选择性氧化壳聚糖衍生物制备及在造纸中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用高碘酸钠选择性氧化壳聚糖,将吡喃糖环上的C2C3位的共价键打开,引入醛基基团,制得的壳聚糖氧化产物(双醛壳聚糖D-CTS)在造纸工业及生物材料等领域,具有广阔的应用前景。D-CTS对金属离子具有螯合作用,含有的醛基可以进一步还原金属离子,因此可用D-CTS来稳定还原制备纳米粒子。由于在D-CTS中引入了醛基,醛基具有一定的交联作用,能提高D-CTS与其它造纸助剂(如阳离子淀粉和聚丙酰胺)的复配性能,降低壳聚糖使用成本。将D-CTS与阳离子淀粉(CS)复配制成D-CTS/CS复合施胶剂,用于纸张表面涂布,可以增强纸张力学性能、抗油脂性能及水蒸气阻隔性能,从而扩大纸张在食品包装中应用。D-CTS中的醛基是新生成的反应活性点,可以进一步进行接枝反应,制备性能各异的生物材料。
     在高碘酸钠选择性氧化壳聚糖反应过程中,高碘酸根/壳聚糖(IO4/GlcN)摩尔比对壳聚糖氧化产物具有重要影响。反应过程中,高碘酸钠并不是完全消耗在壳聚糖C2C3开环氧化上,部分高碘酸钠消耗在壳聚糖主链降解上。当壳聚糖氧化度达到46.3%后,继续增加高碘酸钠含量,氧化度增长缓慢,这可能是由于此时生成了较多的醛基,醛基对附近糖单元的氨基和羟基存在键能影响,阻碍了反应的进一步进行。氧化反应较合适的pH值在3-4之间,pH值过低,引起氨基质子化,阻碍反应进行;pH值过高,壳聚糖呈溶胀状态,阻碍高碘酸根进入壳聚糖内部参与反应。壳聚糖的氨基基团乙酰化,对分子链降解具有一定的保护作用。XRD表明,随着氧化度提高,壳聚糖晶体Ⅰ、Ⅱ的衍射吸收峰(2θ=11.2,2θ=20.1)消失。壳聚糖的吡喃环的开环数目增加,削弱了壳聚糖分子之间氢键作用,壳聚糖结晶形态遭到破坏,呈弥散状态。DSC分析表明,随着D-CTS氧化度提高,壳聚糖的热稳定性降低,这主要是由于壳聚糖的吡喃糖环发生了开环反应,破坏分子结晶形态,使分解放热峰温度降低。TG分析表明,随着氧化度提高,D-CTS分解起始温度逐渐降低。
     双醛壳聚糖中的氨基和醛基能提高壳聚糖对金属离子的螯合作用,同时醛基可以在纳米银制备过程中充当还原剂。利用D-CTS稳定还原纳米银粒子是一种绿色环保的纳米银制备方法。D-CTS的氧化度及pH值对纳米银颗粒的粒径和形态有重要影响。利用紫外光谱和动态光散射仪(DLS)对纳米银粒径和形态进行分析,当D-CTS的氧化度为32.3%,pH=3时,纳米银颗粒的粒径最小,在30-40nm之间。XRD显示纳米银颗粒具有37.45°和44.47°的晶体衍射峰,表明生成的纳米银颗粒具有(111)和(200)的面心立体结构。FTIR分析表明,稳定纳米银颗粒的主要基团是醛基和氨基,通过Job滴定法测试出纳米银颗粒与D-CTS之间形成了四配位的配合物。制备的纳米银颗粒具有较好的稳定性,常温条件下3个月内没出现明显的聚集现象。
     利用高碘酸钠氧化壳聚糖制备D-CTS,由于D-CTS具有醛基,具有较好的交联复配性能,能提高D-CTS与其他造纸助剂的相容性。将双醛壳聚糖与阳离子淀粉复配来制备双醛壳聚糖/阳离子淀粉复合施胶剂(D-CTS/CS),并用于纸张涂布,可以改善涂布纸的包装性能。随着D-CTS氧化度增加,涂布纸的抗张强度、抗油脂性能明显增强。当施胶剂pH值在5.5-6.5、D-CTS含量为0.3wt%、干燥温度为80℃、环境温度为20-30℃及环境湿度为50-60%时,涂布纸具有最好的抗油脂性能,抗油脂指数达到10。随着D-CTS氧化度增加,涂布纸的水蒸气透过率有一定的降低。增加施胶剂涂布量能大幅提高涂布纸的水蒸气阻隔性能。阳离子淀粉经D-CTS复配后,ATR-FTIR中的C-ONR2、C-O-C的特征吸收峰明显增强,表明D-CTS与阳离子淀粉、纤维素之间的交联程度明显增加,相容性增强。对D-CTS/CS进行热力学分析,随着D-CTS的加入,TG失重起始温度降低至230℃;DSC放热区域(230-365℃)先增大后减小,热力学测试结果与纸张样品力学性能变化规律基本一致。随着D-CTS的加入,复合施胶剂的成膜性能增强,涂布纸的表面平滑度有了大幅的提高。SEM分析表明:D-CTS/CS施胶后,纸张纤维排列紧密、纤维之间孔隙缩小。D-CTS/CS施胶后的纸张水接触角减少,0.1-0.5s内接触角下降较缓慢,表明涂布后的纸张表面形成了一定的薄膜,纸张表面孔隙减小,水滴在纸张表面渗透减缓,纸张抗水性能提高。液体石蜡在涂布纸表面是铺展的,0.1-0.5s内接触角下降值较小,表明D-CTS的加入对纸张表面能影响不大,纸样的表面对油滴存在一定的附着作用,这种附着作用与施胶剂的静电作用力有关,它能阻碍油滴在纸张中渗透,从而提高纸张的抗油脂性能。
     D-CTS在造纸中应用时,由于其分子量较小,架桥能力较差,限制了它作为浆内添加增强剂应用。为了提高D-CTS的架桥性能,利用乙酰肼三甲基氯化铵(GT)与醛基发生接枝反应,制备阳离子双醛壳聚糖(CDCTS)。GT中的叔氨基团可以提高D-CTS的阳离子强度及增强D-CTS的架桥性能,提高纸张留着率及纸张力学性能。另外,叔氨基团引入可以进一步提高纸张的抗菌性能。当GT/CHO(醛基)摩尔比为2:1、D-CTS醛基含量为92.6%、反应温度60℃及反应时间为30min时,接枝率可达52.1%。FTIR及1H-NMR分析表明,GT已经接枝到D-CTS上。随着CDCTS接枝率增加,支链数量及阳离子浓度增加,CDCTS架桥能力提高。CDCTS与纤维及填料等粒子之间形成了物理架桥作用,提高了细小纤维、纤维及填料之间的作用力。CDCTS加入提高了对填料CaCO3助留性能,使纸张灰分含量上升。Zeta分析表明,与D-CTS相比,有更多的CDCTS被吸附到纤维及细小纤维的表面,使纤维表面强度增加,从而使纸页的力学性能增强。随着CDCTS接枝率从0%增加到52.1%,纸张对对金黄色葡萄菌(S. aureus)抗菌指数从76.2%增加到98.3%,增长明显;纸张对大肠杆菌(E. coli)抗菌指数从67.4%增加到78.4%,接枝率在纸张对E. coli抗菌性能方面影响较小。随着CDCTS浓度增加,纸张S. aureus和E. coli的抗菌指数都增加,S. aureus的抗菌增强效果更明显。CDCTS拥有更多的支链,更容易在S. aureus细菌表面进行交错沉积,形成一个阻隔膜层,从而阻碍养分及其它物质在S. aureus细胞壁中通过,抑制细菌生长。拥有较多支链的CDCTS,不容易渗透进入E. coli细胞壁内部,使CDCTS增强效果趋缓。
In the selective oxidation of chitosan using sodium periodate, chemical bonds betweenC2and C3in the pyranose ring were opened. Meantime, the aldehyde group is introducedinto the oxidation products of chitosan. The oxidation products of chitosan by sodiumperiodate were always called dialdehyde chitosan (D-CTS), which shows broad applicationprospects in the paper industry and biomaterials science. D-CTS has the chelation capacity ofmetal ion. Aldehyde group in D-CTS can be further reduced. Therefore, D-CTS can be usedto stabilize and prepare nanoparticles. Aldehyde group in D-CTS plays a role in improvingcomplex formulation with other additives for papermaking (such as cationic starch andpolyacrylamide), which can lower cost of chitosan. The D-CTS and cationic starch (CS) couldbe mixed to prepare a sizing agent, which can enhance the mechanical properties, water vaporbarrier properties and grease resistance. The coated paper has broad application in thepackaging industry. The aldehyde D-CTS is a new active site, which can be grafted functiongroups to prepare biomaterials with different functions.
     The molar ratio of IO4/GlcN has an important impact on the oxidation products in theselective oxidation of chitosan using sodium periodate. Sodium periodate is not entirelyconsumed in the ring-opening reaction between C2and C3in the pyranose. It is partiallyconsumed in degradation of backbone of chitosan. When the degree of oxidation (DO) isabove46.3%, DO continues to grow slowly as the content of sodium periodate increases. Thismay be due to more aldehyde generated in the oxidation reaction, which may influence theamino and hydroxyl groups in the sugar ring. The optimal pH value in the oxidation reactionis between3and4. Lower pH value would make amino groups to be protonated, which couldhinder the reaction process. Higher pH value would make chitosan swelling, which couldprevent periodate permeating into the internal of chitosan molecules. Amine groups inchitosan are acetylated, which can reduce degradation of the molecular chain. XRD analysisshows crystal diffraction peak absorption peak (2θ=11.2,2θ=20.1) disappears with thedegree of oxidation raised. With the improvement of DO, the number of open-loop ofpyranose increases, which would weaken the hydrogen bonding between molecules ofchitosan. Chitosan would be amorphous state after the oxidation. DSC analysis shows thethermal stability of D-CTS is reduced. This is mainly because of the ring-opening of chitosanand corrupted crystalline morphology. TG analysis indicates that the decompositiontemperature of D-CTS decreases as the degree of oxidation raised.
     A simple, green method was developed for the synthesis of silver nanoparticles (AgNPs)by using dialdehyde Chitosan (D-CTS) as the reducing and stabilizing agents. Amino groupsand aldehyde groups in D-CTS can improve the chelation capacity of metal ion. Themorphology and size distribution of the AgNPs were found to vary with the dialdehydecontent of D-CTS and the pH value of the reaction solution. The synthesized AgNPs werecharacterized by UV-Vis spectroscopy and dynamic light scattering (DLS). When the degreeof oxidization was32.3%and the pH value of the reaction solution was3, AgNPs possessed aminimum size of30-40nm. XRD results indicated the presence of nano-silver had the face-centered cubic structure (111) and (200) corresponding to crystal diffraction peaks(37.45°and44.47°). SEM results showed that nano-silver particles of30to40nm in sizewere homogeneously dispersed in the solution. FT-IR spectra revealed that the aldehydegroups and the amino groups were the major agents that stabilizing the AgNPs. The possiblemechanism of D-CTS on the reduction and stabilization of AgNPs analyzed by Job methodmay be due to the formation of four coordinate complexes. The synthesized AgNPs remainedstable for more than three months.
     Due to the aldehyde groups generated in the oxidation of chitosan using sodiumperiodate, D-CTS has a better cross-linking properties, which can improve the compatibilitywith other additives for papermaking. The sizing agent of D-CTS/CS was prepared by mixingcationic starch with D-CTS. The package performances of the paper coated by D-CTS/CScould be improved, which can broaden the applications in food packaging. As the DO ofD-CTS increases, the tensile strength and grease-resistance index of coated paper increasedramatically. When the concentration of D-CTS, pH values of the sizing agent, dryingtemperature, ambient temperatures and ambient humidity are0.3wt%,80℃,20-30℃and50-60%respectively, the coated paper possesses the best grease-resistance index (the greaseresistance index could reach10). As the DO of D-CTS increases, WVP of coated paperdecreases. The increasing coating weight can improve the water vapor barrier propertiesdramatically. ATR-FTIR analysis indicates: the absorption peaks of C-ONR2and C-O-Cgroups increase significantly. It shows that the degree of crosslinking among D-CTS, CS andfibers is raised. TG analysis of D-CTS/CS shows that the beginning temperature of weightloss is230℃. DSC analysis shows that the exothermic area (230-365℃) first increases andthen decreases, which is in accordance with the changes of mechanical properties of thecoated paper. With the addition of D-CTS, the surface smoothness of coated paper has beensubstantially improved. It shows that the film formation performance of the coated paper hasbeen greatly improved. SEM analyses show that the surface of the paper coated by D-CTS/CSbecomes smoother. The pores among the fibers become smaller. The contact angle of waterreduced after the paper coated by D-CTS/CS. When the contact time is between0.1s and0.5s,the contact angle decline more slowly. It shows that the film is formed on the surface of thepaper. Meantime, the paper surface porosity decreases. The water droplets on the surface ofpaper permeate slowly, which indicates the water resistance of the coated paper increases.Liquid paraffin spreads on the surface of coated paper. When the contact time is between0.1sand0.5s, the contact angle declines very slowly. It indicates that the sizing agent has slighteffect on the surface energy. There is an attraction between oil droplets and the surface of thecoated paper. This attraction may be related to the electrostatic force between oil droplets andthe sizing agent, which can impede the oil droplets penetrating into the inside of paper.
     D-CTS has difficulty in wet-end as strengthening agents, due to its small molecularweight and poor bridging capabilities. In order to enhance the bridging properties of D-CTS,Girard's Reagents (GT) were used to graft onto the aldehyde groups in D-CTS to synthesis ofcationic dialdehyde chitosan (CDCTS). The tertiary amine groups in GT reagents can improvepositive ion intensity and mechanical properties of the paper. Meantime, the grafted polymerwith better bridging performance can improve retention properties. In addition, the tertiary amine groups in GT reagents can further enhance the antibacterial properties of the paper.When the molar ratio of GT/CHO, the aldehyde content of D-CTS, the reaction temperatureand the reaction time is2,92.6%,60℃and30min, the percentage of grafting (PG) can reach52.1%. FTIR and1H-NMR analysis show that GT reagents have been grafted onto the D-CTS.As the PG of CDCTS increases, the number of branched-chain and electrolyte concentrationsis raised. With the bridging performance of CDCTS improved, more physical bridges could beformed between fillers and fibers. The physical bridges can improve the force among finefibers, fibers and fillers. At the same time, the ash content of the paper went up for theimproved retention capacity of CaCO3. Zeta analysis showed that there was more CDCTSadsorbed to the surface of fibers compared with D-CTS. Because the wall surface of the fiberincreases, the mechanical properties of paper were improved. With the PG of CDCTSincreasing from0%to52.1%, the antibacterial index against S. aureus was raised from76.2%to98.3%. At the same time, the antibacterial index against E. Coli increased from67.4%to78.4%. Compared with S. aureus, the PG has less effect on the antibacterial index againstE. Coli. With the concentration of CDCTS increasing, the antibacterial indexs againstS. aureus and E. Coli were improved significantly. CDCTS with more branches is more likelyto form a barrier coating on the surface of S. aureus, which can prevent nutrients and othersubstances passing through the cell wall of S. aureus. It may inhibite the bacterial growing.On contrary, CDCTS with more branches has difficulty in penetrating into the cell wall ofE. Coli, which can slow growth of antibacterial properties against E. Coli.
引文
[1]曹朴芳.新中国造纸工业六十年的回顾与展望[J].中华纸业,2009,30(19):6-19.
    [2]中国造纸协会.中国造纸工业2010年度报告[J].造纸信息,2011(6):6-16.
    [3]张飞跃.中国纸及纸板市场预测[J].造纸信息,2010(7):18-26.
    [4]李永平,邹志勇,李传军.我国造纸产业经济增长影响因素与趋势分析[J].中华纸业,2011,32(7):30-33.
    [5]夏华林.造纸化学品产业的世界发展状况及我国的技术进步[J].中华纸业,2009,30(24):36-39.
    [6]杨蔚,蔡照胜.季铵化N,O-羧甲基壳聚糖的制备及其合成条件优化,化学世界,2008(11):667-670,679.
    [7]姚春丽,谈滔,邹鑫,等.二元、三元接枝共聚物对尾巨桉KP-AQ浆增干强工艺的研究,造纸科学与技术,2008,27(1):5-10.
    [8]朱文远,赵传山,田英姿.壳聚糖改性两性聚丙烯酸胺增强剂的制备及应用,中华纸业,2007(4):35-39.
    [9]罗序燕,朱传华,武斌.两性壳聚糖的合成条件优化及结构表征,有色金属科学与工程,2011,2(2):32-37.
    [10]张荣,龙柱,李凤云,高进华. DMDAAC壳聚糖接枝共聚物的制备及其应用[J].中国造纸学报,2007,22(1):46-50.
    [11] Lina Yu, Zhu Long, Rong Zhang. Synthesis of quaternary ammonium salt of chitosan and itsstrengthen effect on paper[J]. Proceeding The Second International Papermaking&EnvironmentConference, May14-16,2008, Tianjin, P.R.China, p694-697.
    [12]于丽娜,龙柱,张荣.两性壳聚糖的制备及其纸张增强性能研究[J].中华纸业,2008,29(10):40-43.
    [13] Shengling Sun, Qiaozhi An, Xu Li, Liying Qian, Beihai He, Huining Xiao. Synergistic effects ofchitosan–guanidine complexes on enhancing antimicrobial activity and wet-strength of paper[J].Bioresource Technology,2010(101):5693-5700.
    [14]崔建梅,刘忠,朱西赏.季铵盐壳聚糖的制备以及在纸张中的应用[J].天津造纸,2010(2):27-30.
    [15] Pedram Fatehi, Rattana Kititerakun, Yonghao Ni, Huining Xiao. Synergy of CMC and modifiedchitosan on strength properties of cellulosic fiber network[J]. Carbohydrate Polymers,2010(80):208-214.
    [16] Susana C. M. Fernandes, Carmen S. R. Freire, Armando J. D. Silvestre, Jacques Desbrie`res,Alessandro Gandini, and Carlos Pascoal Neto. Production of Coated Papers with Improved Properties byUsing a Water-Soluble Chitosan Derivative[J]. Ind. Eng. Chem. Res.,2010(49):6432-6438.
    [17] F. Renault, B. Sancey, P.-M. Badot, G. Crini. Chitosan for coagulation/flocculation processes–Aneco–friendly approach[J]. European Polymer Journal,2009(45):1337-1348.
    [18]段韦江,查瑞涛,潘泉利,韩培培,胡惠仁.阳离子壳聚糖在卷烟纸抄造中的应用研究[J].中国造纸,2010,29(8):25-28.
    [19] Huang Chi, Houbin Li, Wuhui Liu, Huaiyu Zhan.The retention-and drainage-aid behavior ofquaternary chitosan in papermaking system[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2007(297):147-153.
    [20]沈静,宋湛谦,钱学仁,宋成剑.造纸填料级沉淀碳酸钙的壳聚糖覆膜改性与应用[J].中国造纸,2008(1):21-25.
    [21]李艳,龙柱.碱性羧甲基壳聚糖微粒结构及性能表征及用于造纸废水处理研究[J].中国生物工程杂志,2010,30(6):65-69.
    [22]杨蔚,蔡照胜.季铵化N,O-羧甲基壳聚糖的制备及其合成条件优化,化学世界,2008(11):667-670,679
    [23]朱文远,赵传山,田英姿.壳聚糖改性两性聚丙烯酸胺增强剂的制备及应用,中华纸业,2007(4):35-39.
    [24]马永生,邱化玉.壳聚糖用作木浆增干强剂的研究[J].黑龙江造纸,2007(1):1-6.
    [25]陶劲松.改性壳聚糖对纸张性能影响的初步研究[J].造纸科学与技术,2001,20(4):16-18.
    [26] Zhang S D, Wang X L, Zhang Y R, et al. Preparation of a new dialdehyde starch derivative andinvestigation of its thermoplastic properties[J]. Journal of polymer research,2010,17(3):439-446.
    [27] Yu J, Chang P R, Ma X. The preparation and properties of dialdehyde starch and thermoplasticdialdehyde starch[J]. Carbohydrate polymers,2010,79(2):296-300.
    [28] Yu D M, Xiao S Y, Tong C Y, et al. Dialdehyde starch nanoparticles: Preparation and application indrug carrier[J]. Chinese Science Bulletin,2007,52(21):2913-2918.
    [29] Mu C, Liu F, Cheng Q, et al. Collagen Cryogel Cross‐Linked by Dialdehyde Starch[J].Macromolecular Materials and Engineering,2010,295(2):100-107.
    [30] Zhao P, Jiang J, Zhang F, et al. Adsorption separation of Ni (II) ions by dialdehydeo-phenylenediamine starch from aqueous solution[J]. Carbohydrate Polymers,2010,81(4):751-757.
    [31] Yang D, Gao L, Zhao W. Synthesis, characterization and catalytic activity of dialdehyde starch-Schiffbase Co (II) complex in the oxidation of cyclohexane[J]. Catalysis letters,2008,126(1-2):84-88.
    [32] Langmaier F, Mládek M, Mokrej P. Hydrogels of collagen hydrolysate cross-linked with dialdehydestarch[J]. Journal of thermal analysis and calorimetry,2009,98(3):807-812.
    [33] Ding W, Zhao P, Li R. Removal of Zn (II) ions by dialdehyde8-aminoquinoline starch from aqueoussolution[J]. Carbohydrate Polymers,2011,83(2):802-807.
    [34] Liu Y, Acharya G, Lee C H. Effects of dialdehyde starch on calcification of collagen matrix[J].Journal of Biomedical Materials Research Part A,2011,99(3):485-492.
    [35] Yu J, Chang P R, Ma X. The preparation and properties of dialdehyde starch and thermoplasticdialdehyde starch[J]. Carbohydrate polymers,2010,79(2):296-300.
    [36] Ding W, Zhao P, Li R. Removal of Zn (II) ions by dialdehyde8-aminoquinoline starch from aqueoussolution[J]. Carbohydrate Polymers,2011,83(2):802-807.
    [37] Liu J T, Zhang K Y, Wang P, et al. Adsorption Behavior of Cd (II) from Aqueous Solution usingDialdehyde5-Aminophenanthroline Starch[J]. Separation Science and Technology,2013,48(5):766-774.
    [38] Dong A, Xie J, Wang W, et al. A novel method for amino starch preparation and its adsorption for Cu(II) and Cr (VI)[J]. Journal of hazardous materials,2010,181(1):448-454.
    [39] Fiedorowicz M, Para A. Structural and molecular properties of dialdehyde starch[J]. Carbohydratepolymers,2006,63(3):360-366.
    [40] Yin Q F, Ju B Z, Zhang S F, et al. Preparation and characteristics of novel dialdehyde aminothiazolestarch and its adsorption properties for Cu (II) ions from aqueous solution[J]. Carbohydrate polymers,2008,72(2):326-333.
    [41] Para A. Complexation of metal ions with dioxime of dialdehyde starch[J]. Carbohydrate polymers,2004,57(3):277-283.
    [42] Martucci J F, Ruseckaite R A. Tensile properties, barrier properties, and biodegradation in soil ofcompression-Molded gelatin-dialdehyde starch films[J]. Journal of applied polymer science,2009,112(4):2166-2178.
    [43] Han S, Lee M, Kim B K. Crosslinking reactions of oxidized cellulose fiber. I. Reactions betweendialdehyde cellulose and multifunctional amines on lyocell fabric[J]. Journal of applied polymer science,2010,117(2):682-690.
    [44] Shaikh H M, Adsul M G, Gokhale D V, et al. Enhanced enzymatic hydrolysis of cellulose by partialmodification of its chemical structure[J]. Carbohydrate Polymers,2011,86(2):962-968.
    [45] Dash R, Ragauskas A J. Synthesis of a novel cellulose nanowhisker-based drug delivery system[J].RSC Advances,2012,2(8):3403-3409.
    [46] Kim U J, Isobe N, Kimura S, et al. Enzymatic degradation of oxidized cellulose hydrogels[J]. Polymerdegradation and stability,2010,95(12):2277-2280.
    [47] Gao C, Yan T, Dai K, et al. Immobilization of gelatin onto natural nanofibers for tissue engineeringscaffold applications without utilization of any crosslinking agent[J]. Cellulose,2012,19(3):761-768.
    [48] Sirvio J, Hyvakko U, Liimatainen H, et al. Periodate oxidation of cellulose at elevated temperaturesusing metal salts as cellulose activators[J]. Carbohydrate Polymers,2011,83(3):1293-1297.
    [49] Dash R, Elder T, Ragauskas A J. Grafting of model primary amine compounds to cellulosenanowhiskers through periodate oxidation[J]. Cellulose,2012,19(6):2069-2079.
    [50] Li H, Wu B, Mu C, et al. Concomitant degradation in periodate oxidation of carboxymethylcellulose[J]. Carbohydrate Polymers,2011,84(3):881-886.
    [51] Isobe N, Lee D S, Kwon Y J, et al. Immobilization of protein on cellulose hydrogel[J]. Cellulose,2011,18(5):1251-1256.
    [52] Dash R, Foston M, Ragauskas A J. Improving the mechanical and thermal properties of gelatinhydrogels cross-linked by cellulose nanowhiskers[J]. Carbohydrate polymers,2013,91(2):638-645.
    [53] Nikolic T, Kostic M, Praskalo J, et al. Sodium periodate oxidized cotton yarn as carrier forimmobilization of trypsin[J]. Carbohydrate Polymers,2010,82(3):976-981.
    [54] Wu R, He B H, Zhao G L, et al. Immobilization of pectinase on oxidized pulp fiber and its applicationin whitewater treatment[J]. Carbohydrate polymers,2013,97(2):523-529.
    [55] Lee K Y, Mooney D J. Alginate: properties and biomedical applications[J]. Progress in polymerscience,2012,37(1):106-126.
    [56] Boontheekul T, Kong H J, Mooney D J. Controlling alginate gel degradation utilizing partial oxidationand bimodal molecular weight distribution[J]. Biomaterials,2005,26(15):2455-2465.
    [57] Balakrishnan B, Mohanty M, Umashankar P R, et al. Evaluation of an in situ forming hydrogel wounddressing based on oxidized alginate and gelatin[J]. Biomaterials,2005,26(32):6335-6342.
    [58] Dawlee S, Sugandhi A, Balakrishnan B, et al. Oxidized chondroitin sulfate-cross-linked gelatinmatrixes: a new class of hydrogels[J]. Biomacromolecules,2005,6(4):2040-2048.
    [59] Le‐Tien C, Millette M, Lacroix M, et al. Modified alginate matrices for the immobilization ofbioactive agents[J]. Biotechnology and applied biochemistry,2004,39(2):189-198.
    [60] Balakrishnan B, Mohanty M, Fernandez A C, et al. Evaluation of the effect of incorporation ofdibutyryl cyclic adenosine monophosphate in an in situ-forming hydrogel wound dressing based onoxidized alginate and gelatin[J]. Biomaterials,2006,27(8):1355-1361.
    [61] Sakai S, Yamaguchi S, Takei T, et al. Oxidized alginate-cross-linked alginate/gelatin hydrogel fibersfor fabricating tubular constructs with layered smooth muscle cells and endothelial cells in collagen gels[J].Biomacromolecules,2008,9(7):2036-2041.
    [62] Gomez C G, Rinaudo M, Villar M A. Oxidation of sodium alginate and characterization of theoxidized derivatives[J]. Carbohydrate Polymers,2007,67(3):296-304.
    [63]Balakrishnan B, Lesieur S, Labarre D, et al. Periodate oxidation of sodium alginate in water and inethanol–water mixture: a comparative study[J]. Carbohydrate research,2005,340(7):1425-1429.
    [64] Gao C, Liu M, Chen S, et al. Preparation of oxidized sodium alginate-graft-poly ((2-dimethylamino)ethyl methacrylate) gel beads and in vitro controlled release behavior of BSA[J]. International journal ofpharmaceutics,2009,371(1):16-24.
    [65] Boanini E, Rubini K, Panzavolta S, et al. Chemico-physical characterization of gelatin films modifiedwith oxidized alginate[J]. Acta biomaterialia,2010,6(2):383-388.
    [66] Jeon O, Alt D S, Ahmed S M, et al. The effect of oxidation on the degradation of photocrosslinkablealginate hydrogels[J]. Biomaterials,2012,33(13):3503-3514.
    [67] Cai K, Zhang J, Deng L, et al. Physical and biological properties of a novel hydrogel composite basedon oxidized alginate, gelatin and tricalcium phosphate for bone tissue engineering[J]. AdvancedEngineering Materials,2007,9(12):1082-1088.
    [68]韩文秀,王炜,许文菊,等.TEMPO-NaOCl-NaBr体系选择性氧化壳聚糖及其产物结构表征[J].合成技术及应用,2011,26(1):7-10.
    [69] L.Sun, Y. Du,J., Yang, et al. Conversion of crystal structure of the chitin to facilitate Preparation of a6-carboxychitin with moisture absorption-retention abilities[J].Carbohydrate Polymers,2006,66(2):168-175.
    [70] S-H Yoo,J-5Lee,S-Y Park, et, al. Effects of selective oxidation of chitosan on physical and biologicalproperties[J].International Journal of Biological Macromolecules,2005,35(1l-2):27-31.
    [71] I. M. N. Vold, B. E. Christensen. Periodate oxidation of chitosans with different chemicalcompositions [J]. Carbohydrate Research,2005,340:679-684.
    [72] B. E. Christensen, I. M. N. Vold, K. M. V rum. Chain stiffness and extension of chitosans andperiodate oxidised chitosans studied by size-exclusion chromatography combined with light scattering andviscosity detectors [J]. Carbohydrate Polymers,2008,74:559-565.
    [73] K. A. Kristiansen, Antje Potthast, B. E. Christensen, et, al. Periodate oxidation of polysaccharides formodification of chemicaland physical properties[J]. Carbohydrate Research,2010,345:1264–1271.
    [74] Yi Jia, Yingqian Hu, Yuxuan Zhu, et, al. Oligoamines conjugated chitosan derivatives: Synthesis,characterization, in vitro and in vivo biocompatibility evaluations [J]. Carbohydrate Polymers,2011,83:1151-1161.
    [75] H.-L. Jiang, Hwang-Tae Lim, You-Kyoung Kim. Chitosan-graft-spermine as a gene carrier in vitroand in vivo[J]. European Journal of Pharmaceutics and Biopharmaceutics,2011,77:36-42.
    [76] Yuan Ping, Chengde Liu, Zhongxing Zhang,et,al. Chitosan-graft-(PEI-β-cyclodextrin) copolymers andtheir supramolecular PEGylation for DNA and siRNA delivery[J]. Biomaterials,2011,32:8328-8341.
    [77] Lu D R, Xiao C M, Xu S J. Starch-based completely biodegradable polymer materials[J]. ExpressPolymer Letters,2009,3(6):366-375.
    [78] Dutta P K, Tripathi S, Mehrotra G K, et al. Perspectives for chitosan based antimicrobial films in foodapplications[J]. Food Chemistry,2009,114(4):1173-1182.
    [79] Chen Y, Cao X, Chang P R, et al. Comparative study on the films of poly (vinyl alcohol)/pea starchnanocrystals and poly (vinyl alcohol)/native pea starch[J]. Carbohydrate Polymers,2008,73(1):8-17.
    [80] Wang Q, Zhang N, Hu X, et al. Chitosan/starch fibers and their properties for drug controlledrelease[J]. European journal of pharmaceutics and biopharmaceutics,2007,66(3):398-404.
    [81] Kaisangsri N, Kerdchoechuen O, Laohakunjit N. Biodegradable foam tray from cassava starchblended with natural fiber and chitosan[J]. Industrial Crops and Products,2012,37(1):542-546.Shen X L, Wu J M, Chen Y, et al. Antimicrobial and physical properties of sweet potato starch filmsincorporated with potassium sorbate or chitosan[J]. Food Hydrocolloids,2010,24(4):285-290.
    [82] Bourtoom T, Chinnan M S. Preparation and properties of rice starch–chitosan blend biodegradablefilm[J]. LWT-Food Science and Technology,2008,41(9):1633-1641.
    [83] Mathew S, Abraham T E. Characterisation of ferulic acid incorporated starch–chitosan blend films[J].Food Hydrocolloids,2008,22(5):826-835.
    [84] Zhai M, Zhao L, Yoshii F, et al. Study on antibacterial starch/chitosan blend film formed under theaction of irradiation[J]. Carbohydrate polymers,2004,57(1):83-88.
    [85] Xu Y X, Kim K M, Hanna M A, et al. Chitosan–starch composite film: preparation andcharacterization[J]. Industrial Crops and Products,2005,21(2):185-192.
    [86] Liu F, Qin B, He L, et al. Novel starch/chitosan blending membrane: Antibacterial, permeable andmechanical properties[J]. Carbohydrate polymers,2009,78(1):146-150.
    [87] Vásconez M B, Flores S K, Campos C A, et al. Antimicrobial activity and physical properties ofchitosan–tapioca starch based edible films and coatings[J]. Food Research International,2009,42(7):762-769.
    [88] Pelissari F M, Grossmann M V E, Yamashita F, et al. Antimicrobial, mechanical, and barrierproperties of cassava starch chitosan films incorporated with oregano essential oil[J]. Journal ofagricultural and food chemistry,2009,57(16):7499-7504.
    [89] Chillo S, Flores S, Mastromatteo M, et al. Influence of glycerol and chitosan on tapioca starch-basededible film properties[J]. Journal of Food Engineering,2008,88(2):159-168.
    [90] Nakamatsu J, Torres F G, Troncoso O P, et al. Processing and characterization of porous structuresfrom chitosan and starch for tissue engineering scaffolds[J]. Biomacromolecules,2006,7(12):3345-3355.
    [91] Zamudio‐Flores P B, Torres A V, Salgado‐Delgado R, et al. Influence of the oxidation andacetylation of banana starch on the mechanical and water barrier properties of modified starch and modifiedstarch/chitosan blend films[J]. Journal of applied polymer science,2010,115(2):991-998.
    [92] Bourtoom T. Plasticizer effect on the properties of biodegradable blend film from ricestarch-chitosan[J]. Songklanakarin Journal of Science&Technology,2008,30(2):101-109.
    [93] Baran E T, Mano J F, Reis R L. Starch–chitosan hydrogels prepared by reductive alkylationcross-linking[J]. Journal of Materials Science: Materials in Medicine,2004,15(7):759-765.
    [94] Suyatma N E, Tighzert L, Copinet A, et al. Effects of hydrophilic plasticizers on mechanical, thermal,and surface properties of chitosan films[J]. Journal of Agricultural and Food Chemistry,2005,53(10):3950-3957.
    [95] Dutta P K, Tripathi S, Mehrotra G K, et al. Perspectives for chitosan based antimicrobial films in foodapplications[J]. Food Chemistry,2009,114(4):1173-1182.
    [96] Srinivasa P C, Ramesh M N, Tharanathan R N. Effect of plasticizers and fatty acids on mechanical andpermeability characteristics of chitosan films[J]. Food hydrocolloids,2007,21(7):1113-1122.
    [97] Yoksan R, Chirachanchai S. Silver nanoparticle-loaded chitosan–starch based films: Fabrication andevaluation of tensile, barrier and antimicrobial properties[J]. Materials Science and Engineering: C,2010,30(6):891-897.
    [98] G llstedt M, Hedenqvist M S. Packaging-related mechanical and barrier properties ofpulp–fiber–chitosan sheets[J]. Carbohydrate polymers,2006,63(1):46-53.
    [99] Ko odziejska I, Piotrowska B. The water vapour permeability, mechanical properties and solubility offish gelatin–chitosan films modified with transglutaminase or1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and plasticized with glycerol[J]. Food chemistry,2007,103(2):295-300.
    [100] Pinotti A, García M A, Martino M N, et al. Study on microstructure and physical properties ofcomposite films based on chitosan and methylcellulose[J]. Food Hydrocolloids,2007,21(1):66-72.
    [101] Suyatma N E, Copinet A, Tighzert L, et al. Mechanical and barrier properties of biodegradable filmsmade from chitosan and poly (lactic acid) blends[J]. Journal of Polymers and the Environment,2004,12(1):1-6.
    [102] De Moura M R, Aouada F A, Avena-Bustillos R J, et al. Improved barrier and mechanical propertiesof novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles[J].Journal of Food Engineering,2009,92(4):448-453.
    [103] Rhim J W, Hong S I, Park H M, et al. Preparation and characterization of chitosan-basednanocomposite films with antimicrobial activity[J]. Journal of Agricultural and Food Chemistry,2006,54(16):5814-5822.
    [104] Casariego A, Souza B W S, Cerqueira M A, et al. Chitosan/clay films' properties as affected bybiopolymer and clay micro/nanoparticles' concentrations[J]. Food Hydrocolloids,2009,23(7):1895-1902.
    [105] Srinivasa P C, Ramesh M N, Kumar K R, et al. Properties of chitosan films prepared under differentdrying conditions[J]. Journal of Food Engineering,2004,63(1):79-85.
    [106] Yoshida C M P, Oliveira Junior E N, Franco T T. Chitosan tailor made films: the effects of additiveson barrier and mechanical properties[J]. Packaging Technology and Science,2009,22(3):161-170.
    [107] Srinivasa P C, Tharanathan R N. Chitin/chitosan-Safe, ecofriendly packaging materials with multiplepotential uses[J]. Food reviews international,2007,23(1):53-72.
    [108] Andersson C. New ways to enhance the functionality of paperboard by surface treatment-a review[J].Packaging Technology and Science,2008,21(6):339-373.
    [109] Tharanathan R N. Biodegradable films and composite coatings: past, present and future[J]. Trends inFood Science&Technology,2003,14(3):71-78.
    [110] Jou C H, Lin S M, Yun L, et al. Biofunctional properties of polyester fibers grafted with chitosan andcollagen[J]. Polymers for Advanced Technologies,2007,18(3):235-239.
    [111] Khwaldia K, Arab‐Tehrany E, Desobry S. Biopolymer coatings on paper packaging materials[J].Comprehensive Reviews in food science and food safety,2010,9(1):82-91.
    [112] Vartiainen J, Tuominen M, N ttinen K. Bio‐hybrid nanocomposite coatings from sonicated chitosanand nanoclay[J]. Journal of applied polymer science,2010,116(6):3638-3647.
    [113] Ham-Pichavant F, Sèbe G, Pardon P, et al. Fat resistance properties of chitosan-based paperpackaging for food applications[J]. Carbohydrate polymers,2005,61(3):259-265.
    [114] Kjellgren H, G llstedt M, Engstr m G, et al. Barrier and surface properties of chitosan-coatedgreaseproof paper[J]. Carbohydrate polymers,2006,65(4):453-460.
    [115] G llstedt M, Brottman A, Hedenqvist M S. Packaging‐related properties of protein and chitosancoated paper[J]. Packaging Technology and Science,2005,18(4):161-170.
    [116] Kjellgren H, Engstr m G. Influence of base paper on the barrier properties of chitosan-coatedpapers[J]. Nordic Pulp and Paper Research Journal,2006,21(5):685-689.
    [117] Bordenave N, Grelier S, Coma V. Hydrophobization and antimicrobial activity of chitosan andpaper-based packaging material[J]. Biomacromolecules,2009,11(1):88-96.
    [118] Fernandes S C M, Freire C S R, Silvestre A J D, et al. Production of coated papers with improvedproperties by using a water-soluble chitosan derivative[J]. Industrial&Engineering Chemistry Research,2010,49(14):6432-6438.
    [119] No H K, Young Park N, Ho Lee S, et al. Antibacterial activity of chitosans and chitosan oligomerswith different molecular weights[J]. International journal of food microbiology,2002,74(1):65-72.
    [120] Appendini P, Hotchkiss J H. Review of antimicrobial food packaging[J]. Innovative Food Science&Emerging Technologies,2002,3(2):113-126.
    [121] Rabea E I, Badawy M E T, Stevens C V, et al. Chitosan as antimicrobial agent: applications andmode of action[J]. Biomacromolecules,2003,4(6):1457-1465.
    [122] Liu H, Du Y, Wang X, et al. Chitosan kills bacteria through cell membrane damage[J]. Internationaljournal of food microbiology,2004,95(2):147-155.
    [123] No H K, Kim S H, Lee S H, et al. Stability and antibacterial activity of chitosan solutions affected bystorage temperature and time[J]. Carbohydrate polymers,2006,65(2):174-178.
    [124] Aider M. Chitosan application for active bio-based films production and potential in the foodindustry: Review[J]. LWT-Food Science and Technology,2010,43(6):837-842.
    [125] Cha D S, Chinnan M S. Biopolymer-based antimicrobial packaging: a review[J]. Critical Reviews inFood Science and Nutrition,2004,44(4):223-237.
    [126] Kong M, Chen X G, Xing K, et al. Antimicrobial properties of chitosan and mode of action: a state ofthe art review[J]. International journal of food microbiology,2010,144(1):51-63.
    [127] Chung Y C, Chen C Y. Antibacterial characteristics and activity of acid-soluble chitosan[J].Bioresource Technology,2008,99(8):2806-2814.
    [128] Wei D, Sun W, Qian W, et al. The synthesis of chitosan-based silver nanoparticles and theirantibacterial activity[J]. Carbohydrate research,2009,344(17):2375-2382.
    [129] Hu Y, Du Y, Yang J, et al. Synthesis, characterization and antibacterial activity of guanidinylatedchitosan[J]. Carbohydrate Polymers,2007,67(1):66-72.
    [130] Vallapa N, Wiarachai O, Thongchul N, et al. Enhancing antibacterial activity of chitosan surface byheterogeneous quaternization[J]. Carbohydrate Polymers,2011,83(2):868-875.
    [131] Sabaa M W, Mohamed N A, Mohamed R R, et al. Synthesis, characterization and antimicrobialactivity of poly (N-vinyl imidazole) grafted carboxymethyl chitosan[J]. Carbohydrate Polymers,2010,79(4):998-1005.
    [132] Gonil P, Sajomsang W, Ruktanonchai U R, et al. Novel quaternized chitosan containingβ-cyclodextrin moiety: Synthesis, characterization and antimicrobial activity[J]. Carbohydrate Polymers,2011,83(2):905-913.
    [133] Al Sagheer F A, Khalil K D, Ibrahim E I. Synthesis and characterization of chitosan-g-poly(2-(furan-2-carbonyl)-acrylonitrile): Grafting of chitosan using a novel monomer prepared by aBaylis–Hillman reaction[J]. European Polymer Journal,2013,49(6):1662-1672.
    [134] Ahmed G A W, Khairou K S, Hassan R M. Kinetics and mechanism of oxidation of chitosanpolysaccharide by permanganate ion in aqueous perchlorate solutions[J]. Journal of Chemical Research(Miniprint),2003,2003(4):182-183.
    [135] Kato Y, Kaminaga J, Matsuo R, et al. TEMPO-mediated oxidation of chitin, regenerated chitin andN-acetylated chitosan[J]. Carbohydrate Polymers,2004,58(4):421-426.
    [136] Vicini S, Princi E, Luciano G, et al. Thermal analysis and characterisation of cellulose oxidised withsodium methaperiodate[J]. Thermochimica Acta,2004,418(1):123-130.
    [137]蒋元勋,李海鹰,杨文.壳聚糖脱乙酰度测定方法的总结与比较[J].应用化工,2011,40(10):1837-1841.
    [138]陈鲁生,周武.壳聚糖粘均分子量的测定[J].化学通报,1996(4):57-57.
    [139] Shigemasa Y, Matsuura H, Sashiwa H, et al. Evaluation of different absorbance ratios from infraredspectroscopy for analyzing the degree of deacetylation in chitin[J]. International Journal of BiologicalMacromolecules,1996,18(3):237-242.
    [140] X. Wang, J. Yao, J. P. Zhou, et al. Synthesis and evaluation of chitosan–graft-polyethylenimine as agene vector[J]. Pharmazie,2010,65(8):572-579.
    [141] Lavertu M, Xia Z, Serreqi A N, et al. A validated1H-NMR method for the determination of thedegree of deacetylation of chitosan[J]. Journal of Pharmaceutical and Biomedical Analysis,2003,32(6):1149-1158.
    [142] Sieval A B, Thanou M, Verhoef J C, et al. Preparation and NMR characterization of highlysubstituted N-trimethyl chitosan chloride[J]. Carbohydrate Polymers,1998,36(2):157-165.
    [143] Clark G L, Smith A F. X-ray Diffraction Studies of Chitin, Chitosan, and Derivatives[J]. The Journalof Physical Chemistry,1936,40(7):863-879.
    [144] Sandhu K S, Kaur M, Singh N, et al. A comparison of native and oxidized normal and waxy cornstarches: Physicochemical, thermal, morphological and pasting properties[J]. LWT-Food Science andTechnology,2008,41(6):1000-1010.
    [145] A. Pal, S. ShahS. Devi. Microwave-assisted synthesis of silver nanoparticles using ethanol as areducing agent[J]. Materials Chemistry and Physics,2009,114(2–3):530-532.
    [146] H. Huang, Q. YuanX. Yang. Preparation and characterization of metal-chitosan nanocomposites[J].Colloids and Surfaces B: Biointerfaces,2004,39(1-2):31-37.
    [147] H.-S. Bae. Functional modification of sanitary nonwoven fabric by chitosan/nanosilver colloidsolution and evaluation of applicability[J]. Fibers and Polymers,2010,11(4):606-614.
    [148] P. K. KhannaV. Subbarao. Nanosized silver powder via reduction of silver nitrate by sodiumformaldehydesulfoxylate in acidic pH medium[J]. Materials Letters,2003,57(15):2242-2245.
    [149] Z. S. PillaiP. V. Kamat. What factors control the size and shape of silver nanoparticles in the citrateion reduction method [J]. Journal of Physical Chemistry B,2004,108(3):945-951.
    [150] M. Annadhasan, V. R. SankarBabu, R. Naresh, et al. A sunlight-induced rapid synthesis of silvernanoparticles using sodium salt of N-cholyl amino acids and its antimicrobial applications[J]. Colloids andSurfaces B: Biointerfaces,2012,96(0):14-21.
    [151] P. Vasileva, B. Donkova, I. Karadjova, et al. Synthesis of starch-stabilized silver nanoparticles andtheir application as a surface plasmon resonance-based sensor of hydrogen peroxide[J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2011,382(1-3):203-210.
    [152]薛琼,向贤伟,黄曦平.碘化壳聚糖-淀粉复合膜对芒果保鲜效果的研究[J].包装工程,2009,30(02):20-23.
    [153] Susana C. M. Fernandes, Carmen S. R. Freire, Armando J. D. Silvestre, et, al. Production of coatedpapers with improved properties by using a water-soluble chitosan derivative[J] Ind. Eng. Chem.Res.,2010,49(14):6432-6438.
    [154]徐会霞,颜进华,李雁.阳离子淀粉乳化性能的研究[J].纸和造纸,2012,31(1):47-50.
    [155] TAPPI, T559pm-96, Grease Resistance Test for Paper and Paperboard[S].
    [156] Khwaldia K, Arab-Tehrany E, Desobry S. Biopolymer coatings on paper packaging materials[J].Comprehensive Reviews in food science and food safety,2010,9(1):82-91.
    [157] Lagaron J M, Fernandez-Saiz P, Ocio M J. Using ATR-FTIR spectroscopy to design activeantimicrobial food packaging structures based on high molecular weight chitosan polysaccharide[J].Journal of agricultural and food chemistry,2007,55(7):2554-2562.
    [158] Lawrie G, Keen I, Drew B, et al. Interactions between alginate and chitosan biopolymerscharacterized using FTIR and XPS[J]. Biomacromolecules,2007,8(8):2533-2541.
    [159] G rdlund L, Forsstr m J, Andreasson B, et al. Influence of polyelectrolyte complexes on the strengthproperties of papers from unbleached kraft pulps with different yields[J]. Nordic Pulp&Paper ResearchJournal,2005,20(1):36-42.
    [160] Gu W, Li H, Zhan H, et al. The interface interaction between water-soluble chitosan (DD=50%) andperoxide bleached reed kraft pulp[J]. Journal of Applied Polymer Science,2011,121(5):2606-2613.
    [161] Lim S H, Hudson S M. Synthesis and antimicrobial activity of a water-soluble chitosan derivativewith a fiber-reactive group[J]. Carbohydrate research,2004,339(2):313-319.
    [162] Luo J, Wang X, Xia B, et al. Preparation and characterization of quaternized chitosan undermicrowave irradiation[J]. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry,2010,47(9):952-956.
    [163] Sun L, Du Y, Fan L, et al. Preparation, characterization and antimicrobial activity of quaternizedcarboxymethyl chitosan and application as pulp-cap[J]. Polymer,2006,47(6):1796-1804.
    [164] Vojinovi L S, Leovac V M, Novakovi S B, et al. Transition metal complexes with Girardreagent-based ligands, Part I: Synthesis and crystal structure of the first cobalt (III) complexes with Schiffbase derivative of Girard reagent[J]. Inorganic Chemistry Communications,2004,7(12):1264-1268.
    [165] Lin H, Yao L R, Chen Y Y, et al. Structure and properties of silk fibroin modified cotton[J]. Fibersand Polymers,2008,9(2):113-120.
    [166] El-Ayaan U, Kenawy I M, Abu El-Reash Y G. Synthesis, thermal and spectral studies of first-rowtransition metal complexes with Girard-T reagent-based ligand[J]. Journal of Molecular Structure,2007,871(1):14-23.
    [167] Yan L, Tao H, Bangal P R. Synthesis and flocculation behavior of cationic cellulose prepared in aNaOH/urea aqueous solution[J]. Clean–Soil, Air, Water,2009,37(1):39-44.
    [168] Hirai A, Odani H, Nakajima A. Determination of degree of deacetylation of chitosan by1H-NMRspectroscopy[J]. Polymer Bulletin,1991,26(1):87-94.
    [169] Sieval A B, Thanou M, Verhoef J C, et al. Preparation and NMR characterization of highlysubstituted N-trimethyl chitosan chloride[J]. Carbohydrate Polymers,1998,36(2):157-165.
    [170] Dutta P K, Tripathi S, Mehrotra G K, et al. Perspectives for chitosan based antimicrobial films infood applications[J]. Food Chemistry,2009,114(4):1173-1182.
    [171] Liu H, Du Y, Wang X, et al. Chitosan kills bacteria through cell membrane damage[J]. Internationaljournal of food microbiology,2004,95(2):147-155.
    [172] Helander I M, Nurmiaho-Lassila E L, Ahvenainen R, et al. Chitosan disrupts the barrier properties ofthe outer membrane of Gram-negative bacteria[J]. International journal of food microbiology,2001,71(2):235-244.