcium ions on the hydroxyapatite surface. Biomaterials,2005,26 (34): 6818-6826
    [143]Kutsenko L, Fuks D, Kiv Aa, et al. Structural changes in Mg alloy induced by plasma immersion ion implantation of Ag. Acta Materialia,2004,52 (14):4329-4335
    [144]Pranyavichus L, Dudonis Y. Ion beam modification of solids.Vilnius:Mokslas, 1980
    [145]Puckett S D, Taylor E, Raimondo T, et al. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials,2010, 31 (4):706-713
    [146]Panacek A, Prucek R, Safarova D, et al. Acute and Chronic Toxicity Effects of Silver Nanoparticles(NPs) on Drosophila melanogaster. Environmental Science & Technology,2011,45:4974-4979
    [147]Teodoro J S, Simoes A M, Duarte F V, et al. Assessment of the toxicity of silver nanoparticles in vitro:A mitochondrial perspective. Toxicology in Vitro,2011, 25:664-670
    [148]Nicholas S, Wigginton, Titta A D, et al. Binding of Silver Nanoparticles to Bacterial Proteins Depends on Surface Modifications and Inhibits Enzymatic Activity. Environmental Science & Technology,2010,44:2163-2168
    [149]El badawy A M, Sliva R G,Morris B, et al. Surface Charge-Dependent Toxicity of Silver Nanoparticles. Environmental Science & Technology,2011,45: 283-287
    [150]冯卫.交锁髓内钉治疗胫骨骨折研究进展.骨与关节损伤杂志,2001,16(5):390-392
    [151]Sorensen T S, Sorensen A L. Rapid release of gentamycin from collagen sponge. In vitro comparison with plastic beads. Acta Orthopaedica Scandinavica,1990, 61:353-356
    [152]Gruessner U, Clemens M, Pahlplatz P V, et al. Improvement of perineal wound healing by local administration of gentamicin-impregnated collagen fleeces after abdominoperineal excision of rectal cancer. The American Journal of Surgery,2001,182:502-509
    [153]孙梁.RBX-庆大霉素药物局部缓释系统的研制及相关研究:[第四军医大学硕士论文].西安:中国人民解放军第四军医大学,2000
    [154]Nishiguchi S, Kato H, Fujita H, et al. Enhancement of Bone-Bonding Strengths of Titanium Alloy Implants by Alkali and Heat Treatments. Journal of Biomedical Materials Research,1999,48:689-696
    [155]Tamilselvi S, Raghavendran H B, Srinivasan P, et al. In vitro and in vivo studies of alkali and heat-treated Ti-6Al-7Nb and Ti-5Al-2Nb-1Ta alloys for orthopedic implants. Journal of Biomedical Materials Research,2009,90A:380-386
    [156]Guo J L, Padilla R J, Ambrose W, et al. The effect of hydrofluoric acid treatment of TiO2 grit blasted titanium implants on adherent osteoblast gene expression in vitro and in vivo. Biomaterials,2007,28 (36):5418-5425
    [157]Variola F, Yi J H, Richert L, et al. Tailoring the surface properties of Ti6A14V by controlled chemical oxidation. Biomaterials,2008,29 (10):1285-1298
    [158]Wang X X, Hayakawa S, Tsuru K, et al. Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution. Biomaterials, 2002,23 (5):1353-1357
    [159]Lee M H, Park I S, Min K S, et al. Evaluation of in vitro and in vivo tests for surface-modified titanium by H2SO4 and H2O2 treatment. Metals and Materials International,2007,13 (2):109-115
    [160]Sun T, Wang M. Low-temperature biomimetic formation of apatite/TiO2 composite coatings on Ti and NiTi shape memory alloy and their characterization. Applied Surface Science,2008,255 (2):396-400
    [161]Lamolle S F, Monjo M, Rubert M, et al. The effect of hydrofluoric acid treatment of titanium surface on nanostructural and chemical changes and the growth of MC3T3-E1 cells. Biomaterials,2009,30 (5):736-742
    [162]Tengvall P, Elwing H, Lundstrom I. Titanium gel made from metallic titanium and hydrogen peroxide. Journal of Colloid and Interface Science,1989,130: 405-413
    [163]Kasuga T, Hiramatsu M, Hoson A, et al. Titania nanotubes prepared by chemical processing. Advance Materials,1999,11:1307-1311
    [164]Armstrong A R, Armstrong G, Canales J, et al. TiO2-B nanowires. Angewandte Chemie International Edition,2004,43:2286-2288
    [165]Guo Y P, Lee N H, Oh Hyo-Jin, et al. Structure-tunable synthesis of titanate nanotube thin films via a simple hydrothermal process. Nanotechnology,2007, 18:295608-295617
    [166]Wu Y H, Long M, Cai W M, et al. Preparation of photocatalytic anatase nanowire films by in situ oxidation of titanium plate. Nanotechnology,2009,20: 185703-185710
    [167]Yoshida R, Suzuki Y, Yoshikawa S. Syntheses of TiO2 (B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments. Journal of Solid State Chemistry,2005,178:2179-2185
    [168]Elsanousi A, Elssfah E M, Zhang J, et al. Hydrothermal Treatment Duration Effect on the Transformation of Titanate Nanotubes into Nanoribbons. The Journal of Physical Chemistry C,2007,111:14353-14357
    [169]Peng X S, Chen A. Large-Scale Synthesis and Characterization of TiO2-Based Nanostructures on Ti Substrates. Advance Function Materials,2006,16: 1355-1362
    [170]Zhu H Y, Lan Y, Gao X P, et al. Phase Transition between Nanostructures of Titanate and Titanium Dioxides via Simple Wet-Chemical Reactions. Journal of the Amercian Chemistry Society,2005,127:6730-6736
    [171]Tsai C C, Teng H. Structural Features of Nanotubes Synthesized from NaOH Treatment on TiO2 with Different Post-Treatments. Chemistry of Materials, 2006,18:367-373
    [172]Tsai, C C, Teng, H. Regulation of the Physical Characteristics of Titania Nanotube Aggregates Synthesized from Hydrothermal Treatment. Chemistry of Materials,2004,16 (22):4352-4358
    [173]Seo D S. Lee J K, Kim H, et al. Preparation of nanotube-shaped TiO2 powder. Journal of Crystal Growth,2001,229 (1-4):428-432
    [174]Tamjid E, Bagheri R, Vossoughi M. Effect of TiO2 morphology on in vitro bioactivity of polycaprolactone/Ti02 nanocomposites. Materials Letters,2011, 65,(15-16):2530-2533
    [175]Yanovska A, Kuznetsov V, Stanislavov A, et al. Synthesis and characterization of hydroxyapatite-based coatings for medical implants obtained on chemically modified Ti6A14V substrates. Surface and Coatings Technology,2011,205 (23-24):5324-5329
    [176]Gurunathan S, Lee K J, Kalishwaralal K. et al. Antiangiogenic properties of silver nanoparticles. Biomaterials,2009,30 (31):6341-6350
    [177]Wei L, Tang J L, Zhang Z X, et al. Investigation of the cytotoxicity mechanism of silver nanoparticles in vitro. Biomedical Materials,2010,5:044103-044138
    [178]Xie Y T, Liu X Y, Chu P K, et al. Nucleation and growth of calcium-phosphate on Ca-implanted titanium surface. Surface Science,2006,600 (3):651-656
    [179]Viitala R, Jokinen M, Peltola T, et al. Surface properties of in vitro bioactive and non-bioactive sol-gel derived materials. Biomaterials,2002,23(15): 3073-3086
    [180]Janorkar A V, Metters A T, Hirt D E. Modification of poly (lacticacid) films: enhanced wettability from surface-confined photografting and increased degradation rate due to an artifact of the photografting process. Macromolecules, 2004,37(24):9151-9159
    [181]Tokiwa Y, Calabia B P. Biodegradability and biodegradation of poly (lactide). Applied Microbiology and Biotechnology,2006,72(2):244-251
    [182]Hench L L, Anderson O. Hench L L, Wilson J, editors. An Introduction to Bioceramics. Singapore:World Scientific,1993,41-62
    [183]Kokubo T. Surface chemistry of bioactive glass-ceramics. Journal of Non-Crystalline Solids,1990,120 (1/2/3):138-151
    [184]Liu X Y, Ding C X. Apatite formed on the surface of plasma sprayed wollastonite coating immersed in simulated body fluid. Biomaterials,2001,22 (14):2007-2012
    [185]Liu X Y, Tao S Y, Ding C X. Bioactivity of plasma sprayed dicalcium silicate coatings. Biomaterials,2002,23 (3):963-968
    [186]Xue W C, Liu X Y, Zheng X B, et al. In vivo evaluation of plasma-sprayed titanium coating after alkali modification. Biomaterials,2005,26 (2):3029-3037
    [187]Cai X, Shen X Y, Chen W X, et al. Preparation and characterization of homogeneous chitosan-polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties. Acta. Biomaterialia,2009,5 (7):2693-2703
    [188]Yan S F, Yin J B, Yang J Y. Structural characteristics and thermal properties of plasticized poly (L-lactide)-silica nanocomposites synthesized by Sol-Gel method. Material Letters,2007,61 (13):2683-2686
    [189]Maiti P, Yamada K, Okamoto M, et al. New polylactide/layered silicate nanocomposites:role of organoclays. Chemistry of Materials,2002,14 (11): 4654-4661
    [190]Hofacker R, Mechtel M, Mager M, et al. Sol-Gel:a new tool for coatings chemistry. Progress in Organic Coatings,2002,45 (2/3):159-164
    [191]Cho S B, Nakanishi K, Kokubo T, et al. Dependence of Apatite Formation on Silica-Gel on Its Structure-Effect of Heat-Treatment. Journal of the Amercian Ceramic Society,1995,78:1769-1774
    [192]Liu H C, Lee I C, Wang J H, et al. Preparation of PLLA membranes with different morphologies for culture of MG-63 cells. Biomaterials,2004,25 (18): 4047-4056
    [193]Kim I Y, Kawachi G, Kikuta K, et al. Preparation of bioactive spherical particles in the CaO-SiO2 system through Sol-Gel processing under coexistence of poly (ethylene glycol). Journal of the European Ceramic Society,2008,28 (8):1595-1602
    [194]Murugan R, Ramakrishna S. In situ formation of recombinant humanlike collagen-hydroxyapatite nanohybrid through bionic approach. Applied Physics Letters,2006,88 (19):193124-1-3
    [195]Weng J, Liu Q, Wolke J G C, et al. Formation and characteristics of the apatite layer on plasma-sprayed hydroxyapatite coatings in simulated body fluid. Biomaterials,1997,18 (15):1027-1035
    [196]Liu X Y, Ding C X, Chu P K. Mechanism of apatite formation on wollastonite coatings in simulated body fluids. Biomaterials,2004,25 (10):1755-1761
    [197]Liu X Y, Ding C X. Reactivityof plasma sprayed wollastonite in simulated bodyfluid. Journal of Biomedical Materials Research,2002,59c (2):259-264
    [198]Liu X Y, Ding C X. Morphologyof apatite formed on surface of wollastonite coating soaked in simulate body fluid. Materials Letters,2002,57 (3):652-655
    [199]Kokubo T. Bioactive glass ceramics:properties and applications. Biomaterials, 1991,12:155-163
    [200]Hench L L, Wilson J. Surface-active biomaterials. Science,1984,226:630-636
    [201]Gao T J, Aro H T, Ylanen H, et al. Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2mRNA in Saos-2 osteoblasts in vitro. Biomaterials,2001,22 (12):1475-1483