白念珠菌菌丝相与酵母相ERG11基因序列及Sap活性差异
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     以一系列同一亲本来源对氟康唑敏感性不同的白念珠菌为对象,研究其菌丝相与酵母相ERG11基因序列及分泌性酸性蛋白酶活性之间的差异,从而为白念珠菌病原真菌学和临床检验学中,究竟是选择白念珠菌的菌丝相还是酵母相为研究对象提供理论依据。
     方法:
     对12株分离自同一HIV阳性者的白念珠菌分别进行菌丝相与酵母相培养后,抽提基因组DNA,PCR扩增ERG11基因(包括部分上游和下游非编码区),PCR产物用Acc Ⅰ和Mun Ⅰ消化,消化产物进行琼脂糖凝胶电泳(PCR-RFLP);选择其中5株白念珠菌,用下游引物对部分ERG11基因进行测序,比较两相细胞ERG11基因序列差异;用牛血清白蛋白培养基测定8株白念珠菌菌丝相与酵母相分泌性酸性蛋白酶的活性。
     结果:
     1.CA-7、CA-14,CA-16和CA-17的菌丝相与酵母相ERG11基因酶切图谱存在差异;
     2.CA-7菌丝相与酵母相ERG11基因第1547位点、1587位点和1617位点的碱基存在差异;
Objective:To provide evidence for selecting the suitable form of Candiada albicans in medical mycology, the differences between the hyphal form and the yeast form of C. albicans on ERGll gene sequence and on the activity of secreted aspartyl proteinase were compared in this study.Materials and Methods:Twelve isolates of C. albicans from a single HIV-seropositive patient (CA-1, CA-2, CA-4, CA-6, CA-7, CA-9, CA-11, CA-13—CA-17) were grown to form yeast cells and hyphal cells respectively, and the genomic DNA was extracted. Then ERGll was amplified with polymerase chain reaction (PCR) technology and cleaved by two restriction enzymes Acc I and Mun I . The products were electrophored. Furthermore, DNA differences between both forms of five C. albicans isolates (CA-1, CA-2, CA-4, CA-6, CA-7) were compared through DNA sequencing. Bovine serum albumin (BSA) medium was used to test the activity of secreted aspartyl proteinase between the dimorphic C. albicans.Results:
    1. The ERG 11 gene of all isolates had been amplified successfully. There were some differences on both the Ace I and the Mun I endonuclease maps of ERG 11 gene between the hyphal form and the yeast form of C. albicans.2. Differences on ERG11 sequence between the hyphal form and the yeast form of C.albicans were found, they were located at the positions of 1 547, 1 587 and 1 617.3. The activity of secreted aspartyl proteinase in hyphal form was significantly higher than that of yeast form of C. albicans.Conclusion:1. There are some differences on DNA sequence between the hyphal form and the yeast form of C. albicans.2. There are some differences on the activity of secreted aspartyl proteinase between the hyphal form and the yeast form of C. albicans.3. The hyphal form of C.albicans is thought to be the appropriate object in medical mycology.
引文
[1] St-Germain G, Laverdiere M, Pelletier R, Bourgault AM, Libman M, Lemieux C, Noel G. Prevalence and antifungal susceptibility of 442 Candida isolates from blood and other normally sterile sites: results of a 2-year (1996 to 1998) multicenter surveillance study in Quebec, Canada. J Clin Microbiol, 2001, 39(3):949-953.
    [2] Odds FC. Candida and Candidosis: a Review and Bibliography. London:Baiiliere Tindall. 1988.
    [3] 吴绍熙,郭宁如,廖万清.现代真菌病诊断治疗学.北京:北京医科大学中国协和医科大学联合出版社.1997,第1版,51-54.
    [4] Phan QT, Belanger PH, Filler SG. Role of hyphal formation in interactions of Candida albicans with endothelial cells. Infect Immun, 2000, 68(6): 3485-3490.
    [5] White TC, Marr KA, Bowden RA. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev, 1998, 11(2):382-402.
    [6] Haynes K. Virulence in Candida species. Trends Microbiol, 2001, 9(20):591-596.
    [7] 苏英,李春阳,吴绍熙.念珠菌对唑类抗真菌药耐药机理及其相关因素的研究进展.国外医学皮肤性病学分册,1999,25(4):200-203.
    [8] 贾杰.现代真菌病学.郑州:郑州大学出版社.2001,第1版,57.
    [9] 吴绍熙,廖万清,郭宁如,李春阳,毛玲娥,张宏,曾凡钦,李锡儒,封绍奎,李若瑜,石玉秀,郑岳臣,冉玉平,王家俊,喻楠,谭升顺,江致德.中国致病真菌10年动态流行病学研究.临床皮肤科杂志,1999,28(1):1-5.
    [10] Alvarez-Lerma F, Palomar M, Leon C, Olaechea P, Cerda E, Bermejo B. Fungal colonization and/or infection in intensive care units. Multicenter study of 1,562 patients. Med Clin, 2003, 121(5): 161-166.
    [11] 秦振宇,姚聪君,谭升顺,吴绍熙.阴道念珠菌菌株的分型和相似性分析.中华皮肤科杂志,1998,10(31):288-290.
    [12] Mitchell AP. Dimorphism and virulence in Candida albicans. Curr Opin Microbiol, 1998, 1(6): 687-692.
    [13] Lo H, Kohler JR, Di Domenico B, Loebenberg D, Cacciapuoti A, Fink GR. Nonfilamentous C. albicans mutants are avirulent. Ceil, 1997, 90(5): 939-949.
    [14] 郭宁如,吴绍熙,吕桂霞.白念珠菌体外粘附条件的探讨.中华皮肤科杂志,1994,27(1):22-25.
    [15] Phan QT, Belanger PH, Filler SG. Role of hyphal formation in interactions of Candida albicans with endothelial cells. Infect Immun, 2000, 68(6): 3485-3490.
    [16] Fu Y, Ibrahim AS, Sheppard DC, Chen YC, French SW, Cutler JE, Filler SG, Edwards JE Jr. Candida albicans Alslp: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol Microbiol, 2002, 44(1): 61-72.
    [17] 苑天红,王明永,吴升伟,吴承龙.甘露糖在介导二相性白念珠菌粘附中的重要作用.中国人兽共患病杂志,2004,20(11):966-967.
    [18] 苑天红,工明永,吴升伟,王正蓉,吴承龙.白念珠菌二相性与致病性关系.中国公共卫生,2005,21(1):71-72.
    [19] Pocsik E, Mihalik R, Penzes M, Loetscher H, Gallati H, Aggarwal BB. Effect of cell cycle on the regulation of the cell surface and secreted forms of type Ⅰ and type Ⅱ human tumor necrosis factor receptors. J Cell Biochem, 1995, 59(3): 303-316.
    [20] 秦启贤主编.临床真菌学.上海:复旦大学出版社.2001,第1版,92-97.
    [21] 苑天红,王明永,吴升伟,吴承龙.小鼠腹腔吞噬细胞对二相性白念珠菌的吞噬研究.贵阳医学院学报,2004,29(4):328-330.
    [22] Blasi E, Pitzurra L, Puliti M, Lanfrancone L, Bistoni F. Early differential molecular response of a macrophage cell line to yeast and hyphal forms of Candida albicans. Infec Immun, 1992, 60(3): 832-837.
    [23] 吴义超,孙瑾,欧阳建,秦浚川.巨噬细胞集落刺激因子应用于抗白念珠菌感染的研究进展.国外医学皮肤性病学分册,2000,26(1):28-31.
    [24] Polonelli L, Gerloni M, Conti S, Fisicaro P, Cantelli C, Portincasa P, Almondo F, Barea PL, Hernando FL, Ponton J. Heat-shock mannoproteins as targets of secretory IgA in Candida albicans. J Infect Dis, 1994, 169(6): 1401-1405.
    [25] Millon L, Drobacheff C, Piarroux R, Monod M, Reboux G, Laurent R, Meillet D. Longitudinal study of anti-Candida albicans mucosal immunity against aspartic proteinases in HIV-infected patients. J Acquir Immune Defic Syndr, 2001, 26(2):137-144.
    [26] 苑天红,吴承龙,李留胜.唾液sIgA对二相性白念珠菌粘附口腔颊粘膜细胞的影响.贵州医药,2004,28(10):887-888.
    [27] Ponton J, Jones JM. Analysis of cell wall extracts ofCandida albicans by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot techniques. Infect Immun, 1986, 53(3): 565-572.
    [28] 黎斌,王鲁,蒋戈,叶庆佾.白念珠菌孢子相、菌丝相胞壁提取物SDS-PAGE分析.中华皮肤科杂志,2003,36(11):656-657.
    [29] 吴绍熙主编.现代医学真菌检验手册.北京:北京医科大学中国协和医科大学联合出版社.1998,第1版,32-36.
    [30] 刘晓红,廖万清,户惠民,姚志荣.白念珠菌与宿主细胞粘附机制的探讨.中国皮肤性病学杂志,1999,13(2):83-84.
    [31] 金艳,张宏.菌丝相白念珠菌对氟康唑耐药机制的研究.暨南大学硕士学位论文.广州:暨南大学.2002.
    [32] 杨敏,张宏.白念珠菌酵母相和菌丝相ERG11基因的比较研究.暨南大学硕士学位论文.广州:暨南大学.2003.
    [33] Choi W, Yoo YJ, Kim M, Shin D, Jeon HB, Choi W. Identification of proteins highly expressed in the hyphae of Candida albicans by two-dimensional electrophoresis. Yeast, 2003, 20(12): 1053-1060.
    [34] Birse CE, Irwin MY, Sypherd PS. Cloning and characterization ofECE1, a gene expressed in associtation with cell elongation of the dimorphic pathogen Candida albicans. Infect Immun, 1993, 61(9): 3648-3655.
    [35] Staab JF, Bradway SD, Fidel PL, Sundstrom E Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwpl. Science, 1999, 283(5407): 1535-1538.
    [36] Tsuchimori N, Sharkey LL, Fonzi WA, French SW, Edwards JE Jr, Filler SG. Reduced virulence of HWP1-deficient mutants of Candida albicans and their interactions with host cells. Infect Immun, 2000, 68(4): 1997-2002.
    [37] Bailey DA, Feldmann PJ, Bovey M, Gow NAR, Brown AJP. The Candida albicans HYR1 gene, which is activated in reponse to hyphal development, belongs to a gene family encoding yeast cell wall proteins. J Bacteriol, 1996, 178(18): 5353-5360.
    [38] Hoyer LL, Scherer S, Shatzman AR, Livi GP. Candida albicans ALS1: Domains related to a Saccharomyces cerevisiae sexual agglutinin sepatated by a repeating motif. Mol Mirobiol, 1995, 15(1): 39-54.
    [39] Hoyer LL, Payne TL. Bell M, Myers AM, Scherer S. Candida albicans ALS3 and insights into the mture of the ALS gene family. Curr Genet, 1998, 33(6): 451-459.
    [40] Braun BR, Head WS, Wang MX, Johnson AD. Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics, 2000,156(9): 31-44.
    [41] Fu Y, Ibrahim AS, Sheppard DC, Chen YC, French SW, Cutler JE; Filler SG, Edwards JE Jr. Candida albicans Alsl p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol Microbiol, 2002, 44(1): 61-72.
    [42] Ryder NS, Favre B. Antifungal activity and mechanism of action of terbinafine. Rev Contemp Pharmacother, 1997, 8(5): 275-287.
    [43] Schaude M, Ackerbauer H, Mieth H. Inhibitory effect of antifungal agents on germ tube formation in Candida albicans. Mykosen, 1987, 30(6): 281-287.
    [44] 李晋波,刘维达.特比萘芬对白念珠菌酵母相和菌丝相抗菌活性的比较.中华皮肤科杂志,2000,33(1):53-54.
    [45] 石婧,张宏.白念珠菌菌丝相与酵母相药物敏感性及ERG11基因序列差异的探讨.暨南大学硕士学位论文.广州:暨南大学.2004.
    [46] 苑天红,王明永,吴升伟,王正蓉,吴承龙.白念珠菌二相性与毒力关系的实验研究.中国皮肤性病学杂志,2004,18(10):580-581.
    [47] Felk A, Kretschmar M, Albrecht A, Schaller M, Beinhauer S, Nichterlein T, Sanglard D, Korting HC, Schafer W, Hube B. Candida albicans hyphal formation and the expression of the Efgl-regulated proteinases Sap4 to Sap6 are required for the invasion ofparenchymal organs. Infect Immun, 2002, 70(7): 3689-3700.
    [48] Brown AJ, Gow NA. Regulatory networks controlling Candida albicans morphogenesis. Trends Microbiol, 1999, 7(8): 333-338.
    [49]Liu H. Transcriptional control of dimorphism in Candida albicans. Curr Opin Microbio),2001, 4(6): 728-735.
    [50]Jonathan DJ, Loeb, Mansa SB, Idit H, Liu. A Gl cyclin is necessary fou maintenance of filamentous growth in Candida albicans. Mol and Cell Biol, 1999, 19(6): 4019-4027.
    [51]Felicitas R, Verena K, Volker R, Stoldt R, Joachin F. Candida albicans chaperonin subunit (CaCct8p) as a suppressor of morphogenesis and Ras phenotypes in Candida albicans and Saccharo mycescerevisiae. Microbiology, 1998, 144(25): 2951-2960.
    [52]Kobayashi SD, Cutlet JE. Candida albicans hyphal formation and virulence: is there a clearly defined role? Trends Microbiol, 1998, 6(3): 92-94.
    [53]Liu H, K5hler J, Fink GR. Suppressing of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science, 1994, 266(5191): 1723-1726.
    [54]Leberer E, Harcus D, Broadbent ID, Clark KL, Dignard D, Ziegelbauer K, Schmidt A, Gow NA, Brown AJ, Thomas DY. Signal transduction through homo logs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Microbiology, 1996, 93(11): 13217-13222.
    [55]Csank C, Makris C, Meloche S, Schroppel K, Rollinghoff M, Dignard D, Thomas DY, Whiteway M. Derepressed hyphal growth and reduced virulence in a VH1 family-related protein phosphatase mutant of the human pathogen Candida albicans. Mol Biol Cell, 1998, 8(12): 2539-2551.
    [56]Feng Q, Summers E, Guo B, Fink GR. Ras singnaling is required for serum-induced hyphal differentiation in Candida albicans. J Bacteriol, 1999, 181(20): 6339-6346.
    [57]Bockmuhl DP, Ernst JF. A potential phosphorylation site for an a-type kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candida albicans. Genetics, 2001, 157(4): 1523-1530.
    [58] Stoldt VR, Sonneborn A, Leuker CE, Ernst JF. Efglp, an essential regulator of
     morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J, 1997, 16(8): 1982-1991.
    [59] Rademacher F, Kehren V, Stoldt VR, Ernst JF. A Candida albicans chaperonin subunit (CaCct8p) as a suppressor of morphogenesis and Ras phenotypes in C. albicans and Saccharomyces cerevisiae. Mirobiology, 1998, 144(pt11):2951-2960.
    [60] Ramage G, Vande Walle K, Lopez-Ribot JL, Wickes BL. The filamentation pathway controlled by the Efgl regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiol Lett, 2002, 214(1): 95-100.
    [61] Sanchez MC, Perez MJ. Dimorphism in fungal pathogens: Candida albicans and Ustilago maydis-similar inputs, different outputs. Curr Opin Microbiol, 2001, 4(2): 214-221.
    [62] 燕华玲,王爱平,李若瑜.培养白念珠菌菌丝相的条件及影响因素.中国麻风皮肤病杂志,2003,19(5):475-476.
    [63] Nantel A, Dignard D, Bachewich C, Harcus D, Marcil A, Bouin AP, Sensen CW, Hogues H, van het Hoog M, Gordon E Rigby T, Benoit F, Tessier DC, Thomas DY, Whiteway M. Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol Biol Cell, 2002, 13(10): 3452-3465.
    [64] Kentaro Asai, Noboru Tsuchimori, Kenji Okonogi, John R. Perfect, Osamu Gotoh, and Yuzo Yoshida. Formation of Azole-Resistant Candida albicans by Mutation of Sterol 14-Demethylase P450. Antimicrob Agents Chemother, 1999, 43(5): 1163-1169.
    [65] White TC. The presence of an R467K amino acid substitution and loss of allelic variation correlate with an azole-resistant lanosterol 14-alpha-demethylase in Candida albicans. Antimicrob Agents Chemother, 1997, 41 (7): 1488-1494.
    [66] Lamb DC, Kelly DE, White TC, and Kelly SL. The R467K amino acid substitution in Candida albicans sterol 14α-demethylase causes drug resistance through reduced affinity. Antimicrob Agents Chemother, 2000, 44(1): 63-67.
    [67]Lockhart SR, Fritch JJ, Meier AS, Schroppel K, Srikantha T, Galask R, and Soll DR. Colonizing populations of Candida albicans are clonal in origin but undergo microevolution through C-1 fragment reorganization as demonstrated by DNA fingerprinting and C-l sequencing. J Clin Microbiol, 1995, 33(6): 1501-1509.
    [68]Sanglard D, Kuchler K, Ischer F, Pagani JL, Monod M, and Bille J. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother, 1995, 39(11): 2378-2386.
    [69] White TC. Increased mRNA levels of ERG 16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from an HIV-infected patient. Antimicrob Agents Chemother, 1997, 41(7): 1482-1487.
    [70]Felk A, Schafer W, Hube B. Candida albicans secretory aspartic proteinade (SAP10) gene. Accession number AF 146440.
    [71]Monod M, Hube B, Hess D, Sanglard D. Differential regulation of SAP8 and SAP9, which encode two new members of the secreted aspartic proteinase family in Candida albicans. Microbiology, 1998, 144(10): 2731-2737.
    [72]Monod M, Togni G, Hube B, Sanglard D. Multiplicity of genes encoding secreted aspartic proteinases in Candida species. Mol Microbiol, 1994, 13(2): 357-268.
    [73]Koelsch G, Tang J, Loy JA, Monod M, Jackson K, Foundling SI, Lin X. Enzymic characteristics of secreted aspartic proteases of Candida albicans. Biochim BiophysActa. 2000, 1480(1-2): 117-131.
    [74]Capobianco JO, Lerner CG, Goldman RC. Application of a fluorogenic substrate in the assay of proteolytic activity and in the discovery of a potent inhibitor of Candida albicans aspartic proteinase. Anal Biochem. 1992, 204(1): 96-102.
    [75]Borg-von Zepelin M, Meyer I, Thomssen R, Wurzner R, Sanglard D, Telenti A, Monod M. HIV-Protease inhibitors reduce cell adherence of Candida albicans strains by inhibition of yeast secreted aspartic proteases. J Invest Dermatol, 1999, 113(5): 747-751.
    [76] Watts HJ, Cheah FS, Hube B, Sanglard D, Gow NA. Altered adherence in strains of Candida albicans harbouring null mutations in secreted aspartic proteinase genes. FEMS Microbiol Lett, 1998, 159(1): 129-135.
    [77]Tsushima H, Mine H, Kawakami Y, Hyodoh F, Ueki A. Candida albicans aspartic proteinase cleaves and inactivates human epidermal cysteine proteinase inhibitor, cystatin A. Microbiology, 1994, 140(1): 167-171.
    [78]Kaminishi H, Miyaguchi H, Tamaki T, Suenaga N, Hisamatsu M, Mihashi I, Matsumoto H, Maeda H, Hagihara Y. Degradation of humoral host defense by Candida albicans proteinase. Infect Immun, 1995, 63(3): 984-988.
    [79]Hube B, Sanglard D, Odds FC, Hess D, Monod M, Schafer W, Brown AJ, Gow NA. Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect Immun, 1997, 65(9): 3529-3538.
    [80] Sanglard D, Hube B, Monod M, Odds FC, Gow NA. A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence. Infect Immun, 1997, 65(9): 3539-3546.
    [81]Schaller M, Korting HC, Schafer W, Bastert J, Chen W, Hube B. Secreted aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral candidosis. Mol Microbiol, 1999,34(1): 169-180.
    [82]Schaller M, Schackert C, Korting HC, Januschke E, Hube B. Invasion of Candida albicans correlates with expression of secreted aspartic proteinases during experimental infection of human epidermis. J Invest Dermatol, 2000, 114(4): 712-717.
    [83] Sanglard D, Ischer F, Monod M, Bille J. Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob Agents Chemother, 1996, 40(10): 2300-2305.
    [84] White TC, Pfaller MA, Rinaldi MG, Smith J, Redding SW. Stable azole drug resisitance associated with a substrain of Candida albicans from an HIV-indected patient. Oral Dideases, 1997, 3(suppl1): 102-109.
    [85]Pfaller MA, Rhine-Chalberg J, Redding SW, Smith J, Farinacci G, Fothergill AW, Rinaldi MG Variations in fluconazole susceptibility and electrophoretic karyotype among oral isolates of Candida albicans from patients with AIDS and oral candidiasis. J Clin Microbiol, 1994, 32(1): 59-64.
    [86] 王冬云,马慧群,谭升顺,马韵琴,陈庆秀.白念珠菌的毒力研究—分泌性酸性蛋白酶活力的测定.中国皮肤性病学杂志,2001,15(6):59-64.
    [87] Redding SW, Smith JA, Farinacci G, Rinaldi MG, Fothergii AW, Rhine-Chalberg J, Pfaller MA. Resistance of Candida albicans to fluconazole during treatment of oropharyngeal candidiasis in a patient with AIDS: documentation by in vitro susceptibility testing and DNA subtype analysis. Clin Infect Dis, 1994, 18(2): 240-242.
    [88] White TC. The presence of an R467K amino acid substitution and loss of allelic variation correlate with an azole-resistant lanosterol 14-alpha-demethylase in Candida albicans. Antimicrob Agents Chemother, 1997, 41 (7): 1488-1494.
    [89] Banerjee A, Ganesan K, Datta A. Induction of secretory acid proteinase in Candida albicans. J Gen Microbiol, 1991, 137(10): 2455-2461,
    [90] Lerner CG, Goldman RC. Stimuli that induce production of Candida albicans extracellular aspartyl proteinase. J Gen Microbiol, 1993, 139(7): 1643-1651.
    [91] Schweizer A, Rupp S, Taylor BN, RollinghoffM, Schroppel K. The TEA/ATTS transcription factor CaTeclp regulates hyphal development and virulence in Candida albicans. Mol Microbiol, 2000, 38(3): 435-445.
    [92] Felk A, Kretschmar M, Albrecht A, Schaller M, Beinhauer S, Nichterlein T, Sanglard D, Korting HC, Schafer W, Hube B. Candida albicans hyphal formation and the expression of the Efgl-regulated proteinases Sap4 to Sap6 are required for the invasion of parenchymal organs. Infect Immun, 2002, 70(7): 3689-3700.
    [93] Chen YC, Wu CC, Chung WL, Lee FJ. Differential secretion of Sap4-6 proteins in Candida albicans during hyphae formation. Microbiology, 2002, 148(11): 3743-3754.
    [94] Soil DR. Gene regulation during high-frequency switching in Candida albicans. Microbiology, 1997, 143(2): 279-288.
    [95] White TC, Miyasaki SH, Agabian N. Three distinct secreted aspartyl proteinases in Candida albicans. J Bacteriol, 1993, 175 (19): 6126-6133.
    [96] White TC, Agabian N. Candida albicans secreted aspartyl proteinases: isoenzyme pattern is determined by cell type, and levels are determined by environmental factors. J Bacteriol, 1995, 177(18): 5215-5221.
    [97]Kuriyama T, Williams DW, Lewis MA. In vitro secreted aspartyl proteinase activity of Candida albicans isolated from oral diseases and healthy oral cavities. Oral Microbiol Immunol, 2003, 18(6): 405-407.